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Summary: Rings

1 Definition and first examples

Definition 1.1. A ring is a set A with two internal binary operations (addition and multiplication) satisfying the
axioms:

1. A is an abelian group with respect to addition. We will denote the corresponding neutral element by 0.

2. The multiplication is associative: (ab)c = a(bc) Va,b,c € A and there is an neutral element for multiplication,
that will be denoted by 1: 1la = al = a Va € A.

3. Distributivity holds: (a + b)c = ac+ be and a(b+ ¢) = ab+ ac Va,b,c € A.

Definition 1.2. The ring A is called commutative if ab = ba VYa,b € A.

2 Zero divisors. Integral domains

What is the most notable difference between (real, integer, rational, complex) numbers and commutative rings? If
z,y € Rand z # 0,y # 0, then zy # 0. This is not necessarily true for rings.

Definition 2.1. Let A be a ring. An element a € A is called a left zero divisor if there exists x € A, x # 0, such that
ax = 0. Similarly, an element b € A is called a right zero divisor if there exists y € A, y # 0, such that yb = 0. An
element that is both a left and a right zero divisor is called a two-sided zero divisor.

Remark 2.2. (a) The element 0 is a left and right zero divisor in any ring.

(b) In a commutative ring, any zero divisor is two-sided.

Definition 2.3. A zero divisor that is different from 0 is called a nontrivial zero divisor.

Definition 2.4. Let A be a ring. If A has no nontrivial zero divisors, it is called a domain.

Definition 2.5. A commutative ring whose only zero divisor is 0 is called an integral domain.
The ring A = Z/nZ is an integral domain if and only if n = p is a prime.

Let A be a ring. Then A is a domain if and only if the equation ab = ac, a # 0 implies b = ¢ and
the equation ba = ca, a # 0 implies b = ¢ in A.

Definition 2.8. A division ring (also called a skew field) is a ring A such that for any a € A, a # 0, there exists
b € A such that ab = ba = 1. Equivalently, a division ring is a ring where the nonzero elements A \ {0} form a group
with respect to multiplication.

A division ring is a domain.

Proof: If for any a # 0 in A, there exists € A such that ax = 1, then if a is a (right) zero divisor, we have a
nonzero b € A such that ba = 0, and bax = bl = b = 0, a contradiction. Similarly for the left zero divisors.

Definition 2.10. A commutative division ring is called a field.

Division rings C Domains C Rings
Fields = Commutative division rings C Integral domains C Commutative rings.

The ring A = Z/nZ is a field if and only if n = p is a prime.



3 Ideals

Definition 3.1. Let A be a ring. A left ideal is a subset I C A such that (1) I C A is a subgroup with respect to
addition, and (2) ax € I Vz € I,a € A. Similarly, J C A is a right ideal in A if (1) J is a subgroup with respect to
addition and (2) ya € J Vy € J,a € A.

Definition 3.2. If I C A is a left and a right ideal, it is called a two-sided ideal, or simply an ideal in A.

Remark 3.3. (1) In a commutative ring every left or right ideal is a two-sided ideal. (2) The subsets {0} C A, AC A
are ideals in any ring A. A proper ideal I C A is such that I # A. (3) For any ideal T C A, 0 € I.

From now on we will consider only commutative rings
Let A be a commutative ring. Here are some properties of the ideals.
(a) If I C A is an ideal and 1 € I, then I = A.
(b) If I,J C A are ideals, then INJ C A is also an ideal
(c) If I,J C A are ideals, the subset I U J C A is not necessarily an ideal.
(d) If I,J C A are ideals, then the set {x +y}, x € I, y € J is an ideal denoted by I + J.
(e) If 1,J C A are ideals, then the set {Zle iy}, x €1, y; € J is an ideal denoted by I - J.

Definition 3.5. Let S C A be an arbitrary subset in a ring A. Consider the intersection of all ideals in A containing
S. This is an ideal generated by the set S, denoted by (S) C A. Let A be a commutative ring, and S = {s;};er, where
T is a finite or infinite set of indices. Then (S) = {>", a;Si}a,ca-

Let A be a commutative ring. Then A is a field if and only if the only ideals in A are {0} and A.
Definition 3.7. An ideal I C A is called principal if it is generated by a single element in x € A: I = ().

Definition 3.8. Let A be a commutative ring. An ideal I C A is called prime if for any a,b € A, if ab € I, then at
least one of a and b is in I.

