
Lecture 2

Domenico Valloni

Definition 1. Let R be a ring, and let M be a module over it.

• We say that M is Noetherian (after E. Noether) if every ascending chain of sub-
modules

M1 ⊂ M2 ⊂ M3 ⊂ · · · ⊂ M

stabilizes, i.e., Mi = Mi+1 for every i >> 0.

• We say that M is Artian (after E. Artin) if every descending chain of submodules

· · · ⊂ M3 ⊂ M2 ⊂ M1 ⊂ M

stabilizes, i.e., Mi = Mi+1 for every i >> 0.

We say that a ring R is Noetherian (resp. Artinian) if it is so when considered as a
module over itself.

In particular, a ring is Noetherian if every ascending chain of ideals

I1 ⊂ I2 ⊂ I3 ⊂ · · · ⊂ M

stabilizes eventually (since submodules are ideals in this case). Examples:

1. If R = Z then any finite abelian group is both Noetherian and Artinian (since it
is finite, every chain must stabilize)

2. If R = M = Z then M is noetherian but not artinian. It is not artinian because

· · · ⊂ (2)3 ⊂ (2)2 ⊂ (2) ⊂ Z

is a non-stabilizing descending chain of ideals. Let us now show that it is noethe-
rian. We know that every ideal is principal, so we can write an ascending chain
of ideals as

(n1) ⊂ (n2) ⊂ (n3) ⊂ · · ·

with ni ∈ Z. But then ni must divide nj for every j ≤ i. Since n1 has only
finitely many divisors, we conclude that the chain must stabilize.

3. Similarly, one checks that if k is a field, then k[x] is noetherian over itself, but
not artinian.
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4. The abelian group Q/Z seen as a module over Z is neither noetherian nor ar-
tinian. To show this, consider the following chain, which infinite in both direc-
tions (n ∈ N):

· · · pnZ ⊂ pn−1Z ⊂ · · · ⊂ pZ ⊂ Z ⊂ 1

p
Z ⊂ · · · ⊂ 1

pn
Z ⊂ 1

pn+1
Z ⊂ · · ·

5. There are, on the other hand, many Artinian modules over k[x]. For instance,
pick n ≥ 1 and consider M = k[x]/(x)n. What are the submodules of M?
By the correspondence theorem, they corresponds to ideals (xn) ⊂ I ⊂ k[x].
Since k[x] is a P.I.D., the ideal I = (f) for some polynomial f ∈ k[x] and
the inclusion means that f divides xn. But then the only possible choices are
I = (x)i for i = 0, 1, · · ·n. In particular, k[x]/(xn) has only finitely many
submodules, hence it is automatically both artinian and noetherian.

There are also examples of modules that are artinian and not noetherian, but those are
to be considered pathological, as we shall now explain.

Remark 1. For a ring R, being Artinian is way more stringent than being Noetherian. In
fact, one can show that if R is a ring which is artinian, then it is automatically noethe-
rian (Akizuki’s theorem). We shall not pursue this. Let me just say that noetherian
rings appear everywhere and satisfy many useful properties, and that most of algebraic
geometry has the noetherian assumption. On the other hand, artinian rings appear less
often, e.g., deformation theory and intersection theory.

We shall now see some properties of noetherian / artinian rings. The next proposi-
tion should validate the previous remark:

Proposition 2. Assume that R is an artinian domain. Then, R is a field.

Proof. We need to show that any r ∈ R \ 0 is invertible. Consider the descending
chain of ideals · · · ⊂ (r)n+1 ⊂ (r)n ⊂ · · · ⊂ (r). By artinianity, this must stabilize,
in particular, there is n > 1 such that (r)n = (r)n−1. This means that rn−1 = rn · u
for some u ∈ R. Again, this means that rn−1(ru − 1) = 0. Since R is a domain, we
conclude that (ru− 1) = 0, because r ̸= 0. So u is the inverse of r.

