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Summary: Rings

1 Definition and first examples

Definition 1.1. A ring is a set A with two internal binary operations (addition and multiplication) satisfying the
axioms:

1. A is an abelian group with respect to addition. We will denote the corresponding neutral element by 0.

2. The multiplication is associative: (ab)c = a(bc) ∀a, b, c ∈ A and there is an neutral element for multiplication,
that will be denoted by 1: 1a = a1 = a ∀a ∈ A.

3. Distributivity holds: (a+ b)c = ac+ bc and a(b+ c) = ab+ ac ∀a, b, c ∈ A.

Definition 1.2. The ring A is called commutative if ab = ba ∀a, b ∈ A.

2 Zero divisors. Integral domains

What is the most notable difference between (real, integer, rational, complex) numbers and commutative rings? If
x, y ∈ R and x 6= 0, y 6= 0, then xy 6= 0. This is not necessarily true for rings.

Definition 2.1. Let A be a ring. An element a ∈ A is called a left zero divisor if there exists x ∈ A, x 6= 0, such that
ax = 0. Similarly, an element b ∈ A is called a right zero divisor if there exists y ∈ A, y 6= 0, such that yb = 0. An
element that is both a left and a right zero divisor is called a two-sided zero divisor.

Remark 2.2. (a) The element 0 is a left and right zero divisor in any ring.

(b) In a commutative ring, any zero divisor is two-sided.

Definition 2.3. A zero divisor that is different from 0 is called a nontrivial zero divisor.

Definition 2.4. Let A be a ring. If A has no nontrivial zero divisors, it is called a domain.

Definition 2.5. A commutative ring whose only zero divisor is 0 is called an integral domain.

Proposition 2.6. The ring A = Z/nZ is an integral domain if and only if n = p is a prime.

Proposition 2.7. Let A be a ring. Then A is a domain if and only if the equation ab = ac, a 6= 0 implies b = c and
the equation ba = ca, a 6= 0 implies b = c in A.

Definition 2.8. A division ring (also called a skew field) is a ring A such that for any a ∈ A, a 6= 0, there exists
b ∈ A such that ab = ba = 1. Equivalently, a division ring is a ring where the nonzero elements A \ {0} form a group
with respect to multiplication.

Proposition 2.9. A division ring is a domain.

Proof: If for any a 6= 0 in A, there exists x ∈ A such that ax = 1, then if a is a (right) zero divisor, we have a
nonzero b ∈ A such that ba = 0, and bax = b1 = b = 0, a contradiction. Similarly for the left zero divisors.

Definition 2.10. A commutative division ring is called a field.

Division rings ⊂ Domains ⊂ Rings
Fields = Commutative division rings ⊂ Integral domains ⊂ Commutative rings.

Corollary 2.11. The ring A = Z/nZ is a field if and only if n = p is a prime.
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3 Ideals

Definition 3.1. Let A be a ring. A left ideal is a subset I ⊂ A such that (1) I ⊂ A is a subgroup with respect to
addition, and (2) ax ∈ I ∀x ∈ I, a ∈ A. Similarly, J ⊂ A is a right ideal in A if (1) J is a subgroup with respect to
addition and (2) ya ∈ J ∀y ∈ J, a ∈ A.

Definition 3.2. If I ⊂ A is a left and a right ideal, it is called a two-sided ideal, or simply an ideal in A.

Remark 3.3. (1) In a commutative ring every left or right ideal is a two-sided ideal. (2) The subsets {0} ⊂ A, A ⊂ A
are ideals in any ring A. A proper ideal I ⊂ A is such that I 6= A. (3) For any ideal I ⊂ A, 0 ∈ I.

From now on we will consider only commutative rings

Proposition 3.4. Let A be a commutative ring. Here are some properties of the ideals.

(a) If I ⊂ A is an ideal and 1 ∈ I, then I = A.

(b) If I, J ⊂ A are ideals, then I ∩ J ⊂ A is also an ideal

(c) If I, J ⊂ A are ideals, the subset I ∪ J ⊂ A is not necessarily an ideal.

(d) If I, J ⊂ A are ideals, then the set {x+ y}, x ∈ I, y ∈ J is an ideal denoted by I + J .

