Fall 2024

Summary: Rings

1 Definition and first examples

Definition 1.1. A ring is a set A with two internal binary operations (addition and multiplication) satisfying the axioms:

- 1. A is an abelian group with respect to addition. We will denote the corresponding neutral element by 0.
- 2. The multiplication is associative: $(ab)c = a(bc) \ \forall a,b,c \in A$ and there is an neutral element for multiplication, that will be denoted by 1: $1a = a1 = a \ \forall a \in A$.
- 3. Distributivity holds: (a+b)c = ac + bc and $a(b+c) = ab + ac \ \forall a,b,c \in A$.

Definition 1.2. The ring A is called *commutative* if $ab = ba \ \forall a, b \in A$.

2 Zero divisors. Integral domains

What is the most notable difference between (real, integer, rational, complex) numbers and commutative rings? If $x, y \in \mathbb{R}$ and $x \neq 0, y \neq 0$, then $xy \neq 0$. This is not necessarily true for rings.

Definition 2.1. Let A be a ring. An element $a \in A$ is called a *left zero divisor* if there exists $x \in A$, $x \neq 0$, such that ax = 0. Similarly, an element $b \in A$ is called a *right zero divisor* if there exists $y \in A$, $y \neq 0$, such that yb = 0. An element that is both a left and a right zero divisor is called a *two-sided zero divisor*.

Remark 2.2. (a) The element 0 is a left and right zero divisor in any ring.

(b) In a commutative ring, any zero divisor is two-sided.

Definition 2.3. A zero divisor that is different from 0 is called a *nontrivial* zero divisor.

Definition 2.4. Let A be a ring. If A has no nontrivial zero divisors, it is called a *domain*.

Definition 2.5. A commutative ring whose only zero divisor is 0 is called an *integral domain*.

Proposition 2.6. The ring $A = \mathbb{Z}/n\mathbb{Z}$ is an integral domain if and only if n = p is a prime.

Proposition 2.7. Let A be a ring. Then A is a domain if and only if the equation ab = ac, $a \neq 0$ implies b = c and the equation ba = ca, $a \neq 0$ implies b = c in A.

Definition 2.8. A division ring (also called a skew field) is a ring A such that for any $a \in A$, $a \neq 0$, there exists $b \in A$ such that ab = ba = 1. Equivalently, a division ring is a ring where the nonzero elements $A \setminus \{0\}$ form a group with respect to multiplication.

Proposition 2.9. A division ring is a domain.

Proof: If for any $a \neq 0$ in A, there exists $x \in A$ such that ax = 1, then if a is a (right) zero divisor, we have a nonzero $b \in A$ such that ba = 0, and bax = b1 = b = 0, a contradiction. Similarly for the left zero divisors.

Definition 2.10. A commutative division ring is called a *field*.

Division rings \subset Domains \subset Rings Fields = Commutative division rings \subset Integral domains \subset Commutative rings.

Corollary 2.11. The ring $A = \mathbb{Z}/n\mathbb{Z}$ is a field if and only if n = p is a prime.

3 Ideals

Definition 3.1. Let A be a ring. A *left ideal* is a subset $I \subset A$ such that (1) $I \subset A$ is a subgroup with respect to addition, and (2) $ax \in I \ \forall x \in I, a \in A$. Similarly, $J \subset A$ is a *right ideal* in A if (1) J is a subgroup with respect to addition and (2) $ya \in J \ \forall y \in J, a \in A$.

Definition 3.2. If $I \subset A$ is a left and a right ideal, it is called a *two-sided ideal*, or simply an *ideal* in A.

Remark 3.3. (1) In a commutative ring every left or right ideal is a two-sided ideal. (2) The subsets $\{0\} \subset A$, $A \subset A$ are ideals in any ring A. A *proper ideal* $I \subset A$ is such that $I \neq A$. (3) For any ideal $I \subset A$, $0 \in I$.

From now on we will consider only commutative rings

Proposition 3.4. Let A be a commutative ring. Here are some properties of the ideals.