Definition 3.9. Let A be a commutative ring. A proper ideal I C A is called mazimal if there exists no other proper
ideal J C A such that I C J is a proper subset.

4 Equivalence and congruence relations. Quotient ring.

Definition 4.1. A relation x ~ y on a set E is an equivalence relation if it satisfies the axioms:
1. z ~ z for any = € E (reflexivity)

2. x~y = y~ z (symmetry)

. x~yand y ~z = x ~ z (transitivity) .

Definition 4.2. An equivalence class of element x € E is the subset Z={y € E : = ~ y}.

Remark 4.3. The transitivity of an equivalence relation implies that if z # y € E, then T = §, or TNy = (. The set
of equivalence classes E/ ~ is called the quotient set with respect to ~.

Definition 4.4. Let A be a commutative ring. An equivalence relation ~ on A is a congruence relation if
a~b,c~dimplies a + c ~ b+ d and ac ~ bd.

Let A be a commutative ring and ~ a congruence relation such that 0 « 1. The set of congruence
classes A/ ~ has a structure of a commutative ring'.

Let A be a commutative ring.
(1) If I C A is an ideal, then the relation a ~ b < (a —b) € I is a congruence relation in A.
(2) If ~ is a congruence relation in A, then the set I = {a € A, a ~ 0} is an ideal in A.

Definition 4.7. An ideal I C A defines a quotient ring A/I whose elements are the congruence classes modulo the
ideal I. An ideal in a commutative ring plays the same role as a normal group in a group.

LIf 1 ~ 0, the obtained structure A/ ~ satisfies all the axioms of a ring, except that it does not have a unit, and is sometimes called rng.



5 The ring Z: ideals and quotients.
Definition 5.1. A commutative ring A is a principal ideal ring if every ideal in A is principal. An integral domain
where each ideal is principal is called a principal ideal domain.

The ring Z of integers is a principal ideal domain.

Let I C 7 be an ideal generated by integers {ai,as,...an}t. Then I = (d) C Z, where d =
ged(ag, as, ... ay).

6 Homomorphisms and characteristic of a ring. Direct products of rings
Definition 6.1. A map f: A — B between rings A and B is a ring homomorphism if it respects the ring operations,
namely f(a +b) = f(a) + f(b) (this implies f(04) = 0g), f(ab) = f(a)f(b) for any a,b € A, and f(14) = 1p.

If f : A — B is a homomorphism of commutative rings, then ker(f) ={a € A : f(a) = 0} is an
ideal in A, and im(f) C B is a subring in B (a subring is an additive subgroup of a ring containing 1 and closed with
respect to the multiplication).

Let f : Z/nZ — Z/mZ a ring homomorphism. Then m|n, and f([a],) = [a]m.

For any ring A there is a unique homomorphism 7 : Z — A. Then ker(r) = {0}, or ker(r) = (d)
for a positive integer d € 7.

Definition 6.5. Let A be a ring and 7 : Z — A the unique ring homomorphism. Then the characteristic ¢4 of the
ring A is defined as follows:

ca =0, if ker(r)={0},

ca=d, if ker(r)=(d).

Let A be a ring such that the characteristic of A is n = mk € Z*, where m,k > 2 are integers.
Then A has a nontrivial zero divisor.

The characteristic of a field is either 0, or a prime number p.
The converse to Corollary 6.7 is false: there exists a ring with characteristic p that is not a field.

Definition 6.9. Let A and B be two rings. We define the direct product A x B as the set of pairs {(a,b),a € A,b € B}
with coordinate-wise addition and multiplication. In particular, 1a4xp = (14,15) and O4xp = (04,0p).

If A and B are two commutative rings, and cq # 0, cg # 0, then caxp = lem(ca, cp).

7 Chinese remainder theorem for integers

Recall that an ideal I C A in a commutative ring A defines a quotient ring A/I (see Definition 4.7).
Let I,J be two ideals in a commutative ring A, such that I+J = A. Then there is a ring isomorphism
fA/INJ)— A/Ix A/J,
given by the diagonal map f : ZTiny — (T1,% ).

Let m,n € Z be coprime numbers. Then for any ai,as € Z there exists a € Z such that a =
ay (mod m) and a = as (mod n). The set of solutions for a is given by a + mnZ.