On the contrary, there are many noetherian domains which are not fields (see later).

Proposition 3. Assume that M is noetherian (resp. artinian) R-module. Then, any
submodule N ⊂ M is noetherian (resp. artinian) and every quotient module M ↠ N
is noetherian (resp. artinian).

Proof. We show this for noetherian only, the proof being the same for artinian (just
reverse the inclusions). If N ⊂ M is a submodule, and if

N1 ⊂ N2 ⊂ · · ·

is an ascending chain in N , then it is also in particular an ascending chain in M . Since
M is noetherian, we know that this stabilizes.
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Similarly, consider a surjection π : M ↠ N and let

N1 ⊂ N2 ⊂ · · ·

be an ascending chain on N . Then, π=1(Ni) defines an ascending chain on M , which
must then stabilize. So it follows that also N1 ⊂ N2 ⊂ stabilizes (due to the surjectivity
of π).

Proposition 4. Consider a short exact sequence of R-modules

0 → A
f−→ B

g−→ C → 0.

If A and B are noetherian (resp. artinian) then C is noetherian (resp. artinian).

Note that if B is noetherian, then both A and C are noetherian by the previous
result (the same for artinian).

Proof. Pick any ascending chain B1 ⊂ B2 ⊂ · · ·Bn ⊂ · · · ⊂ B of submodules of B.
Then, f(Bi) is an ascending chain of submodules of C. In particular, it has to stabilize,
becasue C is noetherian. Similarly, Bi ∩ A yields an ascending chain of submodules
of A, which must therefore stabilize. So, there is N > 0 such that for every i ≥ j ≥ N
we have f(Bi) = f(Bj) and Bi ∩ A = Bj ∩ A. The result now follows from the
following lemma:

Lemma 5. Consider a short exact sequence of R-modules

0 → A
f−→ B

g−→ C → 0.

Let B1 ⊂ B2 ⊂ B be submodules such that f(B1) = f(B2) and B1 ∩ A = B2 ∩ A.
Then B1 = B2.

Proof. Assume B1 ̸= B2 and pick b2 ∈ B2 \ B1. Now, f(b2) ∈ f(B2) = f(B1) so
there is b1 ∈ B1 such that f(b1) = f(b2), which means that b2 − b1 ∈ ker(f) = A.
Since b1 ∈ B2 because B1 ⊂ B2 then b2 − b1 ∈ A∩B2 = A∩B1, which implies that
b2 − b1 ∈ B1, hence b2 ∈ B1, which is a contraddiction.

Proposition 6. Assume that R is noetherian ring (resp. artinian) and let M be a
finitely generated R-module. Then, M is noetherian (resp. artinian).

Before proving this, we check by induction the following lemma:

Lemma 7. Assume that R is noetherian (resp. artinian). Then, Rn is noetherian (resp.
artinian) as R-module.

Proof. By induction on n. If n = 1 there is nothing to prove. Now, we have a short
exact sequence

0 → Rn → Rn+1 → R → 0,

and we use the induction hypothesis plus the previous result to conlcude.
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Corollary 8. Let R be noetherian (resp. artinian). Then any finitely generated R-
module is noetherian (resp. artinian).

Proof. In fact, a module is finitely genereated if and only if it admits a surjection
Rn ↠ M . Then we can apply the previous results to conclude.

In particular, note the following: if R is an artinian ring, then every finitely gen-
erated module over it is noetherian (by the fact that R is noetherian and the previous
proposition).

We now characterize Noetherian modules in a very convenient way

Proposition 9. Let M be a R-module. Then, M is Noetherian if and only if every
submodule of M is finitely generated.

