EPFL - Fall 2024	Domenico Valloni
Rings and modules	Exercises
Sheet 10	28 November 2024

Exercise 1. Let G be a finite group, R an integrally closed domain, K the fraction field of R and let G act on K by (ring) automorphisms such that R is stable under this action, i.e. $q \cdot r \in R$ for all $q \in G$ and $r \in R$. Let $L := K^G$ be the fixed field of the action and set $S := L \cap R$. In this exercise we show that S is also integrally closed.

- (1) Show that each element of K can be written in the form $\frac{a}{b}$, where $a \in R$ and $b \in S$.
- (2) Show that L is the fraction field of S.
- (3) Show that S is integrally closed.
- (4) Show that $\mathbb{C}[x^n, x^{n-1}y, \dots, xy^{n-1}, y^n] \subseteq \mathbb{C}[x, y]$ is integrally closed. [Hint: Show that there is automorphism of $\mathbb{C}(x,y)$ that sends x to $e^{2\pi i/n}x$ and y to $e^{2\pi i/n}y$.]

Exercise 2. Let k be a field. For the following finitely generated k-algebras R, find a sub-algebra $S \subseteq R$ such that $S \subseteq R$ is integral and S is isomorphic to a polynomial ring:

- (1) R = k[x,y]/(xy-1);
- (2) $R = k[x_1, x_2, x_3, y_1, y_2, y_3]/(x_1x_2x_3 + y_1y_2y_3);$

Exercise 3. Show that the ring

$$k[x, y, z]/(y^3 + y^2x^2 + yx^2 + x^3z)$$

is a domain, and compute its integral closure.

Now let us study the tensor product, and in particular also about some of its functorial properties. As in the course we only saw the concept of a functor in specific situations (i.e. the Hom- and the Ext-functors), we will recall here everything which is needed to develop a similar treatment for the tensor product. You can use everything in these grey boxes without proof.

Definition 1. We say that $F: \{R\text{-modules}\} \to \{R\text{-modules}\}\$ is a covariant functor if for every R-module M we have an R-module FM and for every R-module homomorphism $f: M \to M'$ we have an R-module homomorphism $F(f): FM \to M'$ FM' such that

- (1) $F(\mathrm{id}_M) = \mathrm{id}_{FM}$ for all R-modules M
- (2) $F(f' \circ f) = F(f') \circ F(f)$ for all R-module homomorphisms $f: M \to M'$ and $f': M' \to M''$.

Recall that in section 5.2 of the printed course notes we called $\operatorname{Hom}_R(-, N)$ a contravariant functor. The difference between a covariant functor and a contravariant functor is that a covariant functor preserves the direction of arrows, while a contravariant functor flips the direction of arrows (and condition (2) in the above definition is replaced by the appropriate equation).

Definition 2. We say that a covariant functor F is right exact if for every short exact sequence of R-modules $0 \to M \to M' \to M'' \to 0$ the sequence $FM \to FM'' \to FM'' \to 0$ is exact.

Recall that in Lemma 5.2.2 of the printed course notes we proved that $\operatorname{Hom}_R(-, N)$ is a left exact contravariant functor, and on Exercise 1 of Sheet 4 we saw that $\operatorname{Hom}_R(M, -)$ is a left exact covariant functor.

Exercise 4. Let R be a ring. Let M, N be R-modules and I an ideal of R. Prove that there are isomorphisms of R-modules $M \otimes_R N \cong N \otimes_R M$ and $M \otimes_R (R/I) \cong M/IM$.

Exercise 5. Let R be a ring, and M, N and P be R-modules. Show that there exists a natural bijection

$$\operatorname{Hom}_R(M \otimes_R N, P) \cong \operatorname{Hom}_R(M, \operatorname{Hom}_R(N, P)).$$

Use this to prove that

$$- \otimes_R N : \{R\text{-modules}\} \to \{R\text{-modules}\}, \quad A \mapsto A \otimes_R N$$

is a right exact covariant functor.

[Hint: Show that a sequence of the form

$$\mathcal{S} := A \to B \to C \to 0$$

is exact if and only if $Hom(\mathcal{S}, P)$ is exact for all modules P

Remark 0.1. The hint above is a particular phenomenon of a general (not complicated) result called Yoneda's lemma, which can be read as "a module is entirely determined by how it maps to other modules". A precise way to say it is that if M and N are two modules such that there is a natural isomorphism (in the sense of category theory) $\text{Hom}(M, P) \cong \text{Hom}(N, P)$ for all P, then $M \cong N$. It is always good (and sometimes even useful!) to keep this philosophy in mind.

In fact, this lemma holds for arbitrary categories, not only for modules.

Exercise 6. Let A be a ring, with A-algebras B and C and an A-module M. Show that:

- (1) $B \otimes_A M$ naturally has the structure of a B-module,
- (2) $B \otimes_A C$ naturally has the structure of an A-algebra,
- (3) $B \otimes_A B$ naturally has a ring morphism to B.

Exercise 7. Prove the following assertions:

- (1) Let R be a commutative ring, and let M_1 and M_2 be free R-modules with bases $\{e_1, ..., e_m\}$ and $\{f_1, ..., f_n\}$ respectively. Show that a basis of $M_1 \otimes_R M_2$ is given by $\{e_i \otimes f_j\}_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$.
- (2) Hence show that the element $e_1 \otimes f_2 + e_2 \otimes f_1$ cannot be written as $u \otimes v$ for any $u \in M_1$ and $v \in M_2$.

Exercise 8. We will define the exterior product of a module. This construction is especially important, for example in differential/algebraic geometry when one considers differential forms.

Let R be a commutative ring, and let M be an R-module. For any n > 0, define $T^n(M) := M \otimes_R \cdots \otimes_R M$ (n times). We also set $T^0(M) := R$. For any $n \ge 0$, we define $\bigwedge^n M$ as the quotient of $T^n M$ by the submodule I generated by elements of the form

$$m_1 \otimes \cdots \otimes m_n$$

with $m_i = m_j$ for some $i \neq j$. The image of $m_1 \otimes \cdots \otimes m_n$ in $\bigwedge^n M$ is denoted $m_1 \wedge \cdots \wedge m_n$. Note that if $f: M \to N$ is a morphism of R-modules, then it naturally induced a morphism $T^n(f): T^n(M) \to T^n(N)$ of R-modules (apply f to each tensor), and passes to the quotient $\bigwedge^n f: \bigwedge^n M \to \bigwedge^n N$.

From now on, assume that M is free of finite rank $r \ge 1$, with basis $\mathcal{B} = \{e_1, \dots, e_r\}$.

- Show that $\bigwedge^r M$ is free with basis $e_1 \wedge \cdots \wedge e_r$, and that $\bigwedge^l M = 0$ for any l > r.
- Show that for $0 \le i \le r$, $\bigwedge^i M$ is free of rank $\binom{r}{i}$.

 Hint: First find a the appropriate number of generators. To show that it is a basis (i.e. the linear independence), wedge it by an appropriate element to get something in $\bigwedge^r M$, where you know an explicit basis.
- Fix the isomorphism $\theta: \bigwedge^r M \to R$ corresponding to the basis found in the first point. Let $f: M \to M$ be an endomorphism, corresponding to a matrix $A \in M_{r \times r}(R)$ (with respect to \mathcal{B}). Show that the diagram

commutes.

• Use the above to give a new proof that if A and B are two $r \times r$ -matrices, then $\det(AB) = \det(A) \det(B)$.

Hint: \bigwedge is functorial.