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1 Definition and first examples

Definition 1.1. A ring is a set A with two internal binary operations (addition and multiplication) satisfying the
axioms:

1. A is an abelian group with respect to addition. We will denote the corresponding neutral element by 0.

2. The multiplication is associative: (ab)c = a(bc) ∀a, b, c ∈ A and there is an neutral element for multiplication,
that will be denoted by 1: 1a = a1 = a ∀a ∈ A.

3. Distributivity holds: (a+ b)c = ac+ bc and a(b+ c) = ab+ ac ∀a, b, c ∈ A.

Definition 1.2. The ring A is called commutative if ab = ba ∀a, b ∈ A.

Example 1.3. The number sets Z, R, Q, C are rings with respect to the usual addition and multiplication. Also, the
set Z[

√
2] = {m+

√
2n}m,n∈Z is a commutative ring: (m1 +

√
2n1)(m2 +

√
2n2) = m1m2 + 2n1n2 +

√
2(n1m2 +m1n2)

and (m1 +
√

2n1) + (m2 +
√

2n2) = m1 +m2 +
√

2(n1 + n2).

Example 1.4. The set of all n×n matrices Mn(Z) with integer coefficients is a ring with respect to matrix addition and
multiplication. Indeed, adding or multiplying two matrices with integer entries gives a matrix with integer entries.
The neutral element for addition is the zero matrix, and for multiplication the identity matrix with units on the
diagonal and zeros in other positions. The multiplication is non-commutative: in general M1 ·M2 6= M2 ·M1. Note
not all elements have a multiplicative inverse in this ring, because even if the matrix is nonsingular, the inverse of a
matrix with integer coefficients does not necessarily have integer coefficients. We emphasize that the existence of a
multiplicative inverse is not required in the definition of a ring.

Example 1.5. Another important example of a ring is the ring of polynomials in one variable with real or complex
coefficients, R[x] or C[x]. This is a commutative ring with elements of the form a0 + a1 + · + akx

k. The neutral
elements for addition and multiplication are respectively the constant polynomials 0 and 1.

Remark 1.6. In any ring, the operation of multiplication by an integer number is well defined. Indeed, let A be a
ring and a ∈ A an element. For any n ∈ N we define na to be the sum a + a + a + . . . a ∈ A (where a is added n
times). Then (−n)a = −na and the following equalities are satisfied:

(n+m)a = na+ma, n(a+ b) = na+ nb, (nm)a = n(ma) ∀n,m ∈ Z, ∀a, b ∈ A.

Proposition 1.7. Let A be a commutative ring. Then for any a, b ∈ A and n ∈ N∗ we have the binomial formula

(a+ b)n =

n∑
k=0

(
n

k

)
akbn−k.

Proof: by induction.

2 Zero divisors. Integral domains

What is the most notable difference between (real, integer, rational, complex) numbers and commutative rings? If
x, y ∈ R and x 6= 0, y 6= 0, then xy 6= 0. This is not necessarily true for rings.

Definition 2.1. Let A be a ring. An element a ∈ A is called a left zero divisor if there exists x ∈ A, x 6= 0, such that
ax = 0. Similarly, an element b ∈ A is called a right zero divisor if there exists y ∈ A, y 6= 0, such that yb = 0. An
element that is both a left and a right zero divisor is called a two-sided zero divisor.

Remark 2.2. 1. The element 0 is a left and right zero divisor in any ring.
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2. In a commutative ring, any zero divisor is two-sided.

Definition 2.3. A zero divisor that is different from 0 is called a nontrivial zero divisor.

Definition 2.4. Let A be a ring. If A has no nontrivial zero divisors, it is called a domain.

Example 2.5. The matrix ring Mn(Z) is not a domain. Here is an example of two nonzero matrices whose product
is zero: (

0 1
0 0

)
·
(

1 2
0 0

)
=

(
0 0
0 0

)
.

Remark 2.6. In the matrix ring Mn(R) a left zero divisor is a right zero divisor, and vice versa.

Definition 2.7. A commutative ring whose only zero divisor is 0 is called an integral domain.

Example 2.8. The rings Z,R,C are integral domains.

Example 2.9. Let n ≥ 2 be an integer. Consider the set of congruence classes Z/nZ of integers modulo n. We
already know that this is a group with respect to addition, isomorphic to the cyclic group Cn. Multiplication is also
well defined in Z/nZ (and leads to the definition of the multiplicative group of units (Z/nZ)∗, ·)). One can easily check
that the whole set Z/nZ with the addition and multiplication is a commutative ring with [0]n and [1]n the neutral
elements with respect to the addition and multiplication. The invertible elements (units) in Z/nZ are the precisely
the elements that are not the zero divisors.

Corollary 2.10. The ring A = Z/nZ is an integral domain if and only if n = p is a prime.

Proof: An element [m]n ∈ Z/nZ is a zero divisor if and only if gcd(m,n) = d > 1. On the other hand, if
gcd(n,m) = 1, then by Bezout’s theorem, mx+ny = 1 for some x, y ∈ Z. Then [m]n[x]n = [1]n, and [m]n is invertible.
The number of invertible elements in Z/nZ equals to φ(n), the Euler’s totient function of n. It follows that all nonzero
elements of Z/nZ are invertible, and consequently not zero divisors, if and only if n = p is a prime.

Example 2.11. Consider the set C0([0, 1]) of continuous functions f : [0, 1]→ R. It is easy to check that C0([0, 1]) is
a commutative ring with respect to pointwise addition and multiplication of functions. It is not an integral domain,
because a product of two functions with nonzero values on non-intersecting subintervals gives a constant zero function.

Proposition 2.12. Let A be a ring. Then A is a domain if and only if the equation ab = ac, a 6= 0 implies b = c and
the equation ba = ca, a 6= 0 implies b = c in A.

Proof: Suppose ax = 0 for some nonzero a 6= 0, x 6= 0. Then ax = a0, and if the cancelation law applies, then
x = 0, a contradiction. Conversely, suppose A is a domain and ab = ac with a 6= 0. Then a(b − c) = 0, and since A
contains no zero divisor, this implies b− c = 0 and b = c.

Definition 2.13. A division ring (also called a skew field) is a ring A such that for any a ∈ A, a 6= 0, there exists
b ∈ A such that ab = ba = 1. Equivalently, a division ring is a ring where the nonzero elements A \ {0} form a group
with respect to multiplication.

Example 2.14. R,C,Q are division rings. But Z is not a division ring: the equation 3 · x = 1 has no solution in Z.

Example 2.15. The quaternions provide an example of a non-commutative division ring:

H = {a+ ib+ jc+ kd}a,b,c,d∈R.

The relations are ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = −1. Check that every nonzero element
in H is invertible.

Proposition 2.16. A division ring is a domain.

Proof: If for any a 6= 0 in A, there exists x ∈ A such that ax = 1, then if a is a (right) zero divisor, we have a
nonzero b ∈ A such that ba = 0, and bax = b1 = b = 0, a contradiction. Similarly for the left zero divisors.

Definition 2.17. A commutative division ring is called a field.

Remark 2.18. Here we arrive at a familiar conclusion that Q,R,C are fields, but Z is not a field.

We have the following inclusions:
Division rings ⊂ Domains ⊂ Rings

Fields = Commutative division rings ⊂ Integral domains ⊂ Commutative rings.

Corollary 2.19. The ring A = Z/nZ is a field if and only if n = p is a prime (see the proof of Corollary 2.10).
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3 Ideals

Definition 3.1. Let A be a ring. A left ideal is a subset I ⊂ A such that (1) I ⊂ A is a subgroup with respect to
addition, and (2) ax ∈ I ∀x ∈ I, a ∈ A. Similarly, J ⊂ A is a right ideal in A if (1) J is a subgroup with respect to
addition and (2) ya ∈ J ∀y ∈ J, a ∈ A.

Definition 3.2. If I ⊂ A is a left and a right ideal, it is called a two-sided ideal, or simply an ideal in A.

Remark 3.3. (1) In a commutative ring every left or right ideal is a two-sided ideal. (2) The subsets {0} ⊂ A, A ⊂ A
are ideals in any ring A. A proper ideal I ⊂ A is such that I 6= A. (3) For any ideal I ⊂ A, 0 ∈ I.

Example 3.4. Let Mn(R) be the ring of n× n real matrices. Then matrices with the first row of zeros form a right
ideal. The matrices with the first column of zeros form a left ideal.

Example 3.5. The subsets dZ ⊂ Z of multiples of a given number d ∈ Z are ideals in the ring Z.

