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Practice Problem Set — Solutions

Exercise 1. For each of the following statements, determine if it is true or false. Justify your answer by a proof or
a counter-ezample.

(a) There are no nontrivial zero divisors in a field.

(b) Every element of a field is irreducible.

(¢) In a ring R the element 1 is always irreducible.

(d) Let K be a field. The polynomial ring K[X] is a principal ideal domain.

(e) In a principal ideal domain any irreducible element generates a mazximal ideal.
(f) The ring Z is a principal ideal domain.

(9) The ring Z[X] is a principal ideal domain.

(h) In the ring Z any irreducible element is positive.

Solution 1. (a) The statement is true. Suppose z, y are elements in a field K such that zy = 0. If z # 0, then 271
exists. Multiply ="' to both sides of zy = 0, so we have that y = 0.

(b) The statement is false. The set of the irreducible elements of a field is empty. By definition an irreducible element
of a ring R is a non-zero, non-unit element that is not reducible. But in a field the set of non-zero, non-unit
elements is exactly the empty set.

(¢) The statement is false. The element 1g belongs to R*, thus it cannot be an irreducible element.

(d) The statement is true. The ring of polynomials in one variable with coeflicients over a field K is a euclidean ring
therefore by the theorem of the course it is a principal ideal domain.

(e) The statement is true. In a PID, an element p is irreducible if and only if the ideal (p) is maximal. (See lecture
notes alg-2019-12.pdf).

(f) This statement is true. In fact Z is a Euclidean domain, since the Euclidean algorithm works in it, and therefore
it is also a PID.

(g) This statement is false. Consider the ideal I generated by {X,2} in Z[X]. Suppose there is a polynomial f(X)
that generates this ideal. Then 2 = g(X)f(X), and therefore the degree of f(X) and g(X) is zero. Since the
ideal I is proper, 1 ¢ I and f(z) = £2. Also X = h(X)f(X) = £2h(X), which is impossible for h(X) € Z[X].
Therefore Z[X] is not a PID.

(h) The statement is false. Observe that —5 is a non-zero, non-unit element that can be written only as =5 = —1-5
or —5 =1-(—5). This is an irreducible element, since £1 are units.

Exercise 2. Consider the ideals I = 247, J = 30Z, K = 97, L = 3Z and M = 7Z in the ring Z. For each of the
following ideals find m € Z such that the given ideal is equal to (m) = mZ € Z.

I+J, InJ, I+J+L, I+M,INL, J+I+M, IJNK.
Do the same for the ring R[X] and the ideals L = (X —1), K = (X +1), M = (X?+1), [ = (X?-X) et J = (X*-1).
Solution 2. Recall that if R is a principal ideal domain and a, b € R, then
(m)= (@) N B) (d)=(a)+ () and (ab) = (a)()

where m = lem(a,b) and d = ged(a,b). (Here the abbreviation “lem” is for “least common multiple” which is the

ppem.)
Then, since Z and R[X] are principal ideal domain, we have that:



o 247+ 30Z = 67, 2471 30Z = 120Z, 247 + 30Z + 37 = 37, 247 + 77 = 7, 2471\ 37 = 247, 247+ 30Z + 77 = 7.
and (247)(30Z) N 9Z = T207Z.

e [+J=(X-1),InJ=(X(X*-1), I+J+L=(X-1),I+M=R[X],INL = (X?>-X), J+I+M =R[X],
IJNK = (X% - X°- X2+ X)

Exercise 3. Show that the ideal I = (2, X) in the ring Z[X] is not principal. Describe the ideal I = (2,X) in the ring
Q[X].

Solution 3. Assume that the ideal (2, X)) C Z[X] is generated by a single element P € Z[X], i.e. (2, X) = (P). Then,
since 2, X € (P), we can find Q, Q' € Z[X] with 2 = PQ and X = PQ'.

Since 0 = deg(2) = deg P + deg ), (since Z is an integral domain), P must be a polynomial of degree 0, i.e. a
constant non-zero polynomial aX? for some a € Z\ {0}. Similarly, since 1 = deg X = deg P + deg Q' = degQ’, Q'
must be of the form bX + ¢ for b, ¢ € Z. Thus we obtain X = PQ’ = a(bX + ¢) = (ab)X + ac. In particular, ab =1,
soa€{1,—-1}.