- (a) If $I \subset A$ is an ideal and $1 \in I$, then I = A.
- (b) If $I, J \subset A$ are ideals, then $I \cap J \subset A$ is also an ideal
- (c) If $I, J \subset A$ are ideals, the subset $I \cup J \subset A$ is not necessarily an ideal.
- (d) If $I, J \subset A$ are ideals, then the set $\{x + y\}$, $x \in I$, $y \in J$ is an ideal denoted by I + J.
- (e) If $I, J \subset A$ are ideals, then the set $\{\sum_{i=1}^k x_i y_i\}$, $x_i \in I$, $y_i \in J$ is an ideal denoted by $I \cdot J$.

Definition 3.5. Let $S \subset A$ be an arbitrary subset in a ring A. Consider the intersection of all ideals in A containing S. This is an *ideal generated by the set* S, denoted by $(S) \subset A$. Let A be a commutative ring, and $S = \{s_i\}_{i \in T}$, where T is a finite or infinite set of indices. Then $(S) = \{\sum_i a_i s_i\}_{a_i \in A}$.

Theorem 3.6. Let A be a commutative ring. Then A is a field if and only if the only ideals in A are $\{0\}$ and A.

Definition 3.7. An ideal $I \subset A$ is called *principal* if it is generated by a single element in $x \in A$: I = (x).

Definition 3.8. Let A be a commutative ring. An ideal $I \subset A$ is called *prime* if for any $a, b \in A$, if $ab \in I$, then at least one of a and b is in I.

Definition 3.9. Let A be a commutative ring. A proper ideal $I \subset A$ is called *maximal* if there exists no other proper ideal $J \subset A$ such that $I \subset J$ is a proper subset.

4 Equivalence and congruence relations. Quotient ring.

Definition 4.1. A relation $x \sim y$ on a set E is an equivalence relation if it satisfies the axioms:

- 1. $x \sim x$ for any $x \in E$ (reflexivity)
- 2. $x \sim y \implies y \sim x$ (symmetry)
- 3. $x \sim y$ and $y \sim z \implies x \sim z$ (transitivity).

Definition 4.2. An *equivalence class* of element $x \in E$ is the subset $\bar{x} = \{y \in E : x \sim y\}$.

Remark 4.3. The transitivity of an equivalence relation implies that if $x \neq y \in E$, then $\bar{x} = \bar{y}$, or $\bar{x} \cap \bar{y} = \emptyset$. The set of equivalence classes E/\sim is called the *quotient set* with respect to \sim .

Definition 4.4. Let A be a commutative ring. An equivalence relation \sim on A is a *congruence relation* if $a \sim b, c \sim d$ implies $a + c \sim b + d$ and $ac \sim bd$.

Proposition 4.5. Let A be a commutative ring and \sim a congruence relation such that $0 \sim 1$. The set of congruence classes A/\sim has a structure of a commutative ring¹.

Proposition 4.6. Let A be a commutative ring.

- (1) If $I \subset A$ is an ideal, then the relation $a \sim b \Leftrightarrow (a b) \in I$ is a congruence relation in A.
- (2) If \sim is a congruence relation in A, then the set $I = \{a \in A, a \sim 0\}$ is an ideal in A.

Definition 4.7. An ideal $I \subset A$ defines a quotient ring A/I whose elements are the congruence classes modulo the ideal I. An ideal in a commutative ring plays the same role as a normal group in a group.

 $^{^{1}}$ If $1 \sim 0$, the obtained structure A/\sim satisfies all the axioms of a ring, except that it does not have a unit, and is sometimes called rng.

5 The ring \mathbb{Z} : ideals and quotients.

Definition 5.1. A commutative ring A is a principal ideal ring if every ideal in A is principal. An integral domain where each ideal is principal is called a principal ideal domain.

Proposition 5.2. The ring \mathbb{Z} of integers is a principal ideal domain.

Corollary 5.3. Let $I \subset \mathbb{Z}$ be an ideal generated by integers $\{a_1, a_2, \dots a_n\}$. Then $I = (d) \subset \mathbb{Z}$, where $d = \gcd(a_1, a_2, \dots a_n)$.

