EPFL - Fall 2024	Domenico Valloni
Rings and modules	Exercises
Sheet 7	7 November 2024

Exercise 1. Let F be an algebraically closed field, and let I, J be ideals of $R = F[x_1, ..., x_n]$. Prove that $\sqrt{I} \subseteq \sqrt{J}$ if and only if $V(J) \subseteq V(I)$.

Exercise 2. Let F be an algebraically closed field, and let I, J be ideals of $R = F[x_1, ..., x_n]$. Show that

(1)
$$V(I) \cup V(J) = V(I \cap J) = V(IJ)$$

(2) $V(I) \cap V(J) = V(I+J)$

Exercise 3. Let R be a commutative ring, and let I, J be ideals of R. In both Spec(R)and $m - \operatorname{Spec}(R)$, show that

$$(1) V(I) \cup V(J) = V(I \cap J) = V(IJ)$$

(2) $V(I) \cap V(J) = V(I+J)$

• Let R, S be commutative rings, and let $f: R \to S$ be a ring morphism. Show that there is an induced continuous map $\operatorname{Spec}(S) \to \operatorname{Spec}(R)$.

• Let R be a ring and I an ideal. Show that the morphism $\operatorname{Spec}(R/I) \to \operatorname{Spec}(R)$ induced by the quotient map corresponds to the inclusion of the closed subset $V(I) \subseteq \operatorname{Spec}(R)$.

Exercise 5. Prove that $Z = \{(u^3, u^2v, uv^2, v^3) : u, v \in \mathbb{C}\} \subset \mathbb{C}^4$ is an algebraic set (i.e. there exists an ideal I of $\mathbb{C}[x_1, x_2, x_3, x_4]$ such that Z = V(I). Find I(Z). [Hint: Make sure you have everything!]

Exercise 6. Let F be an algebraically closed field, and $X \subseteq F^m$ an algebraic set with ideal I = I(X). Define the coordinate ring A(X) of X to be $A(X) := F[x_1, \dots, x_m]/I$. Notice that every element of A(X) naturally defines a set-map from X to F, and thus one may think of A(X) as the set of global algebraic functions on X.

(1) If $X = V(I) \subseteq F^m$, and $Y = V(J) \subseteq F^n$ are algebraic sets with ideals I = I(X)and J = I(Y), then a morphism $f: X \to Y$ is defined to be a set-map from the points of X to the points of Y, for which the following holds: there exists a vector (h_1,\ldots,h_n) of polynomials $h_i\in F[x_1,\ldots,x_m]$, such that for every $\underline{a}\in X$ we have $f(\underline{a}) = (h_1(\underline{a}), h_2(\underline{a}), \dots, h_n(\underline{a})) \in Y.$

Show that whenever there is a morphism $f: X \to Y$ of algebraic sets as defined above, there is a unique homomorphism of F-algebras $\lambda_f:A(Y)\to A(X)$, such that the following diagram commutes.

$$F[y_1, \dots, y_n] \xrightarrow{y_i \mapsto h_i} F[x_1, \dots, x_m]$$

$$\downarrow \qquad \qquad \downarrow$$

$$A(Y) \xrightarrow{\lambda_f} A(X)$$

Here the vertical arrows are the quotient maps stemming from the definition of A(X)and A(Y), and the top horizontal map is given by sending y_i to $h_i(x_1,...,x_m)$.

(2) With setup as above, show that if there is a homomorphism of F-algebras $\lambda : A(Y) \to A(X)$, then there is a morphism $f : X \to Y$ such that $\lambda = \lambda_f$. Furthermore, all choices of f are the same (as set-maps from the points of X to the points of Y).

Exercise 7. Let F be an algebraically closed field. Let X be an algebraic set in F^n with ideal I(X) = I. Prove that points of F^n contained in X are naturally in bijection with maximal ideals of the coordinate ring $A(X) = F[x_1, ..., x_n]/I$.