Example 3.6. The functions f ∈ C0([0, 1]) such that f( 1
2 ) = 0 form an ideal in the ring C0([0, 1]) of continuous

functions f : [0, 1]→ R.

From now on we will consider only commutative rings

Proposition 3.7. Let A be a commutative ring. Here are some properties of the ideals.

(a) If I ⊂ A is an ideal and 1 ∈ I, then I = A.

(b) If I, J ⊂ A are ideals, then I ∩ J ⊂ A is also an ideal

(c) If I, J ⊂ A are ideals, the subset I ∪ J ⊂ A is not necessarily an ideal.

(d) If I, J ⊂ A are ideals, then the set {x+ y}, x ∈ I, y ∈ J is an ideal denoted by I + J .

(e) If I, J ⊂ A are ideals, then the set {
∑k

i=1 xiyi}, xi ∈ I, yi ∈ J is an ideal denoted by I · J .

Proof:

(a) If 1 ∈ I, then a = a · 1 ∈ I for any a ∈ A.

(b) Let x ∈ I ∩ J , then ax ∈ I ∩ J for any a ∈ A, and I ∩ J is a subgroup with respect to addition.

(c) See counter-example 3.8 below.

(d) Clearly the set {x + y}, x ∈ I, y ∈ J is a subgroup with respect to addition. Also, we have a(x + y) = ax + ay,
where ax ∈ I and ay ∈ J , so I + J is an ideal.

(e) Clearly the set {
∑k

i=1 xiyi}, xi ∈ I, yi ∈ J is a subgroup with respect to addition. Also, we have a
∑k

i=1 xiyi =∑k
i=1(axi)yi =

∑k
i=1 x̃iyi, where x̃i ∈ I for all i, 0 ≤ i ≤ k. Therefore the subset I · J ⊂ A is an ideal.

Example 3.8. Consider the ideals I = 3Z ∈ Z and J = 5Z ∈ Z. Then I ∩ J = 15Z ⊂ Z, while I ∪ J =
{0,±3,±5± 6,±9,±10, . . .} is not an ideal: this set is not closed with respect to addition, as 3 + 5 = 8 /∈ I ∪ J . The
ideal I + J contains 1 = 6− 5, and therefore I + J = Z. The ideal I · J = 15Z.

Exercise 3.9. Let I = 12Z ∈ Z and J = 15Z ∈ Z. Then I ∩ J = 60Z = lcm(12, 15)Z, I + J = 3Z = gcd(12, 15)Z,
and I · J = 180Z = 12 · 15Z.

Exercise 3.10. If I, J are two ideals in a commutative ring A, then we have

I · J ⊂ I ∩ J ⊂ I ⊂ I + J, I · J ⊂ I ∩ J ⊂ J ⊂ I + J.

Definition 3.11. Let S ⊂ A be an arbitrary subset in a ring A. Consider the intersection of all ideals in A containing
S. This is an ideal generated by the set S, denoted by (S) ⊂ A. Let A be a commutative ring, and S = {si}i∈T , where
T is a finite or infinite set of indices. Then (S) = {

∑
i aisi}ai∈A.

Theorem 3.12. Let A be a commutative ring. Then A is a field if and only if the only ideals in A are {0} and A.

Proof: (1) Suppose that A is a field, and let a ∈ I be a a nonzero element in an ideal I ⊂ A. Then a−1 ∈ A, which
implies a−1a = 1 ∈ I. Therefore, I = A. (2) Now suppose that a ∈ A be a nonzero element and consider I = (a), the
ideal generated by a. Since a 6= 0, we have I 6= {0}, and therefore I = A, and 1 ∈ I. Then 1 = ab for some b ∈ A, and
therefore a is invertible in A, and so A is a field.
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Example 3.13. The rings Q,R,C,Z/pZ for a prime p are fields.

Definition 3.14. An ideal I ⊂ A is called principal if it is generated by a single element in x ∈ A: I = (x).

Example 3.15. The ideal (n) ⊂ Z of multiples of an integer number n is a principal ideal. Note that (0) = {0} and
(1) = Z. We will see later that all ideals in Z are of the form (n) ⊂ Z.

Definition 3.16. Let A be a commutative ring. An ideal I ⊂ A is called prime if for any a, b ∈ A, if ab ∈ I, then at
least one of a and b is in I.

Definition 3.17. Let A be a commutative ring. A proper ideal I ⊂ A is called maximal if there exists no other proper
ideal J ⊂ A such that I ⊂ J is a proper subset.

Exercise 3.18. Consider the ideals of the form dZ ⊂ Z, where d ∈ N. Then an ideal is prime if and only if d = p is a
prime number. Also, an ideal is maximal if and only if d = p is a prime.

Example 3.19. Let I = ((x+ 5)) ⊂ R[x] be the ideal of polynomials divisible by (x+ 5), and J = ((x2 − 1)) ⊂ R[x]
the ideal of polynomials divisible by (x2 − 1). Then the ideal I ∩ J = I · J is spanned by the polynomials divisible by
the product (x+ 5)(x2 − 1), and the ideal I + J = R[x], because 1

24 (x2 − 1)− 1
24 (x− 5)(x+ 5) = 1 ∈ I + J .

4 Equivalence and congruence relations. Quotient ring.

Definition 4.1. A relation x ∼ y on a set E is an equivalence relation if it satisfies the axioms:
1. x ∼ x for any x ∈ E (reflexivity)
2. x ∼ y =⇒ y ∼ x (symmetry)
3. x ∼ y and y ∼ z =⇒ x ∼ z (transitivity) .

Example 4.2. Let E = Rn \ {0}. The relation v ∼ u ⇔ ∃λ ∈ R∗ : v = λu is an equivalence relation in E.

Definition 4.3. An equivalence class of element x ∈ E is the subset x̄ = {y ∈ E : x ∼ y}.

Remark 4.4. The transitivity of an equivalence relation implies that if x 6= y ∈ E, then x̄ = ȳ, or x̄∩ ȳ = ∅. The set
of equivalence classes E/ ∼ is called the quotient set with respect to ∼.

Example 4.5. In the example 4.2 the equivalence classes are the lines passing through the origin. The quotient set
is the real projective space RPn, the set of all lines in Rn passing through the origin.

Definition 4.6. Let A be a commutative ring. An equivalence relation ∼ on A is a congruence relation if
a ∼ b, c ∼ d implies a+ c ∼ b+ d and ac ∼ bd.

Example 4.7. Let n ∈ Z, n ≥ 1. The relation a ∼ b ⇔ n|(b− a) is an equivalence relation in Z. Indeed, reflexivity
and symmetry are obvious. For transitivity, observe that if n|(b−a) and n|(c−b), then n|((b−a)+(c−b))⇒ n|(c−a).
It is also a congruence relation in the commutative ring Z. We have:

a ∼ b, c ∼ d ⇒ n|(b− a), n|(d− c) ⇒ n|(b+ d− a− c) ⇒ (a+ c) ∼ (b+ d).

a ∼ b, c ∼ d ⇒ n|(b− a), n|(d− c) ⇒ n|c(b− a) + b(d− c) = bd− ac ⇒ ac ∼ bd.

Proposition 4.8. Let A be a commutative ring and ∼ a congruence relation such that 0 � 1. The set of congruence
classes A/ ∼ has a structure of a commutative ring1.

Proof: The addition ā + b̄ = a+ b and multiplication āb̄ = ab are well defined, which follows from the definition
of the congruence. The congruence classes 0̄ and 1̄ are the additive and multiplicative identity elements. The axioms
are easy to check.

Proposition 4.9. Let A be a commutative ring.
(1) If I ⊂ A is an ideal, then the relation a ∼ b⇔ (a− b) ∈ I is a congruence relation in A.
(2) If ∼ is a congruence relation in A, then the set I = {a ∈ A, a ∼ 0} is an ideal in A.

Proof: (1) The fact that I is an abelian group with respect to addition is equivalent to ∼ being an equivalence
relation.
(2) Suppose that I ⊂ A is an ideal, and set a ∼ b ⇔ (a − b) ∈ I. We check the axioms of a congruence. a ∼ b and
c ∼ d implies (a + c) ∼ (b + d) since (b − a) + (d − c) = b + d − a − c ∈ I. The multiplicative property of the ideal
implies ac ∼ bd: bd− ac = b(d− c) + c(b− a) ∈ I.
(3) Let ∼ is a congruence relation in A, then set I = {a ∈ A, a ∼ 0}. Then if x ∈ I and a ∈ A, we have x ∼ 0 and
a ∼ a which implies xa = ax ∼ 0, and therefore xa = ax ∈ I.