(e) If I, J ⊂ A are ideals, then the set {
∑k

i=1 xiyi}, xi ∈ I, yi ∈ J is an ideal denoted by I · J .

Definition 3.5. Let S ⊂ A be an arbitrary subset in a ring A. Consider the intersection of all ideals in A containing
S. This is an ideal generated by the set S, denoted by (S) ⊂ A. Let A be a commutative ring, and S = {si}i∈T , where
T is a finite or infinite set of indices. Then (S) = {

∑
i aisi}ai∈A.

Theorem 3.6. Let A be a commutative ring. Then A is a field if and only if the only ideals in A are {0} and A.

Definition 3.7. An ideal I ⊂ A is called principal if it is generated by a single element in x ∈ A: I = (x).

Definition 3.8. Let A be a commutative ring. An ideal I ⊂ A is called prime if for any a, b ∈ A, if ab ∈ I, then at
least one of a and b is in I.

Definition 3.9. Let A be a commutative ring. A proper ideal I ⊂ A is called maximal if there exists no other proper
ideal J ⊂ A such that I ⊂ J is a proper subset.

4 Equivalence and congruence relations. Quotient ring.

Definition 4.1. A relation x ∼ y on a set E is an equivalence relation if it satisfies the axioms:
1. x ∼ x for any x ∈ E (reflexivity)
2. x ∼ y =⇒ y ∼ x (symmetry)
3. x ∼ y and y ∼ z =⇒ x ∼ z (transitivity) .

Definition 4.2. An equivalence class of element x ∈ E is the subset x̄ = {y ∈ E : x ∼ y}.

Remark 4.3. The transitivity of an equivalence relation implies that if x 6= y ∈ E, then x̄ = ȳ, or x̄∩ ȳ = ∅. The set
of equivalence classes E/ ∼ is called the quotient set with respect to ∼.

Definition 4.4. Let A be a commutative ring. An equivalence relation ∼ on A is a congruence relation if
a ∼ b, c ∼ d implies a+ c ∼ b+ d and ac ∼ bd.

Proposition 4.5. Let A be a commutative ring and ∼ a congruence relation such that 0 � 1. The set of congruence
classes A/ ∼ has a structure of a commutative ring1.

Proposition 4.6. Let A be a commutative ring.
(1) If I ⊂ A is an ideal, then the relation a ∼ b⇔ (a− b) ∈ I is a congruence relation in A.
(2) If ∼ is a congruence relation in A, then the set I = {a ∈ A, a ∼ 0} is an ideal in A.

Definition 4.7. An ideal I ⊂ A defines a quotient ring A/I whose elements are the congruence classes modulo the
ideal I. An ideal in a commutative ring plays the same role as a normal group in a group.

1If 1 ∼ 0, the obtained structure A/ ∼ satisfies all the axioms of a ring, except that it does not have a unit, and is sometimes called rng.
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5 The ring Z: ideals and quotients.

Definition 5.1. A commutative ring A is a principal ideal ring if every ideal in A is principal. An integral domain
where each ideal is principal is called a principal ideal domain.

Proposition 5.2. The ring Z of integers is a principal ideal domain.

Corollary 5.3. Let I ⊂ Z be an ideal generated by integers {a1, a2, . . . an}. Then I = (d) ⊂ Z, where d =
gcd(a1, a2, . . . an).

6 Homomorphisms and characteristic of a ring. Direct products of rings

Definition 6.1. A map f : A→ B between rings A and B is a ring homomorphism if it respects the ring operations,
namely f(a+ b) = f(a) + f(b) (this implies f(0A) = 0B), f(ab) = f(a)f(b) for any a, b ∈ A, and f(1A) = 1B .

Proposition 6.2. If f : A → B is a homomorphism of commutative rings, then ker(f) = {a ∈ A : f(a) = 0} is an
ideal in A, and im(f) ⊂ B is a subring in B (a subring is an additive subgroup of a ring containing 1 and closed with
respect to the multiplication).

Proposition 6.3. Let f : Z/nZ→ Z/mZ a ring homomorphism. Then m|n, and f([a]n) = [a]m.

Proposition 6.4. For any ring A there is a unique homomorphism τ : Z → A. Then ker(τ) = {0}, or ker(τ) = (d)
for a positive integer d ∈ Z.