Now we have aX" = P € (2, X) by our assumption (2, X) = (P), so we can find T, U € Z[X]s.t. aX? = X-T+2-U.
Let ug € Z be the constant coefficient of U. Then, by the equation above, we have a = 2ug since X - T contains
only terms of positive degree. This yields a contradiction since a € {1,—1} cannot be a multiple of 2. Hence the
assumption is false and (2, X') C Z[X] is not a principal ideal.

In the ring Q[X], the ideal generated by 2 and X is in fact the whole ring: We can write 1gix) as X -0+ 2 - %7
so 1 € (2,X)grx]- Then for all P € Q[X], we have P = P -1 € (2,X)g[x] since (2, X)g[x] is an ideal. Hence
(2, X)grx) = Q[X] = (1)g[x7 is a principal ideal.

Exercise 4. Let A and B be two rings, U(A) C A and U(B) C B the groups of invertible elements and ® : A — B a
ring homomorphism.

(a) Show that the set ®(U(A)) is a subgroup of U(B).

(b) Suppose that ® : A — B is surjective. Is it always true that ®(U(A)) = U(B)? Hint: consider the case A = Z,
B =7Z/7Z and ®(k) = [k]7 for all k € Z.

Solution 4. (a) If z,y € U(A), then ®(z)®(y) = ®(zy) € ®(U(A)), ®(14) = 15 and ®(z)®(x~1) = 1, therefore
®(U(A)) C U(B) is closed with respect to products and taking inverses, contains the neutral element, and is a
subgroup.

(b) If ® : A — B is surjective, this does not imply that ®(U(A)) = ®(U(B)). In particular, for any prime p € Z,
we have ® : Z — Z/pZ is the unique ring homomorphism, that is surjective. However, U(Z) = {£1} and
U(Z/pZ) = {[1]p,[2]p,---[p — 1]p}, so @ : U(Z) — U(Z/pZ) is not surjective for any prime p > 3.

Exercise 5. Let @ : Z/11Z — A and @ : Z/157Z — B be ring homomorphisms. What can be the number of elements
in the image of ®1 (respectively ®q)?

Solution 5. The kernel of a ring homomorphism is an ideal in the ring. There are only two ideals, Z/11Z and {0} in
the ring Z/11Z. In addition, by definition of a ring homomorphism, ®(1) = 1 and therefore the entire ring cannot be
in the kernel of ®. Then the only choice for the kernel of ®; is the trivial ideal {0}, and the image is isomorphic to
the whole ring Z/117Z, containing 11 elements.

The kernel of ® can be equal to any of the the ideals (0) € Z/15Z, (3) € Z/15Z or (5) € Z/15Z. Respectively, the
number of elements in the image can be 15, 3 or 5.

Exercise 6. (a) Find the characteristic of the polynomial rings Z[z], Rlx] et Fp[x].
(b) Find the order and the characteristic of Falx]/I, where I is generated by the ideal 23 — 1.

Solution 6. (a) Since the image of 1 under the unique ring homomorphism ¢ : Z — A is 1, and we have that
n-1 # 0in Z[z] and in R[z], the characteristic of these rings is 0. We have p-1 = 0 € Z/pZ, and therefore
(p) =ker¢ : Z — Fp[z], and the characteristic of F,[x] is p.

(b) We have 22 — 1 = (x — 1)(2? + 2 + 1) € Fa[z] the factorization of the polynomial 2° — 1 into irreducibles over Fs.
Since the polynomials  — 1,22 + 2 + 1 are coprime, we have by the Chinese remainder theorem:

Folz] /(23 — 1) ~ Fyfz]/(z — 1) x Fa[z]/(2* + 2 +1) = A x B.



We have A = Fy[z]/(x — 1) ~ Fy with order |A| = 2 and the characteristic c4 = 2. Also, B = Fy[x]/(2? + z + 1)
is a field, and |B| = 4 since 22 + x + 1 is irreducible polynomial of order 2 over Fy. Its characteristic is equal to
the characteristic of Fy[z], which is 2. The number of elements in A x B is |A x B| = |A||B| = 8. By Exercise
3, PS11, we have that the characteristic of a direct product is the least common multiple of the characteristics of
the two rings. Therefore, caxp = lem(2,2) = 2.

Exercise 7. (a) Find the monic greatest common divisor of the polynomials 223 — 1122 + 2z — 11 and 2> + 1 in Q[z].
(b) Are the polynomials hy(z) = 23 — 222 — 2 — 18 and ha(z) = 2> — 52 — 6 coprime in Q[z]?

