EPFL - Fall 2024	Domenico Valloni
Rings and modules	Exercises
Sheet 5	17 October 2024

Exercise 1. For two short exact sequences

$$0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$$

and

$$0 \longrightarrow N_1 \longrightarrow N_2 \longrightarrow N_3 \longrightarrow 0$$

we say that there is a map between them if there exists morphisms $f_i: M_i \to N_i$, for $1 \le i \le 3$ and a commuting diagram

$$0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$$

$$\downarrow^{f_1} \qquad \downarrow^{f_2} \qquad \downarrow^{f_3}$$

$$0 \longrightarrow N_1 \longrightarrow N_2 \longrightarrow N_3 \longrightarrow 0.$$

Show that whenever there is a map between two short exact sequences, then there is an induced map between long exact sequences of Ext-modules, making the suitable diagram commute.

Exercise 2. In this exercise we prove the two 4-lemmas. To this end, suppose that we have a commuting diagram with exact rows:

$$\begin{array}{cccc}
A & \xrightarrow{f_1} & B & \xrightarrow{f_2} & C & \xrightarrow{f_3} & D \\
\downarrow^a & & \downarrow_b & & \downarrow_c & & \downarrow_d \\
A' & \xrightarrow{f_1'} & B' & \xrightarrow{f_2'} & C' & \xrightarrow{f_3'} & D'
\end{array}$$

- (1) Show that if a and c are surjective and d is injective, then b is an surjective.
- (2) Show that if b and d are injective and a is surjective, then c is a injective.

Exercise 3. (1) Set $k = \mathbb{F}_p$ and $G = \mathbb{Z}/p\mathbb{Z}$. Find all the submodules (i.e. ideals) of R = k[G].

[Hint: To understand $\mathbb{F}_p[\mathbb{Z}/p\mathbb{Z}]$ in terms of more common rings, it might be a good idea to look for ring morphisms $\mathbb{F}_p[x] \to \mathbb{F}_p[\mathbb{Z}/p\mathbb{Z}]$ and investigate both kernel and image.]

(2) For p = 2, let x denote a generator of G and set $M = (x + 1) \subseteq k[G]$. Compute $\operatorname{Ext}_R^i(M, M)$ for all $i \geq 0$.

$$(f \cdot g)(z) := \sum_{\substack{x,y \in G \\ xy = z}} f(x)g(y) \quad \text{for all } f, g \in k[G], \ z \in G.$$

Now for $g \in G$, let $\delta_g \in k[G]$ be the function taking the value 1 at g and 0 everywhere else. Then $\{\delta_g\}_{g \in G}$ is a k-basis of k[G]. Furthermore, one can verify that the map $g \mapsto \delta_g$ is an injective group morphism $G \hookrightarrow k[G]^{\times}$ (in particular, $1_{k[G]} = \delta_{e_G}$). Usually people just write g instead of δ_g by abuse of notation, but as the underlying sets of \mathbb{F}_p and $\mathbb{Z}/p\mathbb{Z}$ coincide, it is probably better to distinguish them in the notation.

¹Recall that k[G] is defined as the set of functions $f: G \to k$, where addition is defined pointwise, and multiplication is defined by convolution:

Exercise 4. In this exercise we define injective modules and prove Baer's criterion. Let R be a (not necessarily commutative) ring; any R-module and any R-morphism appearing in this exercise will be a left R-module resp. a morphism of left R-modules.

We say that an R-module Q is injective if it satisfies the following property:

Whenever we have an injective R-morphism $f: X \hookrightarrow Y$ and an R-morphism $g: X \to Q$, then there exists an R-morphism $h: Y \to Q$ making the following diagram commute:

$$X \xrightarrow{f} Y$$

$$\downarrow_{g} \qquad h$$

$$Q$$

We will prove the following:

Theorem (Baer's Criterion). Suppose that the left R-module Q has the property that if I is any left ideal of R and $f: I \to Q$ is an R-morphism, there exists an R-morphism $F: R \to Q$ extending f. Then Q is an injective R-module.

We will prove Baer's criterion in several steps. Assume that the R-module Q satisfies Baer's criterion.

- (1) Let X, Y be R-modules, and assume that Y is cyclic (generated by $b \in Y$). Let $f: X \hookrightarrow Y$ be an injective R-morphism. Show that for every R-morphism $g: X \to Q$, there exists an R-morphism $h: Y \to Q$ making the appropriate diagram commute. [Hint: Identify X with a submodule of Y and consider the subset I of R defined by $I = \{r \in R : rb \in X\}$.]
- (2) Let X, Y be left R-modules with an injective R-morphism $f: X \hookrightarrow Y$ (we identify X with its image under f). Let $b \in Y$ be arbitrary. With a similar approach as in the previous point, prove that any R-morphism $g: X \to Q$ can be extended to an R-morphism $h: X + Rb \to Q$ making the appropriate diagram commute.
- (3) Use Zorn's Lemma to conclude the proof.

Axiom 1 (Zorn's Lemma / Axiom of Choice). If (\mathcal{P}, \leq) is a partially ordered set with the property that every totally ordered subset (often called a chain) has an upper bound, then there exists a maximal $M \in \mathcal{P}$. (that is, for $N \in \mathcal{P}$, we have $M \nleq N$)

[Hint: Try to think of what it means for one partial extension of $g:X\to Q$ to be smaller than another.]

Exercise 5. Use Baer's Criterion to show that \mathbb{Q} is an injective \mathbb{Z} -module.