6 Homomorphisms and characteristic of a ring. Direct products of rings

Definition 6.1. A map $f: A \to B$ between rings A and B is a ring homomorphism if it respects the ring operations, namely f(a+b) = f(a) + f(b) (this implies $f(0_A) = 0_B$), f(ab) = f(a)f(b) for any $a, b \in A$, and $f(1_A) = 1_B$.

Proposition 6.2. If $f: A \to B$ is a homomorphism of commutative rings, then $\ker(f) = \{a \in A : f(a) = 0\}$ is an ideal in A, and $\operatorname{im}(f) \subset B$ is a subring in B (a subring is an additive subgroup of a ring containing 1 and closed with respect to the multiplication).

Proposition 6.3. Let $f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ a ring homomorphism. Then m|n, and $f([a]_n) = [a]_m$.

Proposition 6.4. For any ring A there is a unique homomorphism $\tau : \mathbb{Z} \to A$. Then $\ker(\tau) = \{0\}$, or $\ker(\tau) = \{d\}$ for a positive integer $d \in \mathbb{Z}$.

Definition 6.5. Let A be a ring and $\tau : \mathbb{Z} \to A$ the unique ring homomorphism. Then the characteristic c_A of the ring A is defined as follows:

$$c_A = 0$$
, if $\ker(\tau) = \{0\}$, $c_A = d$, if $\ker(\tau) = (d)$.

Proposition 6.6. Let A be a ring such that the characteristic of A is $n = mk \in \mathbb{Z}^+$, where $m, k \geq 2$ are integers. Then A has a nontrivial zero divisor.

Corollary 6.7. The characteristic of a field is either 0, or a prime number p.

Corollary 6.8. The converse to Corollary 6.7 is false: there exists a ring with characteristic p that is not a field.

Definition 6.9. Let A and B be two rings. We define the direct product $A \times B$ as the set of pairs $\{(a,b), a \in A, b \in B\}$ with coordinate-wise addition and multiplication. In particular, $1_{A \times B} = (1_A, 1_B)$ and $0_{A \times B} = (0_A, 0_B)$.

If A and B are two commutative rings, and $c_A \neq 0$, $c_B \neq 0$, then $c_{A \times B} = \text{lcm}(c_A, c_B)$.

7 Chinese remainder theorem for integers

Recall that an ideal $I \subset A$ in a commutative ring A defines a quotient ring A/I (see Definition 4.7).

Theorem 7.1. Let I, J be two ideals in a commutative ring A, such that I+J=A. Then there is a ring isomorphism

$$f: A/(I \cap J) \to A/I \times A/J$$
,

given by the diagonal map $f: \bar{x}_{I\cap J} \to (\bar{x}_I, \bar{x}_J)$.

Corollary 7.2. Let $m, n \in \mathbb{Z}$ be coprime numbers. Then for any $a_1, a_2 \in \mathbb{Z}$ there exists $a \in \mathbb{Z}$ such that $a \equiv a_1 \pmod{m}$ and $a \equiv a_2 \pmod{n}$. The set of solutions for a is given by $a + mn\mathbb{Z}$.

Theorem 7.3. Let $d_1, d_2, \ldots d_n$ be integers such that $gcd(d_i, d_j) = 1$ for any $i \neq j$. Let $d = d_1 d_2 \ldots d_n$. Then we have a ring isomorphism

$$f: \mathbb{Z}/(d) \to \mathbb{Z}/(d_1) \times \mathbb{Z}/(d_2) \times \ldots \times \mathbb{Z}/(d_n),$$

given by $f([a]_d) = ([a]_{d_1}, [a]_{d_2}, \dots [a]_{d_n}).$

Corollary 7.4. Let $d_1 \dots d_r \in \mathbb{Z}$ be pairwise coprime numbers, meaning that $gcd(d_i, d_j) = 1$ for any pair of indices $1 \le i \ne j \le r$. Then for any $a_1, a_2, \dots a_r \in \mathbb{Z}$ there exists $a \in \mathbb{Z}$ such that

$$a \equiv a_1 \pmod{d_1},$$

 $a \equiv a_2 \pmod{d_2},$
...
 $a \equiv a_r \pmod{d_r}.$

Let $d = d_1 d_2 \dots d_r$. The set of all solutions of the given congruences is given by $a + d\mathbb{Z}$.