Definition 6.5. Let A be a ring and τ : Z → A the unique ring homomorphism. Then the characteristic cA of the
ring A is defined as follows:

cA = 0, if ker(τ) = {0},
cA = d, if ker(τ) = (d).

Proposition 6.6. Let A be a ring such that the characteristic of A is n = mk ∈ Z+, where m, k ≥ 2 are integers.
Then A has a nontrivial zero divisor.

Corollary 6.7. The characteristic of a field is either 0, or a prime number p.

Corollary 6.8. The converse to Corollary 6.7 is false: there exists a ring with characteristic p that is not a field.

Definition 6.9. Let A and B be two rings. We define the direct product A×B as the set of pairs {(a, b), a ∈ A, b ∈ B}
with coordinate-wise addition and multiplication. In particular, 1A×B = (1A, 1B) and 0A×B = (0A, 0B).

If A and B are two commutative rings, and cA 6= 0, cB 6= 0, then cA×B = lcm(cA, cB).

7 Chinese remainder theorem for integers

Recall that an ideal I ⊂ A in a commutative ring A defines a quotient ring A/I (see Definition 4.7).

Theorem 7.1. Let I, J be two ideals in a commutative ring A, such that I+J = A. Then there is a ring isomorphism

f : A/(I ∩ J)→ A/I ×A/J,

given by the diagonal map f : x̄I∩J → (x̄I , x̄J).

Corollary 7.2. Let m,n ∈ Z be coprime numbers. Then for any a1, a2 ∈ Z there exists a ∈ Z such that a ≡
a1 (modm) and a ≡ a2 (mod n). The set of solutions for a is given by a+mnZ.

Theorem 7.3. Let d1, d2, . . . dn be integers such that gcd(di, dj) = 1 for any i 6= j. Let d = d1d2 . . . dn. Then we have
a ring isomorphism

f : Z/(d)→ Z/(d1)× Z/(d2)× . . .× Z/(dn),

given by f([a]d) = ([a]d1
, [a]d2

, . . . [a]dn
).

Corollary 7.4. Let d1 . . . dr ∈ Z be pairwise coprime numbers, meaning that gcd(di, dj) = 1 for any pair of indices
1 ≤ i 6= j ≤ r. Then for any a1, a2, . . . ar ∈ Z there exists a ∈ Z such that

a ≡ a1 (mod d1),
a ≡ a2 (mod d2),
...
a ≡ ar (mod dr).

Let d = d1d2 . . . dr. The set of all solutions of the given congruences is given by a+ dZ.
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Remark 7.5. The proof of Theorem 10.1 provides a method to solve systems of congruences: suppose you have
to solve a system of congruences modulo d1, d2, . . . dr where the elements d1, d2, . . . dr are pairwise mutually prime.
Solve the first pair of congruences modulo d1 and d2 first, then the obtained result gives a new congruence modulo
the product d1d2. The product d1d2 is coprime to d3. Solve these two congruences, obtaining a congruence modulo
d1d2d3. The product d1d2d3 is coprime to d4, so you can again solve the pair of congruences, and so on until you solve
the last congruence.

In fact we can make a method even more explicit. Suppose we have a system of congruences x ≡ ai (mod di) for
i = 1...k. Consider d = d1d2 . . . dk and set Di = d/di. Then we have gcd(di, Di) = 1. Therefore, by Bezout’s identity

there exist integers xi and yi such that Dixi+diyi = 1. Then x =
∑k

i=1 aiDixi. Indeed, x ≡ aiDixi (mod di), because
di|Dj for j 6= i. Therefore, x ≡ ai(1− diyi) (mod di) ≡ ai mod (di). The solution is determined modulo D.

Remark 7.6. Note that if the rings A and B are isomorphic, then their groups of units are also isomorphic: A∗ ' B∗.
This follows from the fact that the ring isomorphism respects the multiplication in both rings.

Corollary 7.7. Let n,m ∈ Z be such that gcd(n,m) = 1. Then we have for the Euler’s totient function:

ϕ(nm) = ϕ(n) · ϕ(m).