1If 1 ∼ 0, the obtained structure A/ ∼ satisfies all the axioms of a ring, except that it does not have a unit, and is sometimes called rng.
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Definition 4.10. An ideal I ⊂ A defines a quotient ring A/I whose elements are the congruence classes modulo the
ideal I. An ideal in a commutative ring plays the same role as a normal group in a group.

Example 4.11. In the example 4.7, if n ≥ 2, we obtain the quotient ring Z/nZ of integers modulo n.

Exercise 4.12. Consider the polynomial ring R[x] and the ideal J = ((x2 − 1)) (see Example 3.19). The set R[x]/J
is a commutative ring. Note that it is not an integral domain: (x− 1) · (x+ 1) = 0 in R[x]/J .

5 The ring Z: ideals and quotients.

Definition 5.1. A commutative ring A is a principal ideal ring if every ideal in A is principal. An integral domain
where each ideal is principal is called a principal ideal domain.

Proposition 5.2. The ring Z of integers is a principal ideal domain.

Proof: If I = {0}, then I = (0) is a principal ideal. Now suppose that I 6= {0}. If a ∈ I, then −a ∈ I, and so
|a| ∈ I, so that I contains positive integers. Let d ∈ I be the smallest positive integer that belongs to I (note that we
use the well-ordering principle here). Now let n ∈ I for some n ∈ Z. By the Euclidean division, we have n = kd+ r,
where k ∈ Z and 0 ≤ r ≤ d− 1. Then, since I is an ideal, we have kd ∈ I and n− kd = r ∈ I. Since d was chosen to
be the smallest positive integer in I, this implies that r = 0 and n = kd. This shows that I = (d) ⊂ Z is a principal
ideal.

Corollary 5.3. Let I ⊂ Z be an ideal generated by integers {a1, a2, . . . an}. Then I = (d) ⊂ Z, where d =
gcd(a1, a2, . . . an).

Proof: By definition the elements of I are of the form a1x1 + a2x2 + . . . anxn, where xi ∈ Z. We proceed by
induction on n. If n = 1, d = a1. If n = 2, then the equation a1x1 + a2x2 = c has a solution for integers x1, x2 if and
only if c ∈ gcd(a1, a2) (Bezout’s theorem). Then suppose the statement holds for n. Let dn = gcd(a1, a2, . . . an). The
equation

a1x1 + a2x2 + . . . anxn + an+1xn+1 = dny + an+1xn+1 = c

has a solution if and only if c is a multiple of gcd(dn, an+1) = dn+1. The conclusion follows.

Example 5.4. Let I be the smallest ideal in Z containing the numbers {36, 192, 60}. Then I = (d) ⊂ Z, where
d = gcd(22 · 32, 26 · 3, 22 · 3 · 5) = 12.

Recall that for a natural number d, the ideal (d) ∈ Z defines a congruence relation a ∼ b ⇔ (a − b) ∈ (d), and
that for d ≥ 2, the quotient set Z/dZ has a structure of a commutative ring (Examples 4.7, 4.11). Let us consider the
multiplicative and additive structure of the obtained ring Z/dZ.

Example 5.5. Let d = 6. To simplify the notation we will write n for the congruence class [n]6 in the tables below.
Then the ring Z/6Z has the following addition and multiplication tables:

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

× 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

In particular, we notice that [2]6, [3]6 and [4]6 are the nontrivial zero divisors, and [1]6, [5]6 are invertible elements in
Z/6Z. The number of the invertible elements equals to φ(6) = 2, which agrees with Corollary 2.10. In particular,
Z/6Z is not a field.

Recall from Corollary 2.19 that Z/nZ is a field if and only if n = p is a prime.

Example 5.6. Consider the ring Z/5Z. The multiplication table is the following (here again we write n for the class
[n]5 for simplicity):

× 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1
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6 Homomorphisms and characteristic of a ring. Direct products of rings

Definition 6.1. A map f : A→ B between rings A and B is a ring homomorphism if it respects the ring operations,
namely f(a+ b) = f(a) + f(b) (this implies f(0A) = 0B), f(ab) = f(a)f(b) for any a, b ∈ A, and f(1A) = 1B .

Proposition 6.2. If f : A → B is a homomorphism of commutative rings, then ker(f) = {a ∈ A : f(a) = 0} is an
ideal in A, and im(f) ⊂ B is a subring in B (a subring is an additive subgroup of a ring containing 1 and closed with
respect to the multiplication).

Proof: (1) If f(a) = 0 and f(b) = 0, then f(a± b) = 0, therefore ker(f) is a subgroup with respect to addition. If
c ∈ A and a ∈ ker(f), we have f(ac) = f(a)f(c) = 0, and therefore the ideal property is satisfied.
(2) If f(a), f(b) ∈ im(f), then We have f(a) ± f(b) = f(a ± b) ∈ im(f), f(a)f(b) = f(ab) ∈ im(f), and f(a + 0) =
f(a) + f(0) = f(a), f(1A) = 1B , therefore im(f) ⊂ B is a subring.

Proposition 6.3. Let f : Z/nZ→ Z/mZ a ring homomorphism. Then m|n, and f([a]n) = [a]m.

Proof: The only subring of Z/mZ is Z/mZ itself. Indeed, a subring is an additive subgroup that contains [1]m ∈
Z/mZ, and [1]m generates the whole Z/mZ by addition. Then, f([0]n) = f(n[1]n) = nf([1]n) = n[1]m = [0]m, which
implies that m|n. (Alternatively, you can argue that ker(f) must be an ideal in Z/nZ, and the only ideals in Z/nZ
are generated by the classes [k]n such that k|n). Finally, f([a]n) = f(a[1]n) = af([1]n) = a[1]m = [a]m.

Example 6.4. There exists a unique ring homomorhism f1 : Z/6Z→ Z/3Z, such that im(f1) = Z/3Z, and ker(f1) =
{[0]6, [3]6}, which is an ideal in Z/6Z. There exists a unique ring homomorphism f2 : Z → Z/18Z that sends a ∈ Z
to [a]18 ∈ Z/18Z. The kernel of f2 is the ideal (18) ⊂ Z, and the image is the whole ring Z/18Z. There is no ring
homomorphisms Z/6Z→ Z/12Z, because 12 does not divide 6.

Proposition 6.5. For any ring A there is a unique homomorphism τ : Z → A. Then ker(τ) = {0}, or ker(τ) = (d)
for a positive integer d ∈ Z.

Proof: Since τ(1) = 1A, we have τ(k) = τ(1+1+. . .+1) = k ·1A for any k ∈ Z. This shows that the homomorphism
is unique. We have ker(τ) = {0} if k · 1A 6= 0A for any k ∈ Z. Otherwise if there exists a minimal d ∈ Z+ such that
d · 1A = 0A, we have ker(τ) = (d) ⊂ Z.

Definition 6.6. Let A be a ring and τ : Z → A the unique ring homomorphism. Then the characteristic cA of the
ring A is defined as follows:

cA = 0, if ker(τ) = {0},
cA = d, if ker(τ) = (d).

Example 6.7. The characteristic of the ring Z/mZ is m for any m ≥ 2. The ring of rational numbers Q is of
characteristic 0.

Proposition 6.8. Let A be a ring such that the characteristic of A is n = mk ∈ Z+, where m, k ≥ 2 are integers.
Then A has a nontrivial zero divisor.

Proof: We have τ(n) = 0 in A, and n = mk with nontrivial divisors m, k. Let a = τ(m) and b = τ(k). Then
a 6= 0 and b 6= 0 in A, because otherwise cA < n. We have ab = τ(m)τ(k) = τ(mk) = τ(n) = 0, therefore a, b ∈ A are
nontrivial zero divisors.

Corollary 6.9. The characteristic of a field is either 0, or a prime number p.

Definition 6.10. Let A and B be two rings. We define the direct product A×B as the set of pairs {(a, b), a ∈ A, b ∈ B}
with coordinate-wise addition and multiplication. In particular, 1A×B = (1A, 1B) and 0A×B = (0A, 0B).

Example 6.11. Let n,m ∈ Z, n,m ≥ 2 Then the characteristic of the ring Z/nZ × Z/mZ is lcm(n,m). Indeed,
τ(1) = ([1]n, [1]m), and we have a([1]n, [1]m) = ([0]n, [0]m) if and only if n|a and m|a. Then a is minimal with
this property if a = lcm(n,m). More generally, if A and B are two commutative rings, and cA 6= 0, cB 6= 0, then
cA×B = lcm(cA, cB). The same proof holds.