Remark 7.5. The proof of Theorem 10.1 provides a method to solve systems of congruences: suppose you have to solve a system of congruences modulo $d_1, d_2, \ldots d_r$ where the elements $d_1, d_2, \ldots d_r$ are pairwise mutually prime. Solve the first pair of congruences modulo d_1 and d_2 first, then the obtained result gives a new congruence modulo the product d_1d_2 . The product d_1d_2 is coprime to d_3 . Solve these two congruences, obtaining a congruence modulo $d_1d_2d_3$. The product $d_1d_2d_3$ is coprime to d_4 , so you can again solve the pair of congruences, and so on until you solve the last congruence.

In fact we can make a method even more explicit. Suppose we have a system of congruences $x \equiv a_i \pmod{d_i}$ for i = 1...k. Consider $d = d_1 d_2 ... d_k$ and set $D_i = d/d_i$. Then we have $\gcd(d_i, D_i) = 1$. Therefore, by Bezout's identity there exist integers x_i and y_i such that $D_i x_i + d_i y_i = 1$. Then $x = \sum_{i=1}^k a_i D_i x_i$. Indeed, $x \equiv a_i D_i x_i \pmod{d_i}$, because $d_i | D_i$ for $i \neq i$. Therefore, $x \equiv a_i (1 - d_i y_i) \pmod{d_i} \equiv a_i \pmod{d_i}$. The solution is determined modulo D.

Remark 7.6. Note that if the rings A and B are isomorphic, then their groups of units are also isomorphic: $A^* \simeq B^*$. This follows from the fact that the ring isomorphism respects the multiplication in both rings.

Corollary 7.7. Let $n, m \in \mathbb{Z}$ be such that gcd(n, m) = 1. Then we have for the Euler's totient function:

$$\varphi(nm) = \varphi(n) \cdot \varphi(m).$$

8 Polynomials in one variable with coefficients in a commutative ring.

Definition 8.1. Let A be an commutative ring, and consider the ring of polynomials in one variable A[x]. Then $A[x] = \{a_0 + a_1x + \ldots + a_nx^n\}$, where $n \in \mathbb{N}$ and $a_0, a_1, \ldots a_n$ are elements of A. Equivalently, $A[x] = \{(a_0, a_1, \ldots)\}_{a_i \in A}$ such that $a_i = 0$ for large enough $i \in \mathbb{N}$. Clearly A[x] is a commutative ring with respect to the usual addition and multiplication of polynomials.

Definition 8.2. If $f(x) \in A[x]$ is nonzero, then the degree of the polynomial $f(x) = a_0 + a_1x + ...$ is the largest integer n such that $a_n \neq 0$, $\deg(f(x)) = n$. The element $a_n \in A$ is called the dominant coefficient, and $a_0 \in A$ the constant term. If f(x) = 0, we define $\deg(0) = -\infty$.

Proposition 8.3. In the ring A[x] we have:

- (a) $\deg(f(x) + g(x)) \le \max(\deg(f(x)), \deg(g(x)))$
- (b) If A is an integral domain, then $\deg(f(x) \cdot g(x)) = \deg(f(x)) + \deg(g(x))$.

Theorem 8.4. Let A be an integral domain. The ring of polynomials A[x] is also an integral domain. The invertible elements in A[x] are the invertible elements in A.

Theorem 8.5. Let F be a field, and f(x), d(x) polynomials in F[x], such that $\deg(d(x)) \ge 1$. There exist polynomials $q(x), r(x) \in F[x]$ such that f(x) = q(x)d(x) + r(x), and either r(x) = 0, or $\deg(r(x)) < \deg(d(x))$.

9 Euclidean domains and principal ideal domains

Definition 9.1. A commutative ring A is a Euclidean domain if

- (1) A is an integral domain, and
- (2) there exists a function $\nu: A \setminus \{0\} \to \mathbb{N}$ such that for all $a, b \in A$, $b \neq 0$, there exists $q, r \in A$ such that a = qb + r and either r = 0, or $\nu(r) < \nu(b)$.

Corollary 9.2. If F is a field, then the ring of polynomials F[x] is a Euclidean domain.

