EPFL - Fall 2024	Domenico Valloni
Rings and modules	Exercises
Sheet 1	19 September 2024

As always in the course, we fix the following notation:

- $\circ R$ is a ring,
- \circ k is a field,
- o if not specified, "module" means "left R-module", and
- \circ M and N are modules.

Exercise 1. (1) A simple module is a module that has only trivial submodules. Show that any simple module is cyclic.

(2) Let $m \in M$ be an element. We define the annihilator of m by

$$\operatorname{Ann}_{R}(m) = \left\{ r \in R \mid rm = 0 \right\}$$

We only write Ann(m) if it the base ring is clear from the context.

Show that Ann(m) is a left ideal of R and that the cyclic module Rm is isomorphic to the module R/Ann(m).

- (3) Let M be a simple k[x]-module. Prove that $M \cong k[x]/(f)$ where f is an irreducible polynomial in k[x] and (f) denotes the ideal generated by f.
- (4) Which of the following Z-modules are simple?
 - (a) \mathbb{Z}
 - (b) $\mathbb{Z}/6\mathbb{Z}$
 - (c) $\mathbb{Z}/7\mathbb{Z}$

Exercise 2. Let R be a ring, M a left R-module and $m \in M$.

- (1) In the previous exercise you proved that Ann(m) is a left ideal of R. Give an example to show that Ann(m) might *not* be a two sided ideal of R.
- (2) Define the annihilator of M to be

$$Ann_R(M) = \{ r \in R \mid rM = 0 \} = \{ r \in R \mid \forall m \in M : rm = 0 \}$$

Prove that Ann(M) is a two sided ideal of R.

- (3) Let $\phi: S \to R$ be a surjective homomorphism of rings and M a module over S. Show that we can endow an R-module structure given by $r \cdot m = s \cdot m$ for any $s \in \phi^{-1}(r)$ and $m \in M$ if and only if $\ker \phi \subseteq \operatorname{Ann}(M)$.
- (4) For example, let S = k[x] and M = k[x] (with the standard action). Then M/f^2M is a $k[x]/(f^2)$ -module for any $0 \neq f \in k[x]$. In addition, if f is not invertible, then M/f^2M is not a k[x]/(f)-module.

Exercise 3. Answer the following questions. Provide an explanation by a proof or a counterexample.

- (1) Suppose that R is a Noetherian ring. Let $S \subset R$ be a subring. Is it true that S is Noetherian?
- (2) Let R be a commutative Artinian ring. Is every prime ideal of R maximal?

Exercise 4. Let $I \subseteq R$ be an ideal.

(1) Show that

$$IM = \left\{ \left. \sum_{i=1}^{d} r_i m_i \right| 1 \le d \in \mathbb{Z}, \ r_i \in I, \ m_i \in M \right\}$$

is an R-submodule of M.

(2) Show that M/IM is an R/I-module with scalar multiplication given by

$$(x+I)(y+IM) = xy + IM.$$

From now on, fix R := k[x,y], M the R-submodule generated by the element $(x,y) \in R \oplus R =: N$, and let I be the maximal ideal I = Rx + Ry of R. Note that $R/I \cong k$ via the homomorphism $R \to k$ that evaluates x and y to 0.

- (3) Show that $M \subseteq IN$ and hence I(N/M) = IN/M as R-submodules of N/M.
- (4) Show that L/IL is a two dimensional vector-space over k, where L = N/M.

Now, we change a little bit our setup, and we redefine M:

(5) Let M be the submodule generated by the two elements (x,0) and (0,y) of $R \oplus R =: N$. Is $N/M \cong R$?

[Hint: look at Ann (N/M).]

Exercise 5. Let

$$0 \to M \to N \to N/M \to 0$$

be a short exact sequence of R-modules. For each of the following assertions either prove that the assertion holds or provide a counterexample.

- (1) If M and N/M are finitely generated, then N is too.
- (2) Conversely, if N is finitely generated, then N/M is finitely generated too.
- (3) If N is finitely generated, then M is finitely generated too.