Corollary 6.12. The converse to Corollary 6.9 is false: there exists a ring with characteristic p that is not a field.

Proof: the characteristic of the ring Z/pZ× Z/pZ is lcm(p, p) = p. However, the ring Z/pZ× Z/pZ has nontrivial
zero divisors: for example ([1]p, [0]p) · ([0]p, [1]p) = ([0]p, [0]p).

Example 6.13. The characteristic of the ring Z× Z/nZ is 0: there is no a ∈ Z+ such that a(1, [1]n) = (0, [0]n). The
characteristic of the polynomial ring Z/nZ[x] is n: we have τ(1) = 1 ∈ Z/nZ[x], and ker(τ) = (n) ⊂ Z.
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7 Chinese remainder theorem for integers

Recall that an ideal I ⊂ A in a commutative ring A defines a quotient ring A/I (see Definition 4.10).

Theorem 7.1. Let I, J be two ideals in a commutative ring A, such that I+J = A. Then there is a ring isomorphism

f : A/(I ∩ J)→ A/I ×A/J,

given by the diagonal map f : x̄I∩J → (x̄I , x̄J).

Proof. Clearly f is a ring homomorphism (check that it is well defined and respects the ring operations). We will
show that for any two elements a1, a2 ∈ A, there is an element a ∈ A such that a ≡ a1 (mod I) and a ≡ a2 (mod J).
Moreover, if there are two such elements a and b, then a ≡ b (mod I∩J). This will imply that the map f : A/(I∩J)→
A/I ×A/J given by the diagonal map f : x→ (x, x) is an isomorphism of rings.
Indeed, a1 − a2 ∈ A = I + J , and therefore there exist i ∈ I and j ∈ J such that a1 − a2 = j − i. Then set
a = a1 + i = a2 + j, and we have a ≡ a1 (mod I) and a ≡ a2 (mod J). Therefore the map f is surjective.
If b ≡ a1 (mod I) and b ≡ a2 (mod J), then b = a1 + i′ = a2 + j′, and a − b = i − i′ = j − j′ ∈ J ∩ I. Therefore the
map f is injective.
By construction f is a ring homomorphism, therefore it is a ring isomorphism.

Corollary 7.2. Let m,n ∈ Z be coprime numbers. Then for any a1, a2 ∈ Z there exists a ∈ Z such that a ≡
a1 (modm) and a ≡ a2 (mod n). The set of solutions for a is given by a+mnZ.

Proof: By Bezout’s theorem there exist x, y ∈ Z such that xm+yn = 1. We have that the ideal (m) + (n) contains
1 and therefore it is equal to Z. Then we can apply theorem 7.1. In this case it assures that there exist an integer
a ∈ Z such that [a]n = [a1]n and [a]m = [a2]m, and moreover, all such numbers a ∈ Z differ by an element in the ideal
(n) ∩ (m) = (nm), the last equality follows since gcd(n,m) = 1.

Theorem 7.3. Let d1, d2, . . . dn be integers such that gcd(di, dj) = 1 for any i 6= j. Let d = d1d2 . . . dn. Then we have
a ring isomorphism

f : Z/(d)→ Z/(d1)× Z/(d2)× . . .× Z/(dn),

given by f([a]d) = ([a]d1 , [a]d2 , . . . [a]dn).

Proof: The constructed map respects the ring operations. To show that it is a well defined bijection, we proceed
by induction on n. If n = 1, there is nothing to prove, if n = 2, this is a direct consequence of Theorem 7.1: since
gcd(d1, d2) = 1, the ideals (d1) and (d2) in Z satisfy (d1) + (d2) = Z, and the ideal (d1)∩ (d2) = (d1d2). Now suppose
the Theorem holds for n. This means that there exists an integer a ∈ Z such that for any set of integers a1, . . . an ∈ Z,
we have a − a1 ∈ (d1), a − a2 ∈ (d2), and so on until a − an ∈ (dn), and if there is another such integer b ∈ Z,
then a − b ∈ (d) = (d1d2 . . . dn). Now suppose that dn+1 is such that gcd(di, dn+1) = 1 for any 1 ≤ i ≤ n. Then
gcd(d, dn+1) = 1, and we can apply the case n = 2 again to find c ∈ Z such that for any an+1 ∈ Z, we have c− a ∈ (d)
and c−an+1 ∈ (dn+1). Moreover, if s is another such element, then c−s ∈ (d)∩(dn+1) = (d1d2 . . . dndn+1). Therefore,
the constructed map is bijective.

Example 7.4. There is an isomorphism of rings: Z/60Z ' Z/3Z× Z/4Z× Z/5Z.

Corollary 7.5. Let d1 . . . dr ∈ Z be pairwise coprime numbers, meaning that gcd(di, dj) = 1 for any pair of indices
1 ≤ i 6= j ≤ r. Then for any a1, a2, . . . ar ∈ Z there exists a ∈ Z such that

a ≡ a1 (mod d1),
a ≡ a2 (mod d2),
...
a ≡ ar (mod dr).

Let d = d1d2 . . . dr. The set of all solutions of the given congruences is given by a+ dZ.

Proof: since the numbers {d1, . . . dr} are pairwise coprime, we have (di) + (dj) = Z for any two ideals among
(d1), . . . (dr). Then Theorem 10.1 provides a ring isomorphism

Z/(d1d2 · · · dr) ' Z/(d1)× Z/(d2)× . . .× Z/(dr),

that ensures the existence of a ∈ Z such that a − ai ∈ (di). Moreover, if b is another such element, then a − b ∈
(d1) ∩ (d2) ∩ . . . ∩ (dr) = (d1d2 · · · dr) ⊂ Z.
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Remark 7.6. The proof of Theorem 10.1 provides a method to solve systems of congruences: suppose you have
to solve a system of congruences modulo d1, d2, . . . dr where the elements d1, d2, . . . dr are pairwise mutually prime.
Solve the first pair of congruences modulo d1 and d2 first, then the obtained result gives a new congruence modulo
the product d1d2. The product d1d2 is coprime to d3. Solve these two congruences, obtaining a congruence modulo
d1d2d3. The product d1d2d3 is coprime to d4, so you can again solve the pair of congruences, and so on until you solve
the last congruence.

In fact we can make a method even more explicit. Suppose we have a system of congruences x ≡ ai (mod di) for
i = 1...k. Consider d = d1d2 . . . dk and set Di = d/di. Then we have gcd(di, Di) = 1. Therefore, by Bezout’s identity

there exist integers xi and yi such that Dixi+diyi = 1. Then x =
∑k

i=1 aiDixi. Indeed, x ≡ aiDixi (mod di), because
di|Dj for j 6= i. Therefore, x ≡ ai(1− diyi) (mod di) ≡ ai mod (di). The solution is determined modulo D.

Exercise 7.7. (Exam 2017). Explain, citing a result from the course and checking that the hypothesis is satisfied,
why the following system of congruences has a solution:

a ≡ 11 (mod 13)
a ≡ −1 (mod 5)
a ≡ 3 (mod 4)
a ≡ 7 (mod 3)

Find a solution a ∈ Z of this system. Describe the set of all solutions of this system.

Solution. A solution exists because the numbers {3, 4, 5, 13} are pairwise coprime. Start solving congruences
consecutively starting from the simplest, for example a ≡ 1 (mod 3) and a ≡ −1 (mod 4): 3t+1 = 4s−1, t = 6, s = 5.
Then we have a ≡ 19 (mod 12). Consider it together with a ≡ −1 (mod 5): here we see that 19 works and we have
a ≡ 19 (mod 60). Adding the last congruence, a ≡ −2 (mod 13), we compute 60x+19 = 13y−2, then 60x−13y = −21,
and we have for example x = −1, y = −3, and a = 60(−1) + 19 = −41. Finally a ≡ −41 (mod 780). The set of all
solutions is {−41 + 780n, n ∈ Z}. The smallest positive solution is a = 739.

Remark 7.8. Note that if the rings A and B are isomorphic, then their groups of units are also isomorphic: A∗ ' B∗.
This follows from the fact that the ring isomorphism respects the multiplication in both rings.

Corollary 7.9. Let n,m ∈ Z be such that gcd(n,m) = 1. Then we have for the Euler’s totient function:

ϕ(nm) = ϕ(n) · ϕ(m).

Proof: Since by Corollary 7.5 the rings Z/mnZ and Z/nZ × Z/mZ are isomorphic, their groups of units are
also isomorphic, in particular the order |(Z/mnZ)∗| = ϕ(mn) equals to the order |(Z/nZ × Z/mZ)|∗ = |(Z/nZ)|∗ ×
|(Z/mZ)|∗ = ϕ(n)ϕ(m).