Theorem 9.3. A Euclidean domain is a principal ideal domain.

Corollary 9.4. Let F be a field. The ring F[x] is a principal ideal domain, meaning that any ideal in F[x] is generated by a single polynomial.

Definition 9.5. Let A be a commutative ring. For $a, b \in A$ we say that a divides b, if there exists $c \in A$ such that b = ac. In this case we can write, just like for the integers, a|b.

Definition 9.6. Let A be an integral domain. The elements $a, b \in A$ are associates if b = au for a unit $u \in A^*$ (equivalently, a = bv for a unit $v \in A^*$).

Definition 9.7. Let A be an integral domain. Let $a, b \in A$. We say that $c \in A$ is a common divisor of a and b if c|a and c|b. We say that $d \in A$ is a greatest common divisor of a and b if d|a, d|b, and if c is a common divisor of a and b, then c|d. We denote $d = \gcd(a, b)$. We say that $l \in A$ is a least common multiple of a and b if a|l, b|l, and if a|l and b|l, then l|l. We denote $l = \operatorname{lcm}(a, b)$.

Proposition 9.8. Let A be an integral domain. If d_1, d_2 are greatest common divisors of $a, b \in A$, then d_1 and d_2 are associates. If l_1, l_2 are least common multiples of $a, b \in A$, then l_1 and l_2 are associates.

Proposition 9.9. Properties of the Euclidean domains.

- (a) Euclidean algorithm works in a Euclidean domain: If $a, b \in E$, $b \neq 0$, then there exist $q, r \in E$ such that a = qb + r and either r = 0 (then $b = \gcd(a, b)$), or $\nu(r) < \nu(b)$. Repeat with $b = q_2r + r_2$, with $\nu(r_2) < \nu(r)$, and so on. The process terminates because the function $\nu : E \to \mathbb{N}$ is strictly decreasing. We have $r_{n-1} = q_n r_n$. Then the greatest common divisor $r_n = \gcd(a, b)$.
- (b) Bezout's theorem: If $d = \gcd(a, b)$, then there exist $x, y \in E$ such that xa + yb = d. It follows that the ideal $(a) + (b) = (d) \subset E$.
- (c) If $a, b \in E$ are such that gcd(a, b) = 1, and a|bc for $c \in E$, then a|c. In particular, if gcd(a, b) = 1 and gcd(a, c) = 1, then gcd(a, bc) = 1.
- (d) If $a,b \in E$ are such that gcd(a,b) = 1, and a|c and b|c for an element $c \in E$, then ab|c. In particular, if gcd(a,b) = 1, then lcm(a,b) = ab.
- (e) The ideal $(a) \cap (b) = (m) \subset E$, where m = lcm(a, b).

Remark 9.10. Let $f(x), g(x) \in F[x]$, so that the Euclidean division works. If $gcd(f(x), g(x)) = d_1(x)$ and $gcd(f(x), g(x)) = d_2(x)$, then by Proposition 9.8 $d_1(x) = ud_2(x)$, where $u \in \mathbb{R}[x]$ is a unit, which implies $u \neq 0, u \in \mathbb{R}$. Then we can choose a unique *monic* polynomial d(x) = gcd(f(x), g(x)), such that the dominant coefficient of d(x) is 1. Note that the ideals generated by the associates are the same: $(d_1) = (d_2) = (d)$.

Conclusions: Let E be a Euclidean domain.

- 1. E is a principal ideal domain.
- 2. If $a, b \in E$ two nonzero elements, then the ideals $(a) \cap (b) = (\operatorname{lcm}(a, b)) \subset E$ and $(a) + (b) = (\operatorname{gcd}(a, b)) \subset E$.
- 3. gcd(a, b) and lcm(a, b) are determined up to a multiplication by a unit in E. Associate elements generate equal ideals in E.

10 Chinese remainder theorem for a Euclidean domain.

Let A be a Euclidean domain, so that for nonzero $a, b \in E$ there exists $gcd(a, b) \in E$ that is well defined up to a multiplication by a unit. In addition, A is a principal ideal domain so that any ideal is generated by a single element.