Let dy,ds, . . .d, be integers such that ged(d;,d;) =1 for any i # j. Let d = dids .. .d,,. Then we have
a ring isomorphism
f:Z/(d) = Z/(d1) X Z/(d2) X ... x Z[(dy),
given by f(lala) = (la]a,, [a]a,, - - [a]a,)-
Let dy ...d, € Z be pairwise coprime numbers, meaning that ged(d;, d;) = 1 for any pair of indices
1 <i#j<r. Then for any ay,as,...a, € Z there exists a € Z such that

ai (InOd dl),
as (mod da),

a
a

a = a, (modd,).

Let d = dqds ...d.. The set of all solutions of the given congruences is given by a + dZ.



Remark 7.5. The proof of Theorem 10.1 provides a method to solve systems of congruences: suppose you have
to solve a system of congruences modulo di,ds,...d, where the elements di,ds,...d, are pairwise mutually prime.
Solve the first pair of congruences modulo d; and ds first, then the obtained result gives a new congruence modulo
the product dids. The product dids is coprime to dz. Solve these two congruences, obtaining a congruence modulo
d1dads. The product djdads is coprime to d4, so you can again solve the pair of congruences, and so on until you solve
the last congruence.

In fact we can make a method even more explicit. Suppose we have a system of congruences x = a; (mod d;) for
i = 1...k. Consider d = dyds...dy and set D; = d/d;. Then we have ged(d;, D;) = 1. Therefore, by Bezout’s identity
there exist integers x; and y; such that D;x; +d;y; = 1. Then z = Zk 1 aiD;z;. Indeed, z = a;D;x; (mod d;), because
d;|D; for j # 4. Therefore, x = a;(1 — d;y;) (mod d;) = a; mod (d;). The solution is determined modulo D.

Remark 7.6. Note that if the rings A and B are isomorphic, then their groups of units are also isomorphic: A* ~ B*.
This follows from the fact that the ring isomorphism respects the multiplication in both rings.

Let n,m € Z be such that gcd(n,m) = 1. Then we have for the Euler’s totient function:

p(nm) = p(n) - p(m).

8 Polynomials in one variable with coefficients in a commutative ring.

Definition 8.1. Let A be an commutative ring, and consider the ring of polynomials in one variable A[z]. Then
Alz] = {ap+a1z+...+a,2"}, where n € N and ag, ay, . . . a, are elements of A. Equivalently, A[z] = {(ag, a1,...)}a;ca
such that a; = 0 for large enough i € N. Clearly A[z] is a commutative ring with respect to the usual addition and
multiplication of polynomials.

Definition 8.2. If f(x) € Alx] is nonzero, then the degree of the polynomial f(z) = ag + ajx + ... is the largest
integer n such that a,, # 0, deg(f(z)) = n. The element a,, € A is called the dominant coefficient, and ayg € A the
constant term. If f(x) = 0, we define deg(0) = —ooc.

In the ring Alz] we have:
(a) deg(f(x) + g(w)) < max(deg(f(x)), deg(g()))
(b) If A is an integral domain, then deg(f(x) - g(x)) = deg(f(z)) + deg(g(x)).

Let A be an integral domain. The ring of polynomials Alz] is also an integral domain. The invertible
elements in Alz] are the invertible elements in A.

Let F be a field, and f(x),d(x) polynomials in F|x], such that deg(d(x)) > 1. There exist polynomials
q(z),r(x) € Flz] such that f(x) = q(x)d(z) + r(x), and either r(z) = 0, or deg(r(x)) < deg(d(x)).

9 Euclidean domains and principal ideal domains

Definition 9.1. A commutative ring A is a Euclidean domain if

(1) A is an integral domain, and

(2) there exists a function v : A\ {0} — N such that for all a,b € A, b # 0, there exists ¢, € A such that a = ¢b+r
and either r = 0, or v(r) < v(b).

If F is a field, then the ring of polynomials F[x] is a Euclidean domain.
A Euclidean domain is a principal ideal domain.

Let F be a field. The ring F|x] is a principal ideal domain, meaning that any ideal in F[x] is generated
by a single polynomial.

Definition 9.5. Let A be a commutative ring. For a,b € A we say that a divides b, if there exists ¢ € A such that
b = ac. In this case we can write, just like for the integers, alb.

Definition 9.6. Let A be an integral domain. The elements a,b € A are associates if b = au for a unit v € A*
(equivalently, a = bv for a unit v € A*).