Example 7.10. Recall from the beginning of the course that φ(p) = p−1 and φ(pn) = pn−pn−1 for any prime p ∈ Z.
Compute φ(64680).
We have 64680 = 23 · 3 · 5 · 72 · 11, and therefore φ(64680) = (8− 4) · 2 · 4 · (49− 7) · 10 = 320 · 42 = 13440.

8 Polynomials in one variable with coefficients in a commutative ring.

Definition 8.1. Let A be an commutative ring, and consider the ring of polynomials in one variable A[x]. Then
A[x] = {a0+a1x+. . .+anx

n}, where n ∈ N and a0, a1, . . . an are elements of A. Equivalently, A[x] = {(a0, a1, . . .)}ai∈A
such that ai = 0 for large enough i ∈ N. Clearly A[x] is a commutative ring with respect to the usual addition and
multiplication of polynomials.

Definition 8.2. If f(x) ∈ A[x] is nonzero, then the degree of the polynomial f(x) = a0 + a1x + . . . is the largest
integer n such that an 6= 0, deg(f(x)) = n. The element an ∈ A is called the dominant coefficient, and a0 ∈ A the
constant term. If f(x) = 0, we define deg(0) = −∞.

Proposition 8.3. In the ring A[x] we have:

(a) deg(f(x) + g(x)) ≤ max(deg(f(x)),deg(g(x)))

(b) If A is an integral domain, then deg(f(x) · g(x)) = deg(f(x)) + deg(g(x)).

Proof: Consider

f(x)g(x) = (a0 + a1x+ . . .+ anx
n)(b0 + b1x+ . . . bmx

m) = a0b0 + . . .+ anbmx
n+m.

If A is an integral domain, an 6= 0 and bm 6= 0 imply anbm 6= 0, and deg(f(x) · g(x)) = deg(f(x) + deg(g(x)). If
f(x) = 0, then f(x)g(x) = 0 · g(x) = 0, and deg(f(x)g(x)) = −∞+ deg(g(x)) = −∞.
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Theorem 8.4. Let A be an integral domain. The ring of polynomials A[x] is also an integral domain. The invertible
elements in A[x] are the invertible elements in A.

Proof: If f(x)g(x) = 0, then deg(f(x)g(x)) = −∞ = deg(f(x)) + deg(g(x)), since A is an integral domain. This
implies deg(f(x)) = −∞ or deg(g(x)) = −∞, or both, and so at least one of f(x) = 0 or g(x) = 0. A similar degree
argument shows that the invertible elements in A[x] are the invertible constants.

Example 8.5. The ring Z[x] is an integral domain. The ring Z/6Z[x] is not an integral domain: 2x ·3x = 0 ∈ Z/6Z[x].

Theorem 8.6. Let F be a field, and f(x), d(x) polynomials in F [x], such that deg(d(x)) ≥ 1. There exist polynomials
q(x), r(x) ∈ F [x] such that f(x) = q(x)d(x) + r(x), and either r(x) = 0, or deg(r(x)) < deg(d(x)).

Proof: If deg(f(x)) < deg(d(x)), then take q(x) = 0, r(x) = f(x).
If deg(f(x)) ≥ deg(d(x)), then if f(x) = a0 + . . .+ amx

m, d(x) = b0 + . . . bnx
n, consider

f(x)− d(x) · am
bn
xm−n = p(x),

with deg(p(x)) < deg(f(x)). Repeat with p(x) until f(x)− d(x) ·
(

am

bn
xm−n + . . .

)
= r(x) with deg(r(x)) < deg(d(x))

(it can happen that r(x) = 0). The process terminates because the degree is strictly decreasing.

9 Euclidean domains and principal ideal domains

Definition 9.1. A commutative ring A is a Euclidean domain if
(1) A is an integral domain, and
(2) there exists a function ν : A \ {0} → N such that for all a, b ∈ A, b 6= 0, there exists q, r ∈ A such that a = qb+ r
and either r = 0, or ν(r) < ν(b).

Example 9.2. The ring Z is a Euclidean domain with ν(k) = |k| for any integer k. Any field F is a Euclidean domain.
Indeed, we have a = qb+ 0 for any b 6= 0 in F . In particular, we can define the function ν : F \ {0} → N by F (b) = 0
for any b ∈ F .

Exercise 9.3. Check that the ring Z[i] = {a + ib ∈ C : a, b ∈ Z} of Gaussian integers is a Euclidean domain with
ν(a+ ib) = a2 + b2.

Corollary 9.4. If F is a field, then the ring of polynomials F [x] is a Euclidean domain.

Proof: By Theorem 8.4, F [x] is an integral domain. By Theorem 8.6, the function deg : F [x] \ {0} → N satisfies
the conditions of the definition of a Euclidean domain.

Theorem 9.5. A Euclidean domain is a principal ideal domain.

Proof: Let E be a Euclidean domain, and I ⊂ E an ideal. If I = {0}, the ideal I is principal. Suppose I 6= {0},
and let d ∈ I with d 6= 0 and such that ν(d) is minimum on I. Suppose a ∈ I. Since E is a Euclidean domain, there
exist elements q, r ∈ E such that a = qd + r, and either r = 0, or ν(r) < ν(d). Since a, d ∈ I, we have r ∈ I, and
therefore by the choice of d, ν(r) ≥ ν(d). This implies r = 0, and I = (d) ⊂ E is a principal ideal. Therefore, any
ideal in E is principal.

Remark 9.6. Note that the proof of Theorem 9.5 generalizes the proof of the same property for integers. The notion
of Euclidean domain generalizes the Euclidean division property in Z.

Corollary 9.7. Let F be a field. The ring F [x] is a principal ideal domain, meaning that any ideal in F [x] is generated
by a single polynomial.

Proof: Theorem 9.5.

Definition 9.8. Let A be a commutative ring. For a, b ∈ A we say that a divides b, if there exists c ∈ A such that
b = ac. In this case we can write, just like for the integers, a|b.

Definition 9.9. Let A be an integral domain. The elements a, b ∈ A are associates if b = au for a unit u ∈ A∗

(equivalently, a = bv for a unit v ∈ A∗).

Exercise 9.10. Find the associates of each element in the ring Z.
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Definition 9.11. Let A be an integral domain. Let a, b ∈ A. We say that c ∈ A is a common divisor of a and b if
c|a and c|b. We say that d ∈ A is a greatest common divisor of a and b if d|a, d|b, and if c is a common divisor of a
and b, then c|d. We denote d = gdc(a, b). We say that l ∈ A is a least common multiple of a and b if a|l, b|l, and if
a|t and b|t, then l|t. We denote l = lcm(a, b).

Note that d = gcd(a, b) and l = lcm(a, b) is not necessarily unique for a couple of elements a, b ∈ A.

Proposition 9.12. Let A be an integral domain. If d1, d2 are greatest common divisors of a, b ∈ A, then d1 and d2
are associates. If l1, l2 are least common multiples of a, b ∈ A, then l1 and l2 are associates.

Proof: We have d1 = xd2 and d2 = yd1. Derive that d2 = xyd2. Then d2(1 − xy) = 0, and since A is an integral
domain, if d2 6= 0, we have xy = 1 (if d2 = 0, then d1 = 0 and they are associates). The proof for the least common
multiples is the same.

Proposition 9.13. Properties of the Euclidean domains.

(a) Euclidean algorithm works in a Euclidean domain: If a, b ∈ E, b 6= 0, then there exist q, r ∈ E such that a = qb+r
and either r = 0 (then b = gcd(a, b)), or ν(r) < ν(b). Repeat with b = q2r+ r2, with ν(r2) < ν(r), and so on. The
process terminates because the function ν : E → N is strictly decreasing. We have rn−1 = qnrn. Then the greatest
common divisor rn = gcd(a, b).

(b) Bezout’s theorem: If d = gcd(a, b), then there exist x, y ∈ E such that xa + yb = d. It follows that the ideal
(a) + (b) = (d) ⊂ E.

(c) If a, b ∈ E are such that gcd(a, b) = 1, and a|bc for c ∈ E, then a|c. In particular, if gcd(a, b) = 1 and gcd(a, c) = 1,
then gcd(a, bc) = 1.

(d) If a, b ∈ E are such that gcd(a, b) = 1, and a|c and b|c for an element c ∈ E, then ab|c. In particular, if
gcd(a, b) = 1, then lcm(a, b) = ab.

(e) The ideal (a) ∩ (b) = (m) ⊂ E, where m = lcm(a, b).