8 Polynomials in one variable with coefficients in a commutative ring.

Definition 8.1. Let A be an commutative ring, and consider the ring of polynomials in one variable A[x]. Then
A[x] = {a0+a1x+. . .+anx

n}, where n ∈ N and a0, a1, . . . an are elements of A. Equivalently, A[x] = {(a0, a1, . . .)}ai∈A
such that ai = 0 for large enough i ∈ N. Clearly A[x] is a commutative ring with respect to the usual addition and
multiplication of polynomials.

Definition 8.2. If f(x) ∈ A[x] is nonzero, then the degree of the polynomial f(x) = a0 + a1x + . . . is the largest
integer n such that an 6= 0, deg(f(x)) = n. The element an ∈ A is called the dominant coefficient, and a0 ∈ A the
constant term. If f(x) = 0, we define deg(0) = −∞.

Proposition 8.3. In the ring A[x] we have:

(a) deg(f(x) + g(x)) ≤ max(deg(f(x)),deg(g(x)))

(b) If A is an integral domain, then deg(f(x) · g(x)) = deg(f(x)) + deg(g(x)).

Theorem 8.4. Let A be an integral domain. The ring of polynomials A[x] is also an integral domain. The invertible
elements in A[x] are the invertible elements in A.

Theorem 8.5. Let F be a field, and f(x), d(x) polynomials in F [x], such that deg(d(x)) ≥ 1. There exist polynomials
q(x), r(x) ∈ F [x] such that f(x) = q(x)d(x) + r(x), and either r(x) = 0, or deg(r(x)) < deg(d(x)).

9 Euclidean domains and principal ideal domains

Definition 9.1. A commutative ring A is a Euclidean domain if
(1) A is an integral domain, and
(2) there exists a function ν : A \ {0} → N such that for all a, b ∈ A, b 6= 0, there exists q, r ∈ A such that a = qb+ r
and either r = 0, or ν(r) < ν(b).

Corollary 9.2. If F is a field, then the ring of polynomials F [x] is a Euclidean domain.

Theorem 9.3. A Euclidean domain is a principal ideal domain.

Corollary 9.4. Let F be a field. The ring F [x] is a principal ideal domain, meaning that any ideal in F [x] is generated
by a single polynomial.

Definition 9.5. Let A be a commutative ring. For a, b ∈ A we say that a divides b, if there exists c ∈ A such that
b = ac. In this case we can write, just like for the integers, a|b.

Definition 9.6. Let A be an integral domain. The elements a, b ∈ A are associates if b = au for a unit u ∈ A∗

(equivalently, a = bv for a unit v ∈ A∗).
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Definition 9.7. Let A be an integral domain. Let a, b ∈ A. We say that c ∈ A is a common divisor of a and b if c|a
and c|b. We say that d ∈ A is a greatest common divisor of a and b if d|a, d|b, and if c is a common divisor of a and b,
then c|d. We denote d = gdc(a, b). We say that l ∈ A is a least common multiple of a and b if a|l, b|l, and if a|t and
b|t, then l|t. We denote l = lcm(a, b).

Proposition 9.8. Let A be an integral domain. If d1, d2 are greatest common divisors of a, b ∈ A, then d1 and d2 are
associates. If l1, l2 are least common multiples of a, b ∈ A, then l1 and l2 are associates.

Proposition 9.9. Properties of the Euclidean domains.

(a) Euclidean algorithm works in a Euclidean domain: If a, b ∈ E, b 6= 0, then there exist q, r ∈ E such that a = qb+r
and either r = 0 (then b = gcd(a, b)), or ν(r) < ν(b). Repeat with b = q2r+ r2, with ν(r2) < ν(r), and so on. The
process terminates because the function ν : E → N is strictly decreasing. We have rn−1 = qnrn. Then the greatest
common divisor rn = gcd(a, b).

(b) Bezout’s theorem: If d = gcd(a, b), then there exist x, y ∈ E such that xa + yb = d. It follows that the ideal
(a) + (b) = (d) ⊂ E.

(c) If a, b ∈ E are such that gcd(a, b) = 1, and a|bc for c ∈ E, then a|c. In particular, if gcd(a, b) = 1 and gcd(a, c) = 1,
then gcd(a, bc) = 1.

