EPFL - Fall 2024 Domenico Valloni
Rings and modules Exercises
Sheet 6 31 October 2024

The exercise marked by # is this week’s bonus exercise. You can hand in your LaTeX-
solutions on Moodle until Wednesday the 13th of November at 6pm sharp.
Throughout, we only work with commutative rings.

Exercise 1. Let R = k[z,y] be the polynomial ring in two variables over an algebraically
closed field k. Recall that an ideal m in a ring R is maximal if it is not properly contained
in any other proper ideal of R. In this exercise you can use freely the Theorem below, which
will be proven later in the course.

Theorem (The weak Nullstellensatz in two variables). Let k be an algebraically closed field.
Every mazimal ideal m in the ring k[z,y] is of the form m = (x —a,y—>b) for some a,b € k.

Show the following:

(1) If M is a finite length module over R, then the quotients of its composition series are
of the form R/(x —a,y—b)

(2) If M is a module such that Ann(M) 2 (z — a,y — b), then Ann(Ext'(M,N)) 2
(x —a,y —b) for every R-module N.
[ Hint: Consider the multiplication by x — a resp. y —b on M and the induced maps
on Extz(M, N). Recall also Exercise 7 of Sheet 4.]

(3) If N is any finitely generated module over R, then Ext’ (R/(x —a,y—b) N) has finite
length.
[ Hint: Use the previous point. |

(4) For every finite length module M and for every finitely generated module N over R,
Extly (M, N) has finite length.
[ Hint: Use the long exact sequence for a compostion series. ]

Exercise 2. Let R = k[x,y] be as in the previous exercise (k is algebaically closed). We
say that a finite length module is supported at (z —a,y—b) if only R/(m —a,y — b) appears
as quotients in the composition series. Show that if M is a finite length module supported

at (z —a,y — b), then Ext (M, Rl(z-d,y- b’)) =0 for all (a',b') # (a,b).

Exercise 3. Show using the long exact sequence of cohomology that if Ext}%(M, N) =0,
then every extension 0 N K M 0 splits.
Exercise 4. ® Let R = k[z,y], and let M = R/(x,y).

(1) Show that Extp(M, M) = M.
Note that there is canonical bijection k& — M, sending A\ € k to the class of the constant
polynomial A modulo (z,y). In particular, there is also a natural bijection K - M.

(2) For a given (X, u) € k°\ {(0,0)}, define

2 2
N)x,,u = R/(.I' Y ,953/7)\9 - /j“r)a

let o Ny ,, = M be the map induced by the quotient map R — M, and let ¢y: M — N, ,

be the map sending the class of 1 to the class of —(xa + yb), where a,b € k are any

elements such that Aa + ub = 1.
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Then show that the Yoneda extension associated to (\, 1) € k°\{(0, 0)} is isomorphic
to the sequence

0 M5 N, 5 M0

(3) Under what conditions on (), x) and (X', 11') do we have an isomorphism Ny , = Ny s?
Hint: Think about torsion.

Exercise 5. Let R = k[z,y].

(1) Show that Bxt' ((z,y), B/ (x,y)) # 0.
(2) Construct a finitely generated module M such that Tors(M) € M is not a direct
summand.

[ Note: For M finitely generated over a PID R, Tors(M) € M is always a direct summand
by the fundamental theorem for finitely generated modules over PIDs. ]

Exercise 6. Throughout this exercise, R will be a ring and M, N will be R-modules. We
will now see another way to compute the Ext-modules than the one we saw in the lectures
(one may say a ’dual’ way). To do so, we need the following Lemma, which you may use
without proof.

Lemma 1. ! For every R-module N there exists an injective R-module homomorphism
N — I where I is an injective R-module.

(1) Using the above Lemma, show that any R-module N admits an injective resolution.
That is, there exists an exact sequence

where I” is an injective R-module for all b = 0 (the numbers in superscript are just
indices, not exponents of any sort).

(2) Show that an R-module I is injective if and only if Homg(—, I) is exact.
[ Reminder: By Lemma 5.2.2 of the lecture notes Hompg(—, I) is always left exact. ]

IThis is not too hard to prove but it needs some preparation. It boils down to proving the result for
R = Z using Bear’s criterion, and then generalizing it to any ring by some trickery.



3

(3) Fix a projective resolution P, = M and an injective resolution N < I°. Consider the
commutative diagram

d_1 1 d
0 — Homp(M,I") % Homp(P,,I') —= Homp(P,I') — -
/\(S—I 0 /\6070 /\51,0
0 d-1,0 0 do,o 0
0 —— Hompg(M,I") : > Homp(Py,I') —— Homp(P, 1) —> -+
80.-1 01,-1
. ..............................................................................................
do,-1
O >HOHIR(P0,N) HHOH]R(PMN) H oo
0 0
where d,, = — 0 pyy1 and 0, = i’ o — for all a,b = —1. Briefly justify that this is
indeed commutative, and that all columns and lines of the diagram which are not blue

are exact.

(4) Show that H°(Hompg(M, 1)) = H*(Homg(P., N)).
[ Hint: Show that their images inside Hompy(P,, I") coincide.]

(5) Show that H'(Homp(M,I")) = H' (Homg(P,, N)).
[Hint: Let C° := Homp(Py, I°) and C' = Homp(P,,I°) & Homp(Py, I'), and let
A"+ ¢° = C' be the map sending z € C° to (doo(z),d00(x)) € C'. Show that
the cohomology groups in question both embed into coker(Ao) and that their images
therein coincide. ]

[ Remark: One can generalize the above results and prove that in fact H'(Homg(M, ")) =

Hi(HomR(P., N)) for all ¢ = 0, and thus the Ext-modules may also be computed by using
an injective resolution of the second module. To do so, one defines the modules C"™ :=

D v Homp(P,,I") and connecting maps A™ : C™ — C™"" similar to A’, where one
replaces d,, by (—1)%8,, to ensure A" o A™ = 0. We thus obtain a complex C*, and

one can then prove that H'(Homp(M,I*)) and H'(Homg(P,, N)) embed into H'(C*) with
equal image. ]