Proof.

(a) If d|a, d|b, then d|r = a − qb. If d|b and d|r, then d|a. So the same argument as we used for integers shows that
rn = gcd(a, b).

(b) Let d ∈ E be an element generating the ideal (a, b). Then a, b ∈ (d) and therefore d|a and d|b. SInce d ∈ (a, b),
we have d = xa+ yb and if c|a, c|b then c|d, so d = gcd(a, b).

(c) If xa+ yb = 1, then xca+ ycb = c and a|xca and a|cb, therefore a|c.

(d) similarly, if xa+ yb = 1, then xca+ ycb = c, and we have ab|ca and ab|cb since a|c and b|c, and therefore ab|c.

(e) Let m ∈ E be an element generating the ideal (a)∩ (b). Then a|m and b|m. If a|t and b|t for some element t ∈ E,
then t ∈ (a) and t ∈ (b), and therefore t ∈ (m) and m|t. Therefore m = lcm(a, b).

Exercise 9.14. Let I be the smallest ideal in R[x] that contains the polynomials (x2 − 1), (x2 − 6x + 5). Find a
polynomial p(x) that generates this ideal.

Remark 9.15. Let f(x), g(x) ∈ F [x], so that the Euclidean division works. If gcd(f(x), g(x)) = d1(x) and gcd(f(x), g(x)) =
d2(x), then by Proposition 9.12 d1(x) = ud2(x), where u ∈ R[x] is a unit, which implies u 6= 0, u ∈ R. Then we can
choose a unique monic polynomial d(x) = gcd(f(x), g(x)), such that the dominant coefficient of d(x) is 1. Note that
the ideals generated by the associates are the same: (d1) = (d2) = (d).

Example 9.16. Find a gcd(f(x), g(x)) in R[x], where f(x) = x3 + 6x2 − 3x − 4 and g(x) = x2 − 5x + 4. We use
Euclid’s algorithm: f(x) = (x + 11)g(x) + 48x − 48, therefore r1(x) = 48x − 48. Then g(x) = r1(x)( 1

48x −
1
12 ).

Therefore gcd(f(x), g(x)) = 48x − 48. By the previous remark, we can find the unique monic polynomial d(x) =
gcd(f(x), g(x)) = x− 1.

Conclusions: Let E be a Euclidean domain.

1. E is a principal ideal domain.

2. If a, b ∈ E two nonzero elements, then the ideals (a) ∩ (b) = (lcm(a, b)) ⊂ E and (a) + (b) = (gcd(a, b)) ⊂ E.

3. gcd(a, b) and lcm(a, b) are determined up to a multiplication by a unit in E. Associate elements generate equal
ideals in E.
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10 Chinese remainder theorem for a Euclidean domain.

Let A be a Euclidean domain, so that for nonzero a, b ∈ E there exists gcd(a, b) ∈ E that is well defined up to a
multiplication by a unit. In addition, A is a principal ideal domain so that any ideal is generated by a single element.

Theorem 10.1. Let A be a Euclidean domain, and m1,m2, . . .mr elements such that gcd(mi,mj) = 1 for any two
indices 1 ≤ i 6= j ≤ r. Let m = m1m2 . . .mr. Then the map

f : A/(m)→ A/(m1)×A/(m2)× . . .×A/(mr),

given by f(x̄(m) = (x̄(m1), x̄(m2), . . . x̄(mr)) is an isomorphism of rings.

Proof: The homomorphism property is clear from the construction. Suppose a1, a2 . . . ar are arbitrary elements
of A. Then we will show that there exists a ∈ A such that a ≡ ai (modmi) for all i = 1, . . . r, which will show the
surjectivity of the map f .
We will use properties of Euclidean domains (Proposition 9.13). First note that if gcd(mi,mj) = 1, for any pair i 6= j,
then gcd(mi,m1 · · ·mi−1mi+1 · · ·mr) = 1 (Property (c) in Proposition 9.13). Then there exist x, y ∈ A such that
xmi + ym1 · · ·mi−1mi+1 · · ·mr = 1, and therefore (m1) + (m1) ∩ . . . (mi−1) ∩ (mi+1) ∩ . . . ∩ (mr) = A. In particular,
(m1) + (m2) = A and by Theorem 7.1 we have a12 ∈ A such that a12 ≡ a1 (modm1) and a12 ≡ a2 (modm2).
Now (m3) + (m1) ∩ (m2) = A and so by Theorem 7.1 there exists a123 ∈ A such that a123 ≡ a3 (modm3) and
a123 ≡ a12 (modm1m2), so that a123 ≡ a1 (modm1) and a123 ≡ a2 (modm2). In particular, the ideal (m1)∩ (m2) =
(lcm(m1,m2)) = (m1m2) by Proposition 9.13 (e). Then proceed by induction.
For injectivity of f , if there are two elements a, b such that ā(mi) = b̄(mi) for all i, then a− b lies in the intersection of
the ideals (m1) ∩ (m2) ∩ . . . ∩ (mr), that is equal to (m).

Now we can apply this theorem to polynomial rings. Recall that if F is a field, the ring F [x] of polynomials with
coefficients in F is a Euclidean domain.

Corollary 10.2. (Chinese remainder theorem for polynomial rings). Let F be a field, {f1(x), f2(x), . . . fr(x)} poly-
nomials in F [x] such that gcd(fi, fj) = 1. Then the exist a ring isomorphism

Φ : F [x]/(f1(x) · f2(x) · ·fr(x)) ' F [x]/(f1(x))× F [x]/(f2(x))× . . .× F [x]/(fr(x)).

Exercise 10.3. Let F3 = Z/3Z denote the field of 3 elements. Find the set of all solutions f(x) ∈ F3[x] of the system
of congruences  f(x) ≡ x (mod (x2 + 1))

f(x) ≡ 1 (mod x)
f(x) ≡ x+ 2 (mod (x2 − 1))

Solution. First we need to check that the polynomials {f1(x) = x2 + 1, f2(x) = x, f3(x) = x2 − 1} are pairwise
coprime in F3[x]. For example, gcd(f1(x), f2(x)) = 1 if we can find g1(x), g2(x) ∈ F3[x] such that f1(x)g1(x) +
f2(x)g2(x) = 1. We have: (x2 + 1) · 1 + x · (−x) = 1. Similarly, we have x · x+ (x2 − 1)(−1) = 1 and (x2 + 1)(−1) +
(x2 − 1) · 1 = 1 ∈ F3. So we can apply the Chinese remainder theorem.
From the first two congruences we get f(x) ≡ x2 + x + 1 (mod (x(x2 + 1))) (an obvious solution). Then we need to
solve it together with the congruence f(x) ≡ x+ 2 (mod (x2 − 1)). We notice that x2 + x+ 1 = (x2 − 1) + x+ 2, so
we have that f(x) = x2 + x + 1 is one solution. To obtain the complete set of solutions, by the Chinese remainder
theorem we need to add any element in the ideal (x(x2 + 1)(x2− 1)) = (x5−x) ⊂ F3[x]. The complete set of solutions
is {x2 + x+ 1 + g(x)(x5 − x)}g(x)∈F3[x].

11 Irreducible elements in Euclidean domains.

We consider Euclidean domains, that are also principal ideal domains (Theorem 9.5), where all ideals are generated
by a single element. Let I ⊂ A be an ideal. Recall that an ideal I ⊂ A in a commutative ring A defines a quotient
ring A/I (see Definition 4.10). The quotient ring A/I is the commutative ring of equivalence classes with respect to
the equivalence relation a ∼ b if and only if a− b ∈ I.

When is A/I a field?

Definition 11.1. Let A be a commutative ring. The element c ∈ A is irreducible if c is not a unit in A (c is not
invertible in A), c 6= 0, and if c = ab for a, b ∈ A, then a or b is a unit.

Example 11.2. In the ring Z the units are {±1} and the irreducible elements are {±p}, where p are the prime
numbers.
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Example 11.3. Consider the ring Z/6Z. We have [2]6 = [2]6 · [4]6, so [2]6 is not irreducible. Also, [3]6 = [3]6 · [3]6,
and [4]6 = [4]6 · [4]6, so they are not irreducible. The elements [1]6 and [5]6 are units: [5]6 · [5]6 = [1]6. Therefore there
are no irreducible elements in Z/6Z. Note that Z/6Z is a principal ideal ring, but not a principal ideal domain: it has
zero divisors. In a PID, any maximal ideal is generated by an irreducible element (see the following Proposition). Here
we have two maximal ideals: ([2]6) ⊂ Z/6Z and ([3]6) ⊂ Z/6Z but they are not generated by irreducible elements.