(c) Which of the polynomials fi(x) = 2® + 1, fa(x) = 2® + 22 + 1, f3(x) = 23 + 22 + 2 + 1 are irreducible in Fo[z]?
Give the factorization into irreducible factors for those that are not irreducible.

(d) Are the polynomials g1 (z) = 2% — 2 and g2(x) = 2% — 3 irreducible in Q[z]? in Fyp[x]?
Solution 7. (a) We have 223 — 112? + 22 — 11 = (22 + 1)(2z — 11), therefore the monic polynomial 22 + 1 is the
ged(22% — 1122 + 22 — 11,22 + 1) in Q[z].

(b) We have hy(x) = 22 — 52 — 6 = (z — 6)(z + 1). Since h1(—1) < 0 and h1(6) > 0, the the elements h;(z) and ha(x)
are coprime in Q[z].

(¢) Since the given polynomials are of degree 3, it suffices to check if they have roots in Fy. We have f1(0) =1, f1(1) =
0, f2(0) =1, f2(1) =1, f3(0) = 1, f3(1) = 0. Therefore only fo(x) is irreducible in Fa[x]. For other polynomials,
we have fi(x) = (z + 1)(2® + 2 + 1), f3(z) = (z + 1)3.

(d) Again, since the polynomials are of degree 2, it suffices to check for the roots. We have that g;(z) and g(z) have
no roots in Q, and therefore they are irreducible in Q[z]. In Fi; we have: 22 = 4,32 = 9,42 = 5,5% = 3,62 =
3,7 =5,82=09,92 = 4,10% = 1. Therefore the poynomial go(z) = 22 — 3 = (x — 5)(z — 6) is not irreducible, but
g1(z) = 2% — 2 is irreducible in Fy;[z].

Exercise 8. (a) Show that the fields Q[v/3] and Q[v/5] are not isomorphic.
(b) Show that the rings Fslx]/(z? — 2) are Fs[z]/(x? — 3) are fields. Are they isomorphic?
(¢) Find an explicit isormophism between the fields R[z]/(x? — 2z + 2) and R[z]/(z* + 1).

Solution 8. (a) Suppose there exists an isomorphism f : Q[v/3] — Q[v/5]. Then we must have f(1) = 1, and therefore
f(3) =3. Let f(v/3) = a+ b5 € Q[v/5] for some a,b € Q. Then f(+/3)? = f(3) = 3 = a® + 2abV/5 + 5b>. Then
either a = 0, or b= 0. If b = 0, then a? = 3, which is impossible for an a € Q. If a = 0, then 56> = 3, say b = *
for integers r,s € Z with ged(r,s) = 1. Then 5r% = 352, so r = 3k and s = 5m, so we have 45k = 75m?, or
3k? = 5m?. Repeating the same argument, we get k = 5u,m = 3v, and 5u? = 3v?, where £ = 3£ — 15u — v
which contradicts the choice of r,s € Z such that ged(r,s) = 1. Therefore no isomorphism between the fields
Q[v/3] and Q[v/5] is possible.

Note that the argument works as well for any pair of distinct primes p # ¢: Q[,/p] # Q[\/q]-

(b) The polynomials 22 — 2 and 22 — 3 are irreducible over F, since they have no roots in F5. Indeed, 12 = 1,22 =
4,3% = 4,4% = 1 in F5. Since according to theorem from the course there exists a unique field of 52 elements up
to isomorphism, these fields are isomorphic.

(c) We have the congruence class of +x in R[z]/(z% + 1) are square roots of —1, therefore they can be denoted +i
and the field is isomorphic to C. In the other ring we have (z — 1 —i)(z — 1 + i) = 22 — 22 + 2. Therefore
[t [2](@2—2042) = 1+ [#](z241) defines a field isomorphism R[z]/(2? — 22 4 2) — R[z]/(2* +1) ~ C.

Exercise 9. Give examples of fields of 25 and 27 elements.

Solution 9. By theorems from the course, It suffices to find an irreducible polynomial of degree 2 over Fs5 and of
degree 3 over F3. For example, we have x? — 2 is irreducible over F5 (since a®? # 2 for any a € F3), and the field
F5[z]/(2? — 2) contains 25 elements. We have also that f(z) = 23 + 22 + 2 is irreducible over F3 (we have f(0) = 2,
f(1) =1, f(2) =2). Then the field F3[z]/(x® + 2? + 2) contains 3% = 27 elements.

Exercise 10. (a) Show that the polynomial X* + X + 1 is irreducible over Fs.