Theorem 10.1. Let A be a Euclidean domain, and $m_1, m_2, \dots m_r$ elements such that $gcd(m_i, m_j) = 1$ for any two indices $1 \le i \ne j \le r$. Let $m = m_1 m_2 \dots m_r$. Then the map

$$f: A/(m) \to A/(m_1) \times A/(m_2) \times \ldots \times A/(m_r),$$

given by $f(\bar{x}_{(m)} = (\bar{x}_{(m_1)}, \bar{x}_{(m_2)}, \dots \bar{x}_{(m_r)})$ is an isomorphism of rings.

Corollary 10.2. (Chinese remainder theorem for polynomial rings). Let F be a field, $\{f_1(x), f_2(x), \dots f_r(x)\}$ polynomials in F[x] such that $gcd(f_i, f_j) = 1$. Then the exist a ring isomorphism

$$\Phi: F[x]/(f_1(x) \cdot f_2(x) \cdot f_r(x)) \simeq F[x]/(f_1(x)) \times F[x]/(f_2(x)) \times \ldots \times F[x]/(f_r(x)).$$

11 Irreducible elements in Euclidean domains.

Definition 11.1. Let A be an integral domain. The element $c \in A$ is irreducible if c is not a unit in A (c is not invertible in A), $c \neq 0$, and if c = ab for $a, b \in A$, then a or b is a unit.

Example 11.2. In the ring \mathbb{Z} the units are $\{\pm 1\}$ and the irreducible elements are $\{\pm p\}$, where p are the prime numbers.

Recall that an ideal $I \subset A$ is maximal if there is no ideal $J \subset A$ such that $I \subsetneq J \subsetneq A$.

Theorem 11.3. Let A be a PID. Then $p \in A$ an irreducible element if and only if $p \neq 0$ and the ideal $(p) \subset A$ is maximal.

Proposition 11.4. Let A be a Euclidean domain and I = (a) a nontrivial ideal: $I \neq \{0\}$ and $I \neq A$. Then

- (a) \bar{b} is a unit in A/I if and only if gcd(a,b) = 1.
- (b) \bar{b} is a nontrivial zero divisor in A/I if and only if $b \notin I$ and $gcd(a,b) \neq 1$.
- (c) A/I is a field for I = (a) if and only if $a \in A$ is irreducible.

Corollary 11.5. Let F be a field and consider the ring F[x] of polynomials in one variable with coefficients in F. Let $f(x) \in F[x]$ be a nonzero polynomial. Then F[x]/(f(x)) is a field if and only if f(x) is irreducible in F[x].

Conclusions.

- 1. We have the following inclusions: Fields ⊂ Euclidean domains ⊂ Principal ideal domains ⊂ Integral domains ⊂ Commutative rings.
- 2. Fields, \mathbb{Z} , F[x] for F a field, Gaussian integers $\mathbb{Z}[i]$ are examples of Euclidean domains (and of PIDs).
- 3. $\mathbb{Z}[x]$, F[x,y], where F a field are integral domains but not PIDs.
- 4. The rings $\mathbb{Z}/n\mathbb{Z}$, where n is not a prime, and $(\mathbb{Z}/n\mathbb{Z})[x]$ are not integral domains.

12 Quotients of polynomial rings

Let us recall what we know about the ring F[x], where F is a field.

Remark 12.1. Properties of the polynomial ring F[x], where F is a field.

- 1. The ring F[x] is a Euclidean domain, in particular it is a PID: any ideal in F[x] is generated by a single element.
- 2. An ideal generated by f(x) is maximal if and only if f(x) is irreducible. A quotient ring F[x]/(f(x)) is a field if and only if f(x) is irreducible in F[x]. (Corollary 11.5).
- 3. For any two polynomials f(x), g(x), such that $\deg(f(x)) \ge 1$ and $\deg(g(x)) \ge 1$, there exist $\gcd(f(x), g(x))$ and $\gcd(f(x), g(x))$, unique up to multiplication by units. They generate the ideals $(f(x)) + (g(x)) = (\gcd(f(x), g(x)))$ and $(f(x)) \cap (g(x)) = (\gcd(f(x), g(x)))$.
- 4. The characteristic of F[x] is equal to the characteristic of F, which can be 0 or a prime number. If f(x) is irreducible (in particular, $\deg(f) \ge 1$), then the characteristic of F[x]/(f(x)) equals that of F.

