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Exercise 1. Let G be a finite group, R an integrally closed domain, K the fraction field
of R and let G act on K by (ring) automorphisms such that R is stable under this action,
ie. gr-re€Rforallge Gandr € R. Let L := K be the fixed field of the action and set
S := L N R. In this exercise we show that S is also integrally closed.

(1) Show that each element of K can be written in the form 3, where a € R and b € S.

(2) Show that L is the fraction field of S.

(3) Show that S is integrally closed.

(4) Show that C[z", 2" "y, ..., 2y" ", y"] € C[z, y] is integrally closed.

[ Hint: Show that there is automorphism of C(x,y) that sends x to "
2mi[n
e My

iy and y to

Exercise 2. Let k£ be a field. For the following finitely generated k-algebras R, find a
sub-algebra S € R such that S € R is integral and S is isomorphic to a polynomial ring:

(2) R = k[xlax%$37y17y27y3]/(xlq;23;3 + ylyst),

Exercise 3. Show that the ring

k[z,y, Z]/(yg + 2’ 4 yr® + 2°2)

is a domain, and compute its integral closure.

Now let us study the tensor product, and in particular also about some of its func-
torial properties. As in the course we only saw the concept of a functor in specific
situations (i.e. the Hom- and the Ext-functors), we will recall here everything
which is needed to develop a similar treatment for the tensor product. You can
use everything in these grey boxes without proof.

Definition 1. We say that F' : { R-modules} — { R-modules} is a covariant functor
if for every R-module M we have an R-module FM and for every R-module
homomorphism f : M — M' we have an R-module homomorphism F(f): FM -
FM' such that
(1) F(idy;) = idpy, for all R-modules M
(2) F(f'o f) = F(f')o F(f) for all R-module homomorphisms f : M — M' and
froM - M
Recall that in section 5.2 of the printed course notes we called Hompg(—, N)

a contravariant functor. The difference between a covariant functor and a con-
travariant functor is that a covariant functor preserves the direction of arrows,



while a contravariant functor flips the direction of arrows (and condition (2) in
the above definition is replaced by the appropriate equation).

Definition 2. We say that a covariant functor F is right exact if for every short
exact sequence of R-modules 0 - M — M' — M" — 0 the sequence FM —
FM' - FM" - 0 is exact.

Recall that in Lemma 5.2.2 of the printed course notes we proved that Hompz(—, N)
is a left exact contravariant functor, and on Exercise 1 of Sheet 4 we saw that
Homp(M, —) is a left exact covariant functor.

Exercise 4. Let R be a ring. Let M, N be R-modules and [ an ideal of R. Prove that
there are isomorphisms of R-modules M ® ;k N = N ® M and M @, (R/1)= M [1)/.

Exercise 5. Let R be a ring, and M, N and P be R-modules. Show that there exists a
natural bijection

Hompzp(M ® N, P) = Homz(M, Homg(N, P)).
Use this to prove that
— ®p N : {R-modules} - {R-modules}, A+ A®p N

is a right exact covariant functor.
| Hint: Show that a sequence of the form

Si=A-B->(C-0
is exact if and only if Hom(S, P) is exact for all modules P]

Remark 0.1. The hint above is a particular phenomenon of a general (not complicated) result
called Yoneda’s lemma, which can be read as "a module is entirely determined by how it
maps to other modules". A precise way to say it is that if M and N are two modules such that
there is a natural isomorphism (in the sense of category theory) Hom(M, P) = Hom(N, P)
for all P, then M = N. Tt is always good (and sometimes even useful!) to keep this
philosophy in mind.

In fact, this lemma holds for arbitrary categories, not only for modules.

Exercise 6. Let A be a ring, with A-algebras B and C and an A-module M. Show that:

(1) B ®4 M naturally has the structure of a B-module,
(2) B ® 4 C naturally has the structure of an A-algebra,
(3) B ® 4 B naturally has a ring morphism to B.

Exercise 7. Prove the following assertions:

(1) Let R be a commutative ring, and let M; and M, be free R-modules with bases
{ei,...,e,,} and {fi, ..., [,} respectively. Show that a basis of M; ® z M, is given by
ler ® fikigiam.

(2) Hence show that the element e; ® f, + e, ® f; cannot be written as u® v for any u € M,
and v € M.
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Exercise 8. We will define the exterior product of a module. This construction is especially
important, for example in differential/algebraic geometry when one considers differential
forms.

Let R be a commutative ring, and let M be an R-module. For any n > 0, define 7" (M) :=
M®p - ®p M (n times). We also set T°(M) := R. For any n 2 0, we define A" M as the
quotient of T" M by the submodule I generated by elements of the form

mq ®---® my,
with m; = m; for some 7 # j. The image of m;®---®m,, in A" M is denoted my A+ - Am,,.

Note that if f: M — N is a morphism of R-modules, then it naturally induced a morphism
T"(f): T"(M) — T"(N) of R-modules (apply f to each tensor), and passes to the quotient
N FfN'M—- A\"N.

From now on, assume that M is free of finite rank r = 1, with basis B = {e;,...,e,}.

o Show that A" M is free with basis e; A -+ - A ¢,, and that /\l M =0 for any [ > r.

o Show that for 0 <i <, A" M is free of rank (:)

Hint: First find a the appropriate number of generators. To show that it is a basis
(i.e. the linear independance), wedge it by an appropriate element to get something in
A" M, where you know an explicit basis.

o Fix the isomorphism 6: A" M — R corresponding to the basis found in the first point.

Let f: M — M be an endomorphism, corresponding to a matrix A € M,y,.(R) (with
respect to B3). Show that the diagram

N ML ATy

\L -det(A

R R

>

commutes.
o Use the above to give a new proof that if A and B are two r X r-matrices, then
det(AB) = det(A) det(B).
Hint: N is functorial.



