Lecture 10

Domenico Valloni

1 Integral elements and integral extensions

The idea of “integral elements” begins in algebraic number theory (Kummer and Dedekind)
so I am going to explain its origin first as a motivation.

The starting point is the ring Z together with its fraction field Q = Frac(Z). In
algebraic number theory, one studies number fields, which are field extensions Q C L
of finite degree, e.g., L = Q(\/&) for d a square-free integer. The question is then:
is there a way to construct a subring Z;, C L which - in some sense - plays the same
role as Z for Q? The answer is not obvious, and basically requires to define when an
element z € L is integral.

Definition 1. Let R C S be an extension of rings (i.e., an injective ring morphism). An
element s € S is said to be integral over R if it satisfies a monic polynomial equation
with coefficients in R, that is, if

"4y 8" s g =0
for some n > 1 and r; € R (monic means that r,, = 1).

Example. Let R be a UFD, so in particular a domain, and let F' be its fraction field. We
consider the ring extension R C F', and we now compute the elements of F' which are
integral over R. Take f € F and write f = a/bwitha,b € R, b # 0and ged(a,b) =1
(note that since R is a UFD, we have a well-defined notion of gcd). Assume that f is
integral over R, so there are r; € R such that

[P f" e f o =0, de.

(@/b)" + rn—1(a/b)" " + -+ ri(a/b) + 1o =0,
by multiplying both sides by ™ we then get
a” + rnflan_lb + -+ rlab"_l +rob™ = 0.

Note that this last equation takes place in R, and it implies that b divides a. Since a and
b are coprime by assumption, then b is necessarily a unit in R, hance f = a/b € R. So
the only elements of F' integral over R are precisely the elements of R.



In particular, the only elements of Q integral over Z are the integers, and the only
elements of K (z) integral over K [z] are the polynomials (where K denotes a field).

Back to our original motivation, given a number field L/Q, we would like to define
the integers of L as Z;, := {x € L: x is integral over Z}. The problem with this is
that it is hard to show that it is a ring: in general, given a ring extension R C S and
51,82 € S, itis very hard to show by hand that s; + so or s7 - s5 are integral over R
knowing that s; and s, are, because there is not a general formula to cook up a monic
equation satisfied by the sum or the product. In the end, this problem is solved using a
clever applycation of Cayley-Hamilton (which we already encountered):

Theorem 2 (Cayley-Hamilton). Let R be a ring and let M be a finitely generated
module. Let ¢: M — M be a R-module morphism. Then, there is a monic polynomial

P(z) € R[z] such that P(¢) = 0.

Proof. One begins by proving the theorem for M free, i.e., M = R". In this case, any
¢: M — M can be written as a n x n matrix A = (a;;) € My, (R) with coefficients
in R. Then one defines P(z) = det(x1d,, —A). This is clearly a monic polynomial of
degree n. The proof that P(¢) = 0 is the same as in linear algebra.

Now, if M is a finitely generated module, we choose a surjection w: R" — M.
Using the universal property of free modules, it is easy to find a dotted arrow which
makes the following diagram commute:

R" 5> M

L

R" —— M

let us call it ¢p: R™ — R™. Now we have a monic polynomial P(x) € R[z] such that
P(y) =0,1ie.,
P4 " g = 0

(recall that ¥ is the k-fold composition 1) o 1) o ---p). But 7 o ¥ = ¢* o 7 and
therefore

(¢n_’_,rn71¢n*l +~-~+7“1¢+T0)O7T:0
Finally, since 7 is surjective, this implies that P(¢) = 0. O

So, the solution of our problem is contained in the following theorem, which gives
another characterization for integral elements:

Theorem 3. Let R C S be a ring extension and let s € S. The following are equiva-
lent:

1. sisintegral over R;
2. The subring R[s| C S generated by s is a finitely generated R-module;

3. There is a subring T C S which is a finitely generated R-module and which
contains s.



Proof. Let us show that (1) = (2). Recall that R[s] is nothing but the image of
the map R[z] — S which sends z to s. Since R[x] is generated as a R-module by
1,z,22,- -, it follows that also R[s] is generated by 1, s, s%,- - - as a R-module. Since
s is integral by assumption, it satisfies a relation of the form s™ + r,,_;s" ! 4+ ... +
r1s+19=0,ie.,s" =—r, 15"t — ... — 115 — ry. This shows that in fact R[s] is
generated only by 1,s,--- ,s" ! as a R-module, because any power s* for k > n can
be written as a R-linear combination of 1,s,--- ,s" 1. So R[s] is a finitely generated
R-module.