Proposition 12.2. Let F be a field.

- 1. Any polynomial of degree 1 is irreducible in F[x].
- 2. A polynomial of degree 2 or 3 is irreducible if and only if it has no root in F.

Proposition 12.3. Suppose that $\alpha = \frac{r}{s} \in \mathbb{Q}$ is a root of the polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \in \mathbb{Z}[x]$. Then $s|a_n$ and $r|a_0$. In particular, any rational root of a monic polynomial with integer coefficients is an integer.

Proposition 12.4. (Eisenstein's criterion). Let $f(x) = a_0 + a_1x + \dots + a_{n-1}x^{n-1} + a_nx^n \in \mathbb{Z}[x]$ be a polynomial with integer coefficients, such that $\gcd(a_0, a_1, \dots a_n) = 1$. Suppose that there exists a prime $p \in \mathbb{Z}$ such that $p|a_i$, $0 \le i \le n-1$, p does not divide a_n , and p^2 does not divide a_0 . Then f(x) is irreducible over $\mathbb{Q}[x]$ (and also over $\mathbb{Z}[x]$).

Proposition 12.5. Let F be a field, and $f(x) \in F[x]$ an irreducible polynomial of degree $n \ge 1$. The ring K = F[x]/(f(x)) is a field, such that any element of K can be written uniquely in the form

$$a_0\overline{1} + a_1\overline{x} + \ldots + a_{n-1}\overline{x^{n-1}},$$

where $a_i \in F$ and $\overline{x^i}$ is the congruence class $x^i + (f(x))$.

Corollary 12.6. If F is a finite field of q elements, and $f(x) \in F[x]$ an irreducible polynomial of degree $n \ge 1$, then the field F[x]/(f(x)) has exactly q^n elements.

13 Finite fields

Recall that the characteristic of a field can be either 0 or a prime number p.

Proposition 13.1. Let \mathbb{F}_p denote the field $\mathbb{Z}/p\mathbb{Z}$ for a prime p.

- (a) Let K be a field of p^n elements for some $n \in \mathbb{N}^+$. Then the characteristic of K is p.
- (b) Any field with p elements is isomorphic to \mathbb{F}_p .
- (c) Let K be a field of characteristic p. There exists a subfield in K isomorphic to \mathbb{F}_p .
- (d) Let K be a finite field of characteristic p. Then it has p^n elements for some $n \in \mathbb{N}^+$.

Proposition 13.2. Let F be a field and $f(x) \in F[x]$ a polynomial. Then there exists a field $K \supset F$ that contains all the roots of f.

Proposition 13.3. The group of units of a finite field K is cyclic.

Theorem 13.4. Let p be a prime and $n \in \mathbb{N}$, n > 1. Then there exists a unique field K with $|K| = p^n$ and an irreducible polynomial $f(x) \in \mathbb{F}_p[x]$ such that $\mathbb{F}_p[x]/(f(x)) \simeq K$. If $g(x) \in \mathbb{F}_p[x]$ is another irreducible polynomial of degree n over \mathbb{F}_p , then $K \simeq \mathbb{F}_p[x]/(f(x)) \simeq \mathbb{F}_p[x]/(g(x))$.

Corollary 13.5. For any $n \in \mathbb{N}^+$ and any prime p there is an irreducible polynomial f(x) of degree n over \mathbb{F}_p .

Conclusions.

- 1. For any prime p, any $n \in \mathbb{N}^*$ there exist a unique finite field \mathbb{F}_{p^n} of p^n elements, with $\operatorname{char}(\mathbb{F}_{p^n}) = p$.
- 2. For n=1, this finite field is isomorphic to $\mathbb{F}_p \simeq \mathbb{Z}/p\mathbb{Z}$.
- 3. For n > 1, this unique field can be constructed as a quotient

$$\mathbb{F}_{p^n} \simeq \mathbb{F}_p[x]/(f(x)),$$

where $f(x) \in \mathbb{F}_p[x]$ is an irreducible polynomial of degree n.