(d) If a, b ∈ E are such that gcd(a, b) = 1, and a|c and b|c for an element c ∈ E, then ab|c. In particular, if
gcd(a, b) = 1, then lcm(a, b) = ab.

(e) The ideal (a) ∩ (b) = (m) ⊂ E, where m = lcm(a, b).

Remark 9.10. Let f(x), g(x) ∈ F [x], so that the Euclidean division works. If gcd(f(x), g(x)) = d1(x) and gcd(f(x), g(x)) =
d2(x), then by Proposition 9.8 d1(x) = ud2(x), where u ∈ R[x] is a unit, which implies u 6= 0, u ∈ R. Then we can
choose a unique monic polynomial d(x) = gcd(f(x), g(x)), such that the dominant coefficient of d(x) is 1. Note that
the ideals generated by the associates are the same: (d1) = (d2) = (d).

Conclusions: Let E be a Euclidean domain.

1. E is a principal ideal domain.

2. If a, b ∈ E two nonzero elements, then the ideals (a) ∩ (b) = (lcm(a, b)) ⊂ E and (a) + (b) = (gcd(a, b)) ⊂ E.

3. gcd(a, b) and lcm(a, b) are determined up to a multiplication by a unit in E. Associate elements generate equal
ideals in E.

10 Chinese remainder theorem for a Euclidean domain.

Let A be a Euclidean domain, so that for nonzero a, b ∈ E there exists gcd(a, b) ∈ E that is well defined up to a
multiplication by a unit. In addition, A is a principal ideal domain so that any ideal is generated by a single element.

Theorem 10.1. Let A be a Euclidean domain, and m1,m2, . . .mr elements such that gcd(mi,mj) = 1 for any two
indices 1 ≤ i 6= j ≤ r. Let m = m1m2 . . .mr. Then the map

f : A/(m)→ A/(m1)×A/(m2)× . . .×A/(mr),

given by f(x̄(m) = (x̄(m1), x̄(m2), . . . x̄(mr)) is an isomorphism of rings.

Corollary 10.2. (Chinese remainder theorem for polynomial rings). Let F be a field, {f1(x), f2(x), . . . fr(x)} poly-
nomials in F [x] such that gcd(fi, fj) = 1. Then the exist a ring isomorphism

Φ : F [x]/(f1(x) · f2(x) · ·fr(x)) ' F [x]/(f1(x))× F [x]/(f2(x))× . . .× F [x]/(fr(x)).

11 Irreducible elements in Euclidean domains.

Definition 11.1. Let A be an integral domain. The element c ∈ A is irreducible if c is not a unit in A (c is not
invertible in A), c 6= 0, and if c = ab for a, b ∈ A, then a or b is a unit.

Example 11.2. In the ring Z the units are {±1} and the irreducible elements are {±p}, where p are the prime
numbers.
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Recall that an ideal I ⊂ A is maximal if there is no ideal J ⊂ A such that I ( J ( A.

Theorem 11.3. Let A be a PID. Then p ∈ A an irreducible element if and only if p 6= 0 and the ideal (p) ⊂ A is
maximal.

Proposition 11.4. Let A be a Euclidean domain and I = (a) a nontrivial ideal: I 6= {0} and I 6= A. Then

(a) b̄ is a unit in A/I if and only if gcd(a, b) = 1.

(b) b̄ is a nontrivial zero divisor in A/I if and only if b /∈ I and gcd(a, b) 6= 1.

(c) A/I is a field for I = (a) if and only if a ∈ A is irreducible.

Corollary 11.5. Let F be a field and consider the ring F [x] of polynomials in one variable with coefficients in F . Let
f(x) ∈ F [x] be a nonzero polynomial. Then F [x]/(f(x)) is a field if and only if f(x) is irreducible in F [x].

Conclusions.

1. We have the following inclusions :
Fields ⊂ Euclidean domains ⊂ Principal ideal domains ⊂ Integral domains ⊂ Commutative rings.

2. Fields, Z, F [x] for F a field, Gaussian integers Z[i] are examples of Euclidean domains (and of PIDs).

3. Z[x], F [x, y], where F a field are integral domains but not PIDs.

4. The rings Z/nZ, where n is not a prime, and (Z/nZ)[x] are not integral domains.

12 Quotients of polynomial rings

Let us recall what we know about the ring F [x], where F is a field.