Recall that an ideal I ⊂ A is maximal if there is no ideal J ⊂ A such that I ( J ( A.

Theorem 11.4. Let A be a PID. Then p ∈ A an irreducible element if and only if p 6= 0 and the ideal (p) ⊂ A is
maximal.

Proof: Let p ∈ A be irreducible. Suppose there is an ideal I ⊂ A such that (p) ( I ( A. Then I = (d) for a d ∈ A,
and p = dt for an element t ∈ A. Since p is irreducible, this implies that either d or t is a unit. If d is a unit, then
(d) = A. If t is a unit, then d = t−1p, d and p are associates. Then (d) ⊂ (p) and (p) ⊂ (d), which implies (d) = (p).
We have a contradiction in both cases, therefore no such ideal I exists.
Conversely, let (p) be maximal in A. If there exist non-units y, z ∈ A such that p = yz, then (p) ⊂ (y) ( A, where
y 6= A since y is not a unit. If we suppose that (y) = (p), then y = tp where t is a unit, which implies p = yz = ptz
and p(1− tz) = 0. Since p 6= 0, we have that z is a unit, contradiction. Therefore, (p) ( (y) and (p) is not maximal,
contradiction.

Proposition 11.5. Let A be a Euclidean domain and I = (a) a nontrivial ideal: I 6= {0} and I 6= A. Then

(a) b̄ is a unit in A/I if and only if gcd(a, b) = 1.

(b) b̄ is a nontrivial zero divisor in A/I if and only if b /∈ I and gcd(a, b) 6= 1.

(c) A/I is a field for I = (a) if and only if a ∈ A is irreducible.

Proof:

(a) For (a), let gcd(a, b) = d. Then by Bezout’s theorem, there exist x, y ∈ A such that xa + yb = 1 if and only if
d = 1, and this holds if and only if ȳb̄ = 1̄ in the quotient ring A/I, which means that b̄ is a unit.

(b) If gcd(a, b) = d 6= 1, then there exist s, t ∈ A such that a = dt and b = ds. Then bt = dts = as, and so b̄t̄ = 0̄,
but t̄ 6= 0̄ and b̄ 6= 0̄, so b̄ is a nontrivial zero divisor in A/I. Conversely, if b̄t̄ = 0̄, then there are no x, y such that
ax+ by = 1 by (a) and gcd(a, b) 6= 1.

(c) follows from (a): every nonzero element in A/I is a unit if and only if gcd(a, k) = 1 for k ∈ A unless k is a multiple
of a. This means that a is irreducible.

Corollary 11.6. Let F be a field and consider the ring F [x] of polynomials in one variable with coefficients in F . Let
f(x) ∈ F [x] be a nonzero polynomial. Then F [x]/(f(x)) is a field if and only if f(x) is irreducible in F [x].

Conclusions.

1. We have the following inclusions :
Fields ⊂ Euclidean domains ⊂ Principal ideal domains ⊂ Integral domains ⊂ Commutative rings.

2. Fields, Z, F [x] for F a field, Gaussian integers Z[i] are examples of Euclidean domains (and of PIDs).

3. Z[x], F [x, y], where F a field are integral domains but not PIDs.

4. The rings Z/nZ, where n is not a prime, and (Z/nZ)[x] are not integral domains.

12 Quotients of polynomial rings

Let us recall what we know about the ring F [x], where F is a field.

Remark 12.1. Properties of the polynomial ring F [x], where F is a field.

1. The ring F [x] is a Euclidean domain, in particular it is a PID: any ideal in F [x] is generated by a single element.

2. An ideal generated by f(x) is maximal if and only if f(x) is irreducible. A quotient ring F [x]/(f(x)) is a field if
and only if f(x) is irreducible in F [x]. (Corollary 11.6).
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3. For any two polynomials f(x), g(x), such that deg(f(x)) ≥ 1 and deg(g(x)) ≥ 1, there exist gcd(f(x), g(x)) and
lcm(f(x), g(x)), unique up to multiplication by units. They generate the ideals (f(x))+(g(x)) = (gcd(f(x), g(x)))
and (f(x)) ∩ (g(x)) = (lcm(f(x), g(x))).

4. The characteristic of F [x] is equal to the characteristic of F , which can be 0 or a prime number. If f(x) is
irreducible (in particular, deg(f) ≥ 1), then the characteristic of F [x]/(f(x)) equals that of F .

Proposition 12.2. Let F be a field.

1. Any polynomial of degree 1 is irreducible in F [x].

2. A polynomial of degree 2 or 3 is irreducible if and only if it has no root in F .

Proof: We use that deg(f(x)g(x)) = deg(f(x)) + deg(g(x)). (Proposition 8.3). Then if deg(f(x)) = 1, we can only
have f(x) = h(x)g(x) if one of the polynomials h(x) or g(x) is a nonzero constant, that is a unit in F . If deg(f(x)) = 2
or 3, then f(x) = h(x)g(x) with h(x), g(x) two non-units implies at least one of them is of degree 1. Then we have,
say h(x) = ax− b for element a, b ∈ A with a 6= 0, and x = b/a is a root of f(x).

Example 12.3. Let F5 = Z/5Z and consider the ring F5[x]. The polynomials f1(x) = x− 3 and f2(x) = 3x2 + 2x+ 1
are irreducible in F5[x] (it is enough to try for roots x = ±1,±2), but f3(x) = 2x3 − 3x2 + x + 1 is not: f3(−1) =
−2− 3− 1 + 1 = [0]5. Using polynomial division we get f3(x) = (x+ 1)(2x2 + 1).

Proposition 12.4. Suppose that α = r
s ∈ Q is a root of the polynomial f(x) = anx

n+an−1x
n−1+. . .+a1x+a0 ∈ Z[x].

Then s|an and r|a0. In particular, any rational root of a monic polynomial with integer coefficients is an integer.

Proof: See PS12.

Example 12.5. Show that the polynomials f1(x) = x3 + 3x2− 7x+ 2 and f2(x) = 2x3 + 4x2 + 11x+ 1 are irreducible
in Q[x]. The first polynomial is monic, and such that any rational root is of the form ±r, where r|2, therefore we only
need to check f1(±1) 6= 0, f1(±2) 6= 0, which is true. For f2(x), any rational root is of the form r

s , where s|2 and r|1.
Therefore it is sufficient to check f2(±1) 6= 0 and f2(± 1

2 ) 6= 0, which is true. Since the degrees of both polynomials
are 3, having no roots means they are irreducible.

Proposition 12.6. (Eisenstein’s criterion). Let f(x) = a0 + a1x + . . . an−1x
n−1 + anx

n ∈ Z[x] be a polynomial
with integer coefficients, such that gcd(a0, a1, . . . an) = 1. Suppose that there exists a prime p ∈ Z such that p|ai,
0 ≤ i ≤ n−1, p does not divide an, and p2 does not divide a0. Then f(x) is irreducible over Q[x] (and also over Z[x]).

Proof: Let h(x) = h0 + h1x + . . . + hkx
k, g(x) = g0 + g1x + . . . gmx

m ∈ F (x) such that g(x)h(x) = f(x). Then
h0g0 = a0, and hkgm = am+k = an. We have that p|a0 = g0h0, but p2 - g0h0, so for example p|g0 and p - h0. We know
that p cannot divide all gi, because then p would divide all ai. Let t be the smallest index such that p | g0, p | g1, . . . p |
gt−1, but p - gt. Then t ≤ deg(g(x)) < deg(f(x)) = n. Also we have at =

∑t
j=0 gjht−j = gth0 +

∑t−1
j=0 gjht−j . The

second summand is divisible by p, but p - g1h0, and therefore p - at, contradiction.

Example 12.7. (a) Show that polynomial 2x6 + 9x4 − 15x2 − 6x+ 3 is irreducible over Q[x].
(b) Let p be a prime. Then g(x) = xk − p is irreducible for any k ≥ 1.
Both properties follow directly from the Eisenstein’s criterion: (a) with p = 3 and (b) with p = p.

Proposition 12.8. Let F be a field, and f(x) ∈ F [x] an irreducible polynomial of degree n ≥ 1. The ring K =
F [x]/(f(x)) is a field, such that any element of K can be written uniquely in the form

a01 + a1x+ . . .+ an−1xn−1,

where ai ∈ F and xi is the congruence class xi + (f(x)).