The fact that (2) = (3) is obvious, as we can take T' = R[s].

Finally, we prove that (3) == (1). Since T is aring and s € T', we can consider
the map ¢: T' — T given by multiplication by s. This is clearly R-linear. Since T is
finitely generated by assumption as a R-module, we can apply Cayley-Hamilton, and
deduce that there is a monic polynomial P(z) € R[xz] such that P(¢) = 0, i.e.,

R Y R S

Note that this equation takes place in Endz(T'). Since ¢(1) = 1 - s by evaluating the
equation above at 1 we get

§" 41 18" s+ =0,
which shows that s is integral over R. 0

Definition 4. A ring extension R C S is said to be
1. Integral, if every element of S is integral over R;

2. Finite, if S is a finitely generated R-module (with respect to its natural R-module
structure).

Note that every finite extension is integral by the theorem above. On the other hand,
an integral extension is finite if and only if it is generated by finitely many elements as
aring, i.e., if there are s1,- -+ , s, € S such that R[s1, - ,s,] = S.

Proposition 5. Both properties are transitive, i.e., if R C S and S C T are inte-
gral/finite ring extensions, then also R C T is integral/finite.

Proof for finite case. We begin with R C S finite. Since .S is a finitely generated R-
module, there is a surjection R™ — S of R-modules. Since T is a finitely generated
S-module, there is a surjection S™ — T of S—modules. From this it follows that there
is a surjection R™™ = (R™)™ — T of R-modules, hence T’ is finite. O

Before proving the other part of the statement, we need a lemma:

Lemma 6. Let R C S be a ring extension, and let s1,- - , s, € S be integral over R.
Then, the subring R[s1,- -+ ,sp] C S is a finitely generated R-module.

Proof. We prove it by induction on n. If n = 1, this is Theorem@ Now, we assume
that the statement is true for values smaller than n. Since s,, is integral over R, it is
in particular integral over R[s1,- -, $,—1]. Hence, R[s1, -, s,] is a finitely gener-
ated R[sq, -, Sp—1]-module by Theorem Since also R[s1,- -, 8,—1] is a finitely
generated 2-module by induction, the proof follows by the previous result. U



Proof of Proposition 5| for integral extensions. To prove the statement in case both ex-
tensionsa are integral, we need to show that every ¢ € T is integral over R. Since ¢
is integral over S by assumption, we can find a monic polynomial P(z) € S[x] such
that P(t) = 0. Write P(x) = 2" + s,,_12" " + -+ 4+ s12 + S0. Since every element
of S is integral over R by assumption, we can use the previous lemma to deduce that
S’ := R[so0, 81, " ,Sn—1] C S is a finitely generated R-module. But then ¢ is integral
over S’ by construction, hence S’[t] is a finitely generated S’-module. This shows that
S’[t] is a finitely generated R-module, and we can use Theorem [3|to deduce that ¢ is
integral over R.

We finally prove that integral elements form a ring:

Corollary 7. Let R C S be a ring extension. Then the set
S" = {s € S: sisintegral over R}
is a subring of S. We call it the integral closure of R in S.

Proof. Clearly 0,1 € S’. If s € S’ then clearly also —s € S’. Now, take s1,$2 € S.
To show that also s1 + s2 and s 52 belong to S’, we simply use Lemma@ since s and
so are integral over R, we deduce that R[sy, s3] C .S is a finitely generated R-module.
But then s1 +s2 and s1 82 belong to R[s1, s3], and therefore are integral over R, because
both contained in a subring of S which is a finitely generated R-module. 0

Finally, let us give an example of an integral extension which is not finite. Consider
the ring Z[\@, 2,v2,32,- - |. This is clearly integral over Z, but it is not finite.