Remark 12.1. Properties of the polynomial ring F [x], where F is a field.

1. The ring F [x] is a Euclidean domain, in particular it is a PID: any ideal in F [x] is generated by a single element.

2. An ideal generated by f(x) is maximal if and only if f(x) is irreducible. A quotient ring F [x]/(f(x)) is a field if
and only if f(x) is irreducible in F [x]. (Corollary 11.5).

3. For any two polynomials f(x), g(x), such that deg(f(x)) ≥ 1 and deg(g(x)) ≥ 1, there exist gcd(f(x), g(x)) and
lcm(f(x), g(x)), unique up to multiplication by units. They generate the ideals (f(x))+(g(x)) = (gcd(f(x), g(x)))
and (f(x)) ∩ (g(x)) = (lcm(f(x), g(x))).

4. The characteristic of F [x] is equal to the characteristic of F , which can be 0 or a prime number. If f(x) is
irreducible (in particular, deg(f) ≥ 1), then the characteristic of F [x]/(f(x)) equals that of F .

Proposition 12.2. Let F be a field.

1. Any polynomial of degree 1 is irreducible in F [x].

2. A polynomial of degree 2 or 3 is irreducible if and only if it has no root in F .

Proposition 12.3. Suppose that α = r
s ∈ Q is a root of the polynomial f(x) = anx

n+an−1x
n−1+. . .+a1x+a0 ∈ Z[x].

Then s|an and r|a0. In particular, any rational root of a monic polynomial with integer coefficients is an integer.

Proposition 12.4. (Eisenstein’s criterion). Let f(x) = a0 + a1x + . . . an−1x
n−1 + anx

n ∈ Z[x] be a polynomial
with integer coefficients, such that gcd(a0, a1, . . . an) = 1. Suppose that there exists a prime p ∈ Z such that p|ai,
0 ≤ i ≤ n−1, p does not divide an, and p2 does not divide a0. Then f(x) is irreducible over Q[x] (and also over Z[x]).

Proposition 12.5. Let F be a field, and f(x) ∈ F [x] an irreducible polynomial of degree n ≥ 1. The ring K =
F [x]/(f(x)) is a field, such that any element of K can be written uniquely in the form

a01 + a1x+ . . .+ an−1xn−1,

where ai ∈ F and xi is the congruence class xi + (f(x)).

Corollary 12.6. If F is a finite field of q elements, and f(x) ∈ F [x] an irreducible polynomial of degree n ≥ 1, then
the field F [x]/(f(x)) has exactly qn elements.
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13 Finite fields

Recall that the characteristic of a field can be either 0 or a prime number p.

Proposition 13.1. Let Fp denote the field Z/pZ for a prime p.

(a) Let K be a field of pn elements for some n ∈ N+. Then the characteristic of K is p.

(b) Any field with p elements is isomorphic to Fp.

(c) Let K be a field of characteristic p. There exists a subfield in K isomorphic to Fp.

(d) Let K be a finite field of characteristic p. Then it has pn elements for some n ∈ N+.

Proposition 13.2. Let F be a field and f(x) ∈ F [x] a polynomial. Then there exists a field K ⊃ F that contains all
the roots of f .

Proposition 13.3. The group of units of a finite field K is cyclic.

Theorem 13.4. Let p be a prime and n ∈ N, n > 1. Then there exists a unique field K with |K| = pn and an
irreducible polynomial f(x) ∈ Fp[x] such that Fp[x]/(f(x)) ' K. If g(x) ∈ Fp[x] is another irreducible polynomial of
degree n over Fp, then K ' Fp[x]/(f(x)) ' Fp[x]/(g(x)).

Corollary 13.5. For any n ∈ N+ and any prime p there is an irreducible polynomial f(x) of degree n over Fp.

Conclusions.

1. For any prime p, any n ∈ N∗ there exist a unique finite field Fpn of pn elements, with char(Fpn) = p.

2. For n = 1, this finite field is isomorphic to Fp ' Z/pZ.

3. For n > 1, this unique field can be constructed as a quotient

Fpn ' Fp[x]/(f(x)),

where f(x) ∈ Fp[x] is an irreducible polynomial of degree n.
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