Proof: By the Euclidean division for any polynomial p(x) ∈ F [x] we can write p(x) = f(x)q(x) + r(x) for some
q(x), r(x) ∈ F [x] with deg(r) < deg(f). So any congruence class modulo (f(x)) can be written in the required form.
Moreover, the congruence classes {x̄i}n−1i=0 are linearly independent over F . Indeed, if

∑
i bix̄

i = 0̄ ∈ F [x]/(f(x)), then
the polynomial

∑
i bix

i ∈ F [x] lies in the ideal generated by f(x), and therefore it is divisible by f(x) of degree n,
which is impossible.

Corollary 12.9. If F is a finite field of q elements, and f(x) ∈ F [x] an irreducible polynomial of degree n ≥ 1, then
the field F [x]/(f(x)) has exactly qn elements.

Proof: By Proposition 12.8 any element of F [x]/(f(x)) can be written uniquely as a polynomial with coefficients
in F of a degree strictly smaller than n.
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Exercise 12.10. Consider the field F2 = Z/2Z and show that the polynomial f(x) = x3 +x+1 is irreducible in F2[x].
Consider the field F2[x]/(f(x)) and list all its elements. Find the inverse to the element x̄ in F2[x]/(f(x)).

Solution: f(0) 6= 0, f(1) 6= 0, therefore a polynomial of degree 3 is irreducible over F2[x]. There are 23 = 8 total
elements in the field F[x]/(f(x)), and proposition 12.8 gives a method to list them:

{0, 1, x, x+ 1, x2, x2 + 1, x2 + x, x2 + x+ 1}.

To find the inverse to x, we should solve an equation x · g(x) + (x3 + x+ 1)h(x) = 1. We have g(x) = x2 + 1.

Exercise 12.11. (Exam 2017).

(a) Show that the polynomial x2 + x+ 1 is the only irreducible polynomial of degree 2 over F2.

(b) Show that x4 + x+ 1 is irreducible in F2[x].

(c) Let K = F2[x]/(x4 + x + 1). Show that K is a field (cite a theorem from the course), and find the number of
elements in K.

(d) Let α = x̄ be the congruence class of x in K. Show that α is a multiplicative generator of the group of units of K.

Hint: In (b), it is not enough to check that the polynomial has no roots in F2, because the degree is > 3. You
have to check for quadratic factors, and (a) might be useful for this purpose. In (c), use Corollary 12.9. In (d), you
have to compute powers of x̄ in K and check that you obtain all 15 nonzero elements as powers of x̄.

13 Finite fields

Recall that the characteristic of a field can be either 0 or a prime number p.

Proposition 13.1. Let Fp denote the field Z/pZ for a prime p.

(a) Let K be a field of pn elements for some n ∈ N+. Then the characteristic of K is p.

(b) Any field with p elements is isomorphic to Fp.

(c) Let K be a field of characteristic p. There exists a subfield in K isomorphic to Fp.

(d) Let K be a finite field of characteristic p. Then it has pn elements for some n ∈ N+.

Proof:

(a) Let K be a field of pn elements of characteristic q, where q is a prime, and consider the additive group (K,+, 0).
Then q · 1 = 0 in K, but the order of an element divides the order of the group, and therefore q | pn. Since q and
p are primes, q = p.

(b) Let φ : Z→ K be the unique homomorphism. Since the characteristic of K is p, it induces an injective homomor-
phism φ̄ : Z/pZ→ K. Since |K| = p, φ̄ is an isomorphism, and we have K ' Z/pZ = Fp.

(c) See (b): φ : Z/pZ→ K is an injective homomorphism with the image isomorphic to Fp.

(d) K contains Fp as a subfield and can be viewed as a finite dimensional vector space over Fp.

Proposition 13.2. Let F be a field and f(x) ∈ F [x] a polynomial. Then there exists a field K ⊃ F that contains all
the roots of f .

Proof: Let f(x) = p(x)q(x), where p(x) is irreducible. If deg(p(x)) = 1, then p(x) = ax+ b and its root − b
a ∈ F .

Suppose that deg(p(x)) ≥ 2. Then K1 = F [x]/(p(x)) is a field that contains a root of p(x), given by the congruence
class of x in F [x]/(p(x)) :

p(x) = p(x) = 0 ∈ K1.

Denote ξ = x̄ ∈ K. Then f(x) = (x− ξ)g(x) in K1 with deg(g) < deg(f). Continue by induction.

Definition 13.3. The smallest field containing all the roots of a polynomial f(x) ∈ F [x] is called the splitting field
of f(x) over F .

Example 13.4. The splitting field of the polynomial x2 + 1 over R is C.
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Proposition 13.5. The group of units of a finite field K is cyclic.

Proof: Let |K∗| = n and let m be the maximal order of an element of K∗. Then m ≤ n. Since K∗ is a finite abelian
group, the theorem of decomposition into a direct product of cyclic groups applies, in particular K∗ ' Cd1

× . . .×Cds

with d1 | . . . | ds, and m = ds. Then tm = 1 for every t ∈ K∗. The number of roots of a polynomial of degree m in
the field K is less or equal to m (suppose a ∈ K is a root of f(x) of degree m ≥ 1, then by the Euclidean division we
can write f(x) = (x− a)q(x) + r with r ∈ K, therefore r = 0 and f(x) = (x− a)q(x) with deg(q(x)) = deg(f(x))− 1,
proceed by induction). The polynomial tm − 1 = 0 has n distinct roots in K, therefore n ≤ m and finally m = n.

Example 13.6. The statement that a polynomial of degree n has no more than n distinct roots does not necessarily
hold in A[x] where A is not a field. Consider for example A = Z/8Z and the polynomial f(x) = x2 − 1 ∈ A[x]. It has
4 solutions in Z/8Z: {[1]8, [3]8, [5]8, [7]8}. In this case we cannot carry out the proof of Proposition 13.5, and in fact
the group of units is not cyclic. We can check that the group of units (Z/8Z)∗ is isomorphic to C2 × C2.

Exercise 13.7. Let f(x) = x3 + x + 1 ∈ F2[x] as in Exercise 12.10. Find a generator of the cyclic group of units of
the field F2[x]/(f(x)).

Theorem 13.8. Let p be a prime and n ∈ N, n > 1. Then there exists a unique field K with |K| = pn and an
irreducible polynomial f(x) ∈ Fp[x] such that Fp[x]/(f(x)) ' K. If g(x) ∈ Fp[x] is another irreducible polynomial of
degree n over Fp, then K ' Fp[x]/(f(x)) ' Fp[x]/(g(x)).

Idea of the proof: K can be constructed as a splitting field of the polynomial Xpn−X over Fp. It can be shown that
K ⊃ Fp has exactly pn elements (the derivative of Xpn−X is a constant modulo p, and therefore the polynomial has no
multiple roots). The set K of all roots of Xpn −X forms a field. Indeed, if a, b ∈ K, then (a+ b)p

n

= ap
n

+ bp
n

= a+ b
over Fp, same with products and inverses. This proves the existence of a field of pn elements. Then we know that the
group of units of K is cyclic. Let α ∈ K∗ be the generator of the cyclic group of units of K. Then αpn − α = 0. Now
consider the ring homomorphism Fp[X] → Fp[α], that sends g(X) → g(α). In particular, Xpn −X is sent to 0. The
kernel of this homomorphism is generated by an irreducible polynomial f of degree n and such that f(α) = 0 This is a
polynomial in Fp[x] of minimal degree such that f(α) = 0, and it divides Xpn −X. Then we have Fp[x]/(f(x)) ' K.

Example 13.9. Check that g(x) = x3 + x2 + 1 ∈ F2[x] is irreducible. Let f(x) = x3 + x + 1 as in Exercise 12.10.
Then we have F2[x]/(f(x)) ' F2[x]/(g(x)).

Corollary 13.10. For any n ∈ N+ and any prime p there is an irreducible polynomial f(x) of degree n over Fp.

Remark 13.11. The corollary fails in fields of characteristic 0.

1. The only irreducible polynomials in R[x] are of degree 1 and 2.

2. The only irreducible polynomials in C[x] are of degree 1. A field satisfying this property is called algebraically
closed.

3. However, Q[x] contains irreducible polynomials of any degree n ≥ 1. Examples can be constructed using the
Eisenstein criterion.

Example 13.12. Let q = pn for a prime number p and an integer n > 1, and let Fq be the unique field of q = pn

elements. Then it is obvious (but good to remember) that Fq is not isomorphic to the quotient ring Z/qZ. For

example, the ring Z/qZ contains zero divisors: pt · ps = 0 ∈ Z/qZ, where s + t = n. Also, the characteristic of Z/qZ
is q and the characteristic of Fq is p.
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