Proof. We show the first implication. So we assume that M is noetherian and we show
that all its submodules are finitely generated. Since any submodule N ⊂ M is noethe-
rian, we can just show that if M is noetherian, then it is finitely genereated. So, suppose
that M is not finitely generated. This means that for every m1,m2, · · ·mk ∈ M we
have

∑
i Rmi ̸= M . Now, we construct an infinite ascending chain as follows: pick

m1 ∈ M \ 0 and put M1 = Rm1. By assumption, there is m2 ∈ M \ M1, and we
put M2 = Rm1 + Rm2. Note that M1 ⊂ M2 is a strict inclusion. Then again, by
assumption, M \ M2 is not empty, and we can pick m3 ∈ M \ M2 and reiterate the
process.

Now we prove the other implication. So, we assume that all the submodules of M
are finitely generated. Pick an ascending chain M1 ⊂ M2 ⊂ M3 · · · ⊂ M and put
M ′ =

⋃
i Mi ⊂ M . Then M ′ is a submodule of M , therefore, by assumption, it is

finitely generated, say by m1, · · · ,mk ∈ M ′. But then, there must be a n > 0 such
that {m1, · · · ,mk} ⊂ Mn. Therefore, Mn =

⋃
i Mi ⊂ M which implies that the

chain stabilizes.

We now prove Hilbert’s basis theorem:

Theorem 10. If R is a noetherian ring, then R[x] is a noetherian ring as well.

Proof. We need to show that every ideal I ⊂ R[x] is finitely generated. For any
f ∈ R[x] let c(f)xn be its leading coefficient, that is, deg(f) = n and f − c(f)xn

has degree < n. We consider the ideal J ⊂ R generated by {c(f) : f ∈ I}. As R
is Noetherian, we deduce that J is finitely generated. In particular, there are finitely
many f1, · · · , fr ∈ I such that c(f1), · · · , c(fr) generate J . Now, up to multiplying
by some xk each of the fi, we can assume that deg(fi) = deg(fj) = n for every i, j.

Consider now the subgroup I≤n ⊂ I given by

I≤n := {f ∈ I : deg(f) ≤ n}.

This is easily seen to be a R-module. Moreover

I≤n ⊂ R[x]≤n = {f ∈ R[x] : deg(f) ≤ n} ∼= Rn+1.
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Since R is noetherian, Rn+1 is noetherian too, and therefore also I≤n is a noetherian
R-module. As such, it is generated over R by finitely many elements g1, g2, · · · , gs.
We now prove that

f1, f2, · · · , fr, g1, g2, · · · , gs
generate I as a R[x] module. Pick f ∈ I . If deg(f) ≤ n then f ∈ I≤n is a R-linear
combination of g1, g2, · · · , gs. Now we do induction on deg(f) > n. Recall that
deg(fi) = n for every i. Since c(f) ∈ J we can write

c(f) = a1c(f1) + a2c(f2) + · · · arc(fr).

It follows from this that

f − xdeg(f)−n(a1f1 + a2f2 + · · ·+ arfr)

has degree strictly smaller than deg(f), so we can apply the inductive hypothesis.

Corollary 11. For any field K and any ideal I ⊂ K[x1, x2, · · · , xn] the quotient ring
K[x1, · · · , xn]/I is noetherian.

The rings of the form K[x1, · · · , xn]/I correspond to the function rings of affine
varieties, which are the building block of algebraic geometry. So, basically, most of
algebraic geometry is done under the noetherian assumption.

Definition 12. We say that a module M is simple if its only submodules are 0 and M .
We say that a submodule N ⊂ M is maximal if M/N is simple. We say that N ⊂ M
is minimal if N is simple.