(b) Let I be the ideal (X*+ X + 1) in Fo[X]. Find the number of elements in the field Fo[X]/I and the inverse of the
element g = [X + 1];.

(¢) List all irreducible polynomials of degree 4 over Fa.



Solution 10. (a) The polynomial f(X) = X*+ X +1 is irreducible in F3[X]. We'll prove that f(X) cannot be factor

as a product either of a polynomial of degree 1 with a polynomial of degree 3 or of two polynomials of degree 2.
Suppose [ is the product of two polynomials respectively of degree 3 and 1. Then f(X) would have a root in
Fy[X]. But in Fy one has: f(0) =1 and f(1) = 1. Therefore f(X) cannot be factored by polynomials of degree
1 and 3. Now, suppose f(X) is the product of two polynomial of degree 2. The polynomials of degree 2 in Fy[X]
are X2, X2+ X, X2+ 1, and X2+ X 4 1. The first and second of these polynomials are divisible by X, and
hence we can return to the previous case. The third polynomial has 1 as a root, and hence we can return to the
first case. The last polynomial, X? + X + 1, is the only irreducible polynomial of degree 2 in Fo[X]. So if f(X)
were not irreducible, it would have to be equal to

(X?+X+1)? =X +2X3 +3X2 42X +1 =X+ X2+ 1.
But it’s not, hence f(X) is irreducible in Fo[X].

Since f(X) = X*+ X + 1 is irreducible in F5[X] and Fy is a field with 2 elements, we know that Fo[X]/I, where
I = (f(X)), is a field with 2* = 16 elements (since deg(f) = 4). Now, we want to find the inverse of g in the field
F3[X]/I. Meaning that we are looking for a polynomial h such that gh =1 (mod f), or equivalently gh+ kf =1
for some k € F3[X]. The Euclidean algorithm can be used to find h and k. Dividing f by g we obtain:

f=(X*-X?+X)-g+1
Thus, we know that 1 = (—X3 + X? — X) - g + f and that [-X3 + X? — X]; is the inverse of ¢ in Fa[z]/I.

Let Q(X) be an irreducible polynomial of degree 4 in Fo[X]. We can write Q(X) in the form X*+aX3+bX2+cX +d
with a,b,c,d € Fo. If d = 0, then 0 is a root. Therefore d = 1. If exactly one or all three out of a, b, c are zero,
then 1 is a root. Therefore either three coefficients a, b, ¢ are nonzero, or exactly two of them are zeros. Therefore
the irreducible polynomials are in the following list:

XX +1, X4 X241, XP4 X341, X4 X34 XTHX 4L

In part (a) we found that there exists a unique reducible polynomial of degree 4 that has no roots in Fa, it is
X%+ X2 + 1.Then the irreducible polynomials of degree 4 in Fo[X] are:

X'+ X+1, X*4+X34+1, X'+ X34+X24+X+1.

Exercise 11. Let Sy denote the symmetric group of permutation of 2k elements.

(a) Prove that Sop, contains an abelian subgroup of order 2F such that all of its elements except 1 have order 2.

(b) Determine the decomposition of this subgroup as a direct product of cyclic groups with orders given by the elemen-

tary divisors.

Solution 11. (a) We can divide the set of 2k elements into k pairs, for example {(1,k + 1), (2,k + 2),...(k, 2k)}.

Then the transpositions t1 = (1,k + 1), t2 = (2,k + 2) ... ty = (k,2k) are disjoint cycles of order 2, and therefore
they pairwise commute: t;t; = t;t; for any 1 < 4,5 < k. We also have t? =1foralll <7<k Let K be
the subgroup of Sy; generated by the elements {t1,ts,...t;}. Then it is abelian, and the order of any nontrivial
element is 2: indeed (t;,t;, ...t )% = tfl ti .. tf = 1. The order of the group is equal to the sum of the numbers
of choices of m elements out of k elements, when m runs from 0 to k (this lists the group elements according to

the disjoint transpositions in each element). Then

|K| = zk: <:l> = (14 1)k =2%,

m=0

Since the order of the group K is 2¥, any nontrivial subgroup has the order 2* for 1 < i < k. Suppose Csi is
present in the decomposition of K into a direct product of cyclic groups according to the classification theorem
of finite abelian groups. Then K contains an element of order 2°. Since all elements of K have order 2, the only
possibility is 4 = 1, and therefore K is isomorphic to a direct product of k copies of the group Cs:

KECQXCQX...XCQZ(CQ)XIC.