Definition 8. Assume that R is a domain and let F be its fraction field. The integral
closure of R in F'is called the normalization of R. A domain R is said to be normal if
it is equal to its normalization.

For instance, we showed at the beginning of the lecture that every UFD is normal.
To conclude the lecture, we make some examples on the meaning of normality. Who-
ever will take the next semester course on algebraic curves, will see how the notion
of normality is related to the notion of singularities. We give some informal insights
(this is not exam material). So take K an algebraically closed field, and let R =
K[z,y]/(f) be a domain (so f is irreducile). Then by the Nullstellensatz, we know
that m — Spec(R) corresponds one-to-one to V(f) = {(z,y) € K?: f(x,y) = 0},
which is an irreducible curve (because R is a domain). We have also explained how one
should interpret R as the ring of polynomial functions on V(). Now, F' := Frac(R)
should be interpreted as the field of meromorphic functions on V' (I), i.e., functions
which are not well-defined at some point of the curve (where they have poles).

For instance, m — Spec(K [z]) corresponds to the line K and Frac(K[z]) = K (x).
Any element of f € K|[z] yields a function K — K given by k — f(k). Consider
now an element f/g € K(x) and let V(g) C K be the finitely many points k¥ € K
such that g(k) = 0. Let U = K \ V(g). This is a Zariski open of K, by definition,
and f/g yields a well-defined function U — K given by k — f(k)/g(k). Note that if
K = C this is a meromorphic function, with poles contained in V' (g).



Going back to our original situation and notation, R being normal then means that
the only meromorphic functions on V'(f) which are integral over R are the polynomial
functions themselves.

Example.

1. The node. Consider R = K|z,y]/(y*> — #? — 2%). We know from previous
lectures that R is a domain. To visualize V(2 — 22 — 2%) we can assume
K = R. Note that when 2 — 0 the term x? is negligible, and the equation looks
like (y — x)(y + =) = 0. Drawing the zero locus in R? will result in something
like this:

-1

Although we do not know what smooth or singular means, we can guess that
(0,0) is a singular point of the curve. Let us now show that R is not normal. By
abuse of notation, we denote by x,y € R the images of z,y € K|z, y| under the
quotient K[z,y] — R. Clearly R is generated as a K-algebra by = and y. Let
t =y/x € F = Frac(R). Our first claim is that the natural inclusion K (¢) C F'
is an equality. Surely also F is generated by = and y; now t? = 32 /2? = 1 + x,
so x € K(t). But then y = tx also belongs to K (t), from which the claim
follows.

Our second claim is that ¢ ¢ R. By absurd, assume that ¢ € R. Now, the
equation tx = y holds in R. We lift this equation to K [x, y]: since by assumption
t € Rwecan find T € K|z, y] whose image in R is equal to ¢, then we have
T-z—ye€ (y?—22-2%,ie,T -2 —y = (y* — 2% — 23) - P for some
P € K|xz,y]. But plugging = 0 yields the equation —y = y*>P(0,y) which is
clearly impossible.

Finally, note that ¢ € F' is integral over R, since t2 = 1 + z. This shows that
R is not normal. Interpreting ¢ as a meromorphic function on the curve, we see
that ¢ is well-defined at every point but (0, 0), but not because it has a pole in it!
The fact is that ¢ is indetermined at (0, 0) because it can take both values +1 (as
the equation t2 = 1 + z also shows) i.e., it is not continuous. To explain this
better, still working in R2, let U be our curve without the point (0, 0). Then, the
map U — R given by (z,y) — y/x is a well-defined continuous map. Now, we
said already that the curve looks like (z — y)(z + y) = 0 when x is very close



to 0. Thus, the curve looks like {(z, )} U {(z, —z)} when z is very small. But
the function ¢ has constant value 1 on the first set, and constant values —1 on the
second, so it cannot be extended continuously to (0, 0).

Let us now compute the integral closure of R in F'. We already know that this is
a ring which contains ¢. Note that R[t] = K[¢] as subrings of F' (why?). Finally,
F = K(t) and since K[t] is integrally closed in K (t) because K[t] is a UFD,
we conclude that K'[t] must be the integral closure of R in F' (why?).