For a module M , a composition series is a chain

0 = M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mℓ = M (0.1)

such that Mi/Mi+1 is a non-zero simple module for every 0 ≤ i ≤ ℓ− 1. It is easy to
see that M has a composition series if and only if it is both Artinian and Noetherian.
We call ℓ the length of the composition series. We shall prove:

Theorem 13 (Jordan-Hölder). Suppose that M has a composition series like (0.1). Let

0 = M ′
0 ⊂ M ′

1 ⊂ M ′
2 ⊂ · · · ⊂ M ′

s = M

be another composition series for M . Then, s = ℓ and the sequences of quotients

M1,M2/M1, · · · ,Mℓ/Mℓ−1

and
M ′

1,M
′
2/M

′
1, · · · ,M ′

ℓ/M
′
ℓ−1

coincide up to reordering.
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Proof. We prove the result by induction on ℓ. If ℓ = 1 then M is a simple module, so
there is nothing to prove. So we assume that we know the result up to ℓ − 1 and we
want to show that it is true also for ℓ. So we assume that M has a composition series
like in (0.1) of length ℓ. We differentiate between three cases.

Case one: there are 0 < i < ℓ and 0 < j < s such that Mi = M ′
j . In this case,

we can apply the inductive hyphotesis to see that i = j necessarily. Moreover, the
quotients

M1,M2/M1, · · · ,Mi/Mi−1

and
M ′

1,M
′
2/M

′
1, · · · ,M ′

i/M
′
i−1

must coincide up to reordering, thanks again to the inductive hypothesis. Finally, we
note that

0 ⊂ Mi+1/Mi ⊂ Mi+2/Mi+1 ⊂ · · ·M/Mℓ−1

and
0 ⊂ M ′

i+1/M
′
i ⊂ M ′

i+2/M
′
i+1 ⊂ · · ·M/M ′

ℓ−1

are both composition series for the same module M/Mi = M/M ′
i of length strictly

smaller than ℓ. Again by the induction hypthotesis, we deduce that ℓ = s and that
the sequence of quotients coincides. But by the third isomorphism theorem, these
sequences are nothing but

Mi+1/Mi, · · · ,M/Mℓ−1

and
M ′

i+1/M
′
i , · · · ,M/M ′

ℓ−1

so we are done.

Case two: there is 0 < i < ℓ and 0 < j < s such that Mi ⊂ M ′
j . Note that Case

two is more general than case one. We shall connect it to case one, as follows. Note
that the hypothesis of case 2 imply that M1 ⊂ M ′

s−1. We shall now construct another
composition series for M : first, we find a composition series for M ′

s−1/M1. Why we
can (by induction). This yields a composition series

0 ⊂ M1 ⊂ M ′′
2 ⊂ M ′′

3 ⊂ · · ·M ′′
t ⊂ M ′

s−1.

Again by induction, we now that t = s− 2 and that the sequence of quotients

M1,M
′′
2 /M1,M

′′
3 /M

′′
2 , · · · ,M ′

s−1/M
′′
s−2

is the same (up to reordiring) of

M ′
1,M

′
2/M

′
1,M

′
3/M

′
2, · · · ,M ′

s−1/M
′
s−2.

Now, we consider the two composition series (0.1) and the new one just constructed

0 ⊂ M1 ⊂ M ′′
2 ⊂ M ′′

3 ⊂ · · ·M ′′
s−2 ⊂ M ′

s−1 ⊂ Ms = M.
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Since they agree at i = 1, we can apply case one to deduce that s = ℓ and that all the
quotients coincide.

Case three: This is the last case, which happens when M1 is not contained in
M ′

s−1. We shall also link this to case one. The fact that M1 is simple implies that
M1 ∩ M ′

s−1 = 0 and the fact that Ms−1 is maximal implies that M ′
s−1 + M1 = M .

Therefore, M ∼= M1 ⊕M ′
s−1. We consider the following composition series for M :

0 ⊂ M1 ⊕ 0 ⊂ M1 ⊕M ′
1 ⊂ · · · ⊂ M1 ⊕M ′

s−2 ⊂ M

whose quotients are

M1,M
′
1,M

′
2/M

′
1,M

′
3/M

′
4, · · · ,M ′

s−1/M
′
s−2.

Since the first term of this coincides with the first term of (0.1), we can apply case one
and conclude that ℓ = s all the quotients coincide. Since M1 = M/M ′

s−1 we conclude
the proof.
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