The elementary divisors of K are (2,2,...2) (2 is repeated k times).



Exercise 12. Let S, denote the symmetric group of permutation of n elements, and suppose thatn > ki +ko+...+k,
for some integers k; > 2. Let t € S, be a product of disjoint cycles of lengths ky, ko, ... ky,

tzﬁklﬂk2...7'f'k

Find the order of the element t in S,.

Solution 12. Suppose that t™ =1 € S,, for some m € N. Then since the disjoint cycles commute, we have

t" = (T Ty - Tk, )" = T T T = 1

Disjoint cycles have disjoint orbits of action on the set of n elements. Therefore for the product of disjoint cycles 77
to be 1, it is necessary for each disjoint cycle to act trivially on its orbit, meaning that 7 =1 for all 1 <¢ <r. The
order of a cycle is equal to its length, and therefore k; | m for all 1 <7 <r. So m is a multiple of each of the k;. Then
by definition the order of ¢, it should be the least common multiple of the numbers k1, ks, . .. k., and finally we have

that the order of ¢ equal to lem(kq, ka2, ... k).

Exercise 13. Let S5 denote the symmetric group of permutation of 5 elements. Let a = (135)(24) € S5, and
b= (134)(24) € Ss.

(a) Find the order of a and b in Ss.

(b) Let A = {a) C S5 and B = (b) C S5 be the subgroups generated by these elements in Ss. Find the orbit of
the element 1 with respect to the action of A and B, and its stabilizer subgroup in A and B, and show how the
Orbit-Stabilizer theorem works in these cases.

Solution 13. (a) The element a = (135)(24) is a product of disjoint cycles of lengths 3 and 2, therefore its order is
lem(3,2) = 6. (See Exercise 12). The element b = (134)(24) is not a product of disjoint cycles. To understand its
structure, let us write it in terms of the disjoint cycles. We observe that b sends 1 to 3, then 3 to 4, then 4 to 2,
then 2 to 4 which goes further to 1. Therefore b = (1342) and it has order 4.

(b) A is a cyclic group of order 6. The orbit of the element 1 under this group is {1,3,5} of order 3. The stabilizer
subgroup of the element 1 in A is the subgroup generated by the transposition (24) of order 2. The Orbit-Stabilizer
theorem holds: 6 = |A| = |Orb(1)| - |Stab;| =3 - 2.

The group B is cyclic of order 4. The orbit of 1 under the action of B is the set {1,3,4,2} of order 4. The
stabilizer subgroup of 1 in B is trivial. The Orbit-Stabilizer theorem holds: 4 = |B| = |Orb(1)] - |Staby| =4 - 1.

Exercise 14. What is the smallest symmetric group that contains a subgroup isomorphic to
(a) Cso,

(b) C’1107

(C) 027 Q

Solution 14. Clearly we have C,, C S,, for any n, where the subgroup C,, is generated by an n-cycle. But often we
can find a smaller symmetric group containing C,,. Suppose t € S,,, generates a subgroup isomorphic to C,,. Recall
that any element of a symmetric group can be written (uniquely up to reordering of cycles) as a product of disjoint
cycles. We also know from Exercise 12 that the order of an element is the least common multiple of the lengths of the
cycles in its decomposition. So we need to find a set of positive numbers kq, ko, ... k, with lem(kq, ks, ... k) equal to
n and the sum ky + ko + ...+ k, a minimum. Then the product of disjoint cycles of lengths k1, ks, . .. k. will have the
required order and fit into the smallest possible symmetric group.

(a) We have 60 = 22-3-5, then lem(3,4,5) = 60 and 3+4+5 = 12. This provides the minimum of the sum of lengths,
because the length of at least one of the cycles has to be divisible by 3, 4, 5. So Si2 is the smallest symmetric
group containing Cgo as a subgroup, generated by a product of disjoint cycles of lengths 3,4, 5.

(b) We have 110 = 2-5-11, and by a similar argument we have lem(2,5,11) = 110 and 245+ 11 = 18 is the minimum
of the sum of lengths. So Sig is the smallest symmetric group containing Ci1¢ as a subgroup, generated by a
product of disjoint cycles of lengths 2,5, 11.

(c) We have 27 = 33. Here since the order 27 is a power of a prime, it is the least common multiple only of copies of
itself. So we must have a cycle of length 27, and Sy7 is the smallest symmetric group containing Ca7 as a subgroup,
generated by a cycle of length 27.