Definition 9.7. Let A be an integral domain. Let a,b € A. We say that ¢ € A is a common divisor of a and b if c|a
and c|b. We say that d € A is a greatest common divisor of a and b if d|a, d|b, and if ¢ is a common divisor of a and b,
then c|d. We denote d = gdc(a,b). We say that [ € A is a least common multiple of a and b if all, b|l, and if a|t and
bt, then I|t. We denote | = lem(a, b).

Let A be an integral domain. If di,ds are greatest common divisors of a,b € A, then di and ds are
associates. If ly,ls are least common multiples of a,b € A, then l1 and ly are associates.

Properties of the Fuclidean domains.

(a) Euclidean algorithm works in a Euclidean domain: If a,b € E, b # 0, then there exist q,r € E such that a = gb+r
and either r = 0 (then b = ged(a, b)), or v(r) < v(b). Repeat with b = qor + 1o, with v(rqy) < v(r), and so on. The
process terminates because the function v : E — N is strictly decreasing. We have rp_1 = q,r,. Then the greatest
common diwisor r,, = ged(a, b).

(b) Bezout’s theorem: If d = gcd(a,b), then there exist x,y € E such that xa + yb = d. It follows that the ideal
(a)+ (b) =(d) C E.

(¢) Ifa,b € E are such that gcd(a,b) = 1, and albe for ¢ € E, then alc. In particular, if ged(a,b) = 1 and ged(a, c) =1,
then ged(a,bc) = 1.

(d) If a,b € E are such that ged(a,b) = 1, and alc and blc for an element ¢ € E, then ablc. In particular, if
ged(a,b) =1, then lem(a,b) = ab.

(e) The ideal (a) N (b) = (m) C E, where m = lem(a, b).

Remark 9.10. Let f(z), g(z) € F[z], so that the Euclidean division works. If ged(f(x), g(x)) = d1(z) and ged(f(x), g(x)) =
da(z), then by Proposition 9.8 di(x) = uds(x), where u € R[z] is a unit, which implies u # 0,u € R. Then we can
choose a unique monic polynomial d(x) = ged(f(x), g(z)), such that the dominant coefficient of d(x) is 1. Note that

the ideals generated by the associates are the same: (di) = (d3) = (d).

Conclusions: Let E be a Euclidean domain.
1. E is a principal ideal domain.
2. If a,b € E two nonzero elements, then the ideals (a) N (b) = (lem(a,b)) C E and (a) 4 (b) = (ged(a, b)) C E.

3. ged(a,b) and lem(a, b) are determined up to a multiplication by a unit in E. Associate elements generate equal
ideals in F.

10 Chinese remainder theorem for a Euclidean domain.

Let A be a Euclidean domain, so that for nonzero a,b € E there exists gcd(a,b) € F that is well defined up to a
multiplication by a unit. In addition, A is a principal ideal domain so that any ideal is generated by a single element.

Let A be a Euclidean domain, and my, ma,...m, elements such that ged(m;, m;) = 1 for any two
indices 1 <i#j<r. Let m =mymso...m,. Then the map

f:A/(m)— A/(m1) x A/(m2) x ... x A/(m,),
given by f(Z(my = (T(my)s T(ma)s - - - T(m,)) 15 an isomorphism of rings.

(Chinese remainder theorem for polynomial rings). Let F be a field, {f1(x), fo(x),... fr(z)} poly-
nomials in Flx] such that ged(f;, f;) = 1. Then the exist a ring isomorphism

@ Flzl/(fu(x) - fa(x) - - fr(2)) = Fla]/(f1(z)) x Flz]/(fa(x)) x ... x Flz]/(f:(x)).

11 Irreducible elements in Euclidean domains.

Definition 11.1. Let A be an integral domain. The element ¢ € A is irreducible if ¢ is not a unit in A (c is not
invertible in A), ¢ # 0, and if ¢ = ab for a,b € A, then a or b is a unit.

Example 11.2. In the ring Z the units are {1} and the irreducible elements are {£p}, where p are the prime
numbers.



Recall that an ideal I C A is maximal if there is no ideal J C A such that I C J C A.

Let A be a PID. Then p € A an irreducible element if and only if p # 0 and the ideal (p) C A is
maximal.

Let A be a Euclidean domain and I = (a) a nontrivial ideal: I # {0} and I # A. Then
(a) b is a unit in A/I if and only if ged(a,b) = 1.
(b) b is a nontrivial zero divisor in A/I if and only if b ¢ I and ged(a,b) # 1.
(c) AJI is a field for I = (a) if and only if a € A is irreducible.