Exercise 6. (1) Let

$$0 \to M \to N \to N/M \to 0$$

be a short exact sequence of R-modules. For each of the following assertions either prove that the assertion holds or provide a counterexample.

- \circ If N is free, then N/M is free.
- \circ If N is free, then $M^{'}$ is free.
- \circ If M and N/M are free, then N is free.
- (2) Let $R = \mathbb{Z}$. Is $\mathbb{Z}[x]/(x^2+1)\mathbb{Z}[x]$ a free R-module? How about $\mathbb{Z}[x]/(2x^2)\mathbb{Z}[x]$? Is \mathbb{Q} a free R-module? Is it finitely generated?

Optional exercise. Not on the exam. Suggested if you are seriously interested in algebra.

Exercise 7. Let k be a field. In this exercise, we want to understand differential operators on k[x]. To this end, define the operator $\frac{\partial}{\partial x} \operatorname{End}_k(k[x])$ by the usual rule

$$\frac{\partial}{\partial x}(x^n) \coloneqq nx^{n-1}.$$

Define also $x \in \operatorname{End}_k(k[x])$ defined by multiplication by x. Finally, define the subring $\mathcal{D} \subseteq \operatorname{End}_k(k[x])$ to be the sub-k-algebra generated by x and $\frac{\partial}{\partial x}$.

We will show that this non-commutative rung behaves very differently, whether we work in characteristic zero or in positive characteristic.

- (1) Show that a basis of \mathcal{D} as a k-vector space is given by the elements $x^i \left(\frac{\partial}{\partial x}\right)^j$, where $(i,j) \in \mathbb{N}^2$ if char k = 0, and $i \in \mathbb{N}$ and $j \in \{0,1,\ldots,p-1\}$ if char k = p > 0.
- (2) Now we change the perspective and consider a quotient of the free k-algebra on two generators $\mathcal{D}^{form} = k\langle u, v \rangle/(uv vu 1)$. Prove that in \mathcal{D}^{form} we have the identity

$$uP(v) = \frac{\partial}{\partial v}P(v) + P(v)u$$

for all polynomials $P(v) \in k[v]$. Use this to prove that \mathcal{D}^{form} is generated as a k-vector space by $\{v^j u^i \mid (i,j) \in \mathbb{N}^2\}$.

- (3) Show that there are well defined ring homomorphisms ϕ and ψ from \mathcal{D}^{form} to $\operatorname{End}_k(k[x])$, such that $\phi(u) = \frac{\partial}{\partial x}$ and $\phi(v) = x$, as well as $\psi(u) = x$ and $\psi(v) = -\frac{\partial}{\partial x}$. Show that ϕ and ψ are surjective onto \mathcal{D} , and define an isomorphism betwenn \mathcal{D} and \mathcal{D}^{form} if and only if $\operatorname{char}(k) = 0$.
- (4) Show that k[x] is simple as a left \mathcal{D} -module (with left \mathcal{D} -module structure given by the inclusion $\mathcal{D} \subset \operatorname{End}_k(k[x])$) in the case when char k=0.
- (5) Determine the left submodules of k[x] as a \mathcal{D} -module when char k=2.

Remark 0.1. For any field k, regardless of the characteristic, one can define the notion of a differential operator. In characteristic zero, this definition agrees with our \mathcal{D} above, but this is not the case in characteristic p > 0. In other words, there are more exotic differential operators in positive characteristic, not spanned by $\frac{\partial}{\partial x}$ and x! An example is what we usually write

$$\delta \coloneqq \frac{1}{p} \left(\frac{\partial}{\partial x} \right)^p,$$

defined as

$$\delta(x^n) = \frac{n(n-1)\dots(n-p+1)}{p}x^{n-p},$$

where we note that, even if we work in characteristic p, the element

$$\frac{n(n-1)\dots(n-p+1)}{p}$$

makes sense in k, since it lives in \mathbb{Z} and there is a natural map $\mathbb{Z} \to k$

With this more general notion of differential operators, k[x] becomes again simple (in any characteristic!).