Finally, the (finite) ring extension R C K|t yields a map of maximal-spectrum
(this is not true in general, but always true for finite ring extensions, as we shall
see in later lectures). Thus we get a map f: K — V(y? — 22 — 23). Since
x =t —1andy = at = t(t> — 1), we see that the map corresponds to
f(t) = (t> — 1,t(t> — 1)). Note what is happening here: we started with the
irreducible curve V (y? — 22 — 23) which has a singular point at (0, 0). Taking
the normalization of R gave us a smooth curve (namely, the line K') and a map
K — V(y*> — 2? — x3) which “resolved the singularities” of the curve. This is a
general phenomena for curves: the normalization will always yield a resolution
of singularities.

2. The cusp: Another singularity is the cusp V (22 —3?) C K?2. Again working over
R to get some geometric insights, we see that if (z,y) € V(22 — y3) theny > 0
and that therefore the curve is just the graph of the function y = (z'/2)2. Again,

we notice that the point (0, 0) looks bad. We check that R = K[z, y]/(2? — y3)
is not normal (we know that it is a domain). Once again, we let t = z/y €
Frac(R). Then t* = y, from which we deduce that ¢ is integral over R. We
show that ¢t ¢ R as we did before: we assume by absurd that ¢ € R and we let
T € K[z, y] be a polynomial which is mapped to ¢ under the quotient map. Then
we must have that T'(z, y)y—=z € (22 —y?) i.e., there is polynomial P € K[z, y]
such that T'(z,y)y — x = P(x,y)(z? — y?). By putting y = 0 we obtain a
contradiction. But note the difference from the previous case: the function ¢ is
actually well-defined and continuous on the curve V(22 — y?), sending (0, 0)
to 0. The reason why we should not consider this as a regular function is more
subtle: although ¢ yields a continuos function, this is not differentiable at (0, 0)!

Again as before, we can check that Frac(R) = K (t) and that K[t] is the integral
closure of R in Frac(R). The induced map K — V(22 — 33) is given by



t — (¢3,t?) and it is again a resolution of singularities.

. Finally, let us go back to the original question of this lecture, and let us give a hint
on how to compute the integral closure of Z in L = Q(v/d) where d is a square-
free integer. We know now that this is a ring, and we denote it by Zj,. The Galois
group of L/Q is isomorphic to Z/2. Now, we can write any = € L as a+b+/d for
a,b € Q and the non-trival element of Gal(L/Q) acts as a + bv/d — a — bV/d.
To determine Z;, one proceeds in the following way: first, note that v/d € Zj,
since it satisfies the monic equation 2> — d. Therefore Z[v/d] C Zp, always.
Next, note that if x € Zj, then also z € Z, (why?). From this it follows that if
r=a+b/d € Zthen2a =z + 7 € Z, and a® — db*> = 2T € Zj. Next,
note that 2a, a®> — db?® € Q, and therefore 2a, a®> — db® € Z. This gives us that
if z € Z, then 2a € Z. So, we check two cases. First, if a € Z then a? € Z
too so that db?> € Z. Since d is square-free, this forces b € Z too. This means
that if a € Z then 2 € Z[v/d]. Now, assume that a = /2 with a € Z odd, and
let us look at the condition a? /4 — db? € Z, which means that o — 4db? € 47Z.
If d is even, this cannot be solved for any b € Q (why?). So if d is even we
get that Z; = Z[\/E] Now, assume that d is odd. In this case, we necessarily
have b = (/2 with 8 € Z an odd number (why?) and the condition becomes
a? — dB? € 47. The only squares in Z/4 are [0] and [1]. Since both @ and 3
are odd, we have that [@?] = [8%] mod 4. Again, since d is odd, [d] = [1] or
[d] = [3] in Z/4, from which it follows that if there is a solution then necessarily
d =1 mod 4. So we have showed that if d = 3 mod 4 we have Z; = Z[\/d]
necessarily. So the last case to study is d = 1 mod 4. Check that in this case
§ = (14+/d)/2 € Zy. Finally, if 2 = a/2 + 8/2Vd € Zy, (with a, 8 odd)
then also  — & € Zy,. But then = — § € Z[+/d] (why?). This proves that if d = 1
mod 4 then the ring of integers of L is Z[4].
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