Let F be a field and consider the ring F[x] of polynomials in one variable with coefficients in F'. Let
f(z) € Flz] be a nonzero polynomial. Then Flx]/(f(x)) is a field if and only if f(x) is irreducible in F[x].

Conclusions.

1. We have the following inclusions :

2. Fields, Z, Fx] for F a field, Gaussian integers Z[i] are examples of Euclidean domains (and of PIDs).
3. Zlx], Flx,y], where F a field are integral domains but not PIDs.

4. The rings Z/nZ, where n is not a prime, and (Z/nZ)[x] are not integral domains.

12 Quotients of polynomial rings

Let us recall what we know about the ring F[z], where F' is a field.
Remark 12.1. Properties of the polynomial ring F'[z], where F is a field.
1. The ring Fz] is a Euclidean domain, in particular it is a PID: any ideal in F[z] is generated by a single element.

2. An ideal generated by f(x) is maximal if and only if f(z) is irreducible. A quotient ring F[x]/(f(x)) is a field if
and only if f(x) is irreducible in F[z]. (Corollary 11.5).

3. For any two polynomials f(x), g(x), such that deg(f(z)) > 1 and deg(g(x)) > 1, there exist ged(f(x), g(x)) and
lem(f(x), g(x)), unique up to multiplication by units. They generate the ideals (f(z))+(g(z)) = (ged(f(x), g(x)))

and (f(x)) N (g(x)) = (lem(f(2), 9(x))).

4. The characteristic of F|[x] is equal to the characteristic of F, which can be 0 or a prime number. If f(z) is
irreducible (in particular, deg(f) > 1), then the characteristic of F[z]/(f(z)) equals that of F.

Let F be a field.
1. Any polynomial of degree 1 is irreducible in F[z].
2. A polynomial of degree 2 or 3 is irreducible if and only if it has no root in F.

Suppose that a = = € Q is a root of the polynomial f(x) = An®" +a, 12" . dayztag € Zla).
Then s|a, and r|ag. In particular, any rational root of a monic polynomial with integer coefficients is an integer.

(Eisenstein’s criterion). Let f(x) = ag + a1x + ...ap_12"" ! + a,a™ € Z[x] be a polynomial
with integer coefficients, such that ged(ag,ay,...a,) = 1. Suppose that there exists a prime p € Z such that pla;,
0 <i<n-—1,p does not divide a,, and p*> does not divide ag. Then f(x) is irreducible over Q[z] (and also over Z|z]).

Let F be a field, and f(x) € Flx] an irreducible polynomial of degree n > 1. The ring K =
Flz]/(f(x)) is a field, such that any element of K can be written uniquely in the form

apl + a1 T+ ... +ap_1a2™ 1,
where a; € F and x is the congruence class x* + (f(x)).

If F is a finite field of q elements, and f(x) € F|x] an irreducible polynomial of degree n > 1, then
the field Fx]/(f(x)) has exactly q" elements.



13 Finite fields

Recall that the characteristic of a field can be either 0 or a prime number p.
Proposition 13.1. Let F,, denote the field Z/pZ for a prime p.

(a) Let K be a field of p"™ elements for some n € N*. Then the characteristic of K is p.
(b) Any field with p elements is isomorphic to IF,,.

(c) Let K be a field of characteristic p. There exists a subfield in K isomorphic to F,,.
(d) Let K be a finite field of characteristic p. Then it has p" elements for some n € N*.

Proposition 13.2. Let F be a field and f(x) € Flx| a polynomial. Then there exists a field K D F that contains all
the roots of f.

Proposition 13.3. The group of units of a finite field K is cyclic.

Theorem 13.4. Let p be a prime and n € N, n > 1. Then there exists a unique field K with |K| = p™ and an
irreducible polynomial f(x) € Fylx] such that Fplz]/(f(z)) ~ K. If g(x) € Fplx] is another irreducible polynomial of
degree n over F,,, then K ~TF,[z]/(f(x)) =~ Fplz]/(9(x)).

Corollary 13.5. For any n € NT and any prime p there is an irreducible polynomial f(z) of degree n over Fp.
Conclusions.
1. For any prime p, any n € N* there exist a unique finite field Fn of p™ elements, with char(Fyn) = p.
2. For n = 1, this finite field is isomorphic to F,, ~ Z/pZ.
3. For n > 1, this unique field can be constructed as a quotient
Fyr = F,la]/(f(a)),

where f(x) € Fp[z] is an irreducible polynomial of degree n.



