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Exercise 1. For each of the following statements, determine if it is true or false. Justify your answer by a proof or
a counter-example.

(a) There are no nontrivial zero divisors in a field.

(b) Every element of a field is irreducible.

(c) In a ring R the element 1R is always irreducible.

(d) Let K be a field. The polynomial ring K[X] is a principal ideal domain.

(e) In a principal ideal domain any irreducible element generates a maximal ideal.

(f) The ring Z is a principal ideal domain.

(g) The ring Z[X] is a principal ideal domain.

(h) In the ring Z any irreducible element is positive.

Solution 1. (a) The statement is true. Suppose x, y are elements in a field K such that xy = 0. If x 6= 0, then x−1

exists. Multiply x−1 to both sides of xy = 0, so we have that y = 0.

(b) The statement is false. The set of the irreducible elements of a field is empty. By definition an irreducible element
of a ring R is a non-zero, non-unit element that is not reducible. But in a field the set of non-zero, non-unit
elements is exactly the empty set.

(c) The statement is false. The element 1R belongs to R∗, thus it cannot be an irreducible element.

(d) The statement is true. The ring of polynomials in one variable with coefficients over a field K is a euclidean ring
therefore by the theorem of the course it is a principal ideal domain.

(e) The statement is true. In a PID, an element p is irreducible if and only if the ideal (p) is maximal. (See lecture
notes alg-2019-12.pdf).

(f) This statement is true. In fact Z is a Euclidean domain, since the Euclidean algorithm works in it, and therefore
it is also a PID.

(g) This statement is false. Consider the ideal I generated by {X, 2} in Z[X]. Suppose there is a polynomial f(X)
that generates this ideal. Then 2 = g(X)f(X), and therefore the degree of f(X) and g(X) is zero. Since the
ideal I is proper, 1 /∈ I and f(x) = ±2. Also X = h(X)f(X) = ±2h(X), which is impossible for h(X) ∈ Z[X].
Therefore Z[X] is not a PID.

(h) The statement is false. Observe that −5 is a non-zero, non-unit element that can be written only as −5 = −1 · 5
or −5 = 1 · (−5). This is an irreducible element, since ±1 are units.

Exercise 2. Consider the ideals I = 24Z, J = 30Z, K = 9Z, L = 3Z and M = 7Z in the ring Z. For each of the
following ideals find m ∈ Z such that the given ideal is equal to (m) = mZ ∈ Z.

I + J, I ∩ J, I + J + L, I +M, I ∩ L, J + I +M, , IJ ∩K.

Do the same for the ring R[X] and the ideals L = (X−1), K = (X+1), M = (X2+1), I = (X2−X) et J = (X4−1).

Solution 2. Recall that if R is a principal ideal domain and a, b ∈ R, then

(m) = (a) ∩ (b) (d) = (a) + (b) and (ab) = (a)(b)

where m = lcm(a, b) and d = gcd(a, b). (Here the abbreviation “lcm” is for “least common multiple” which is the
ppcm.)
Then, since Z and R[X] are principal ideal domain, we have that:



• 24Z+ 30Z = 6Z, 24Z∩ 30Z = 120Z, 24Z+ 30Z+ 3Z = 3Z, 24Z+ 7Z = Z, 24Z∩ 3Z = 24Z, 24Z+ 30Z+ 7Z = Z
and (24Z)(30Z) ∩ 9Z = 720Z.

• I+J = (X−1), I ∩J = (X(X4−1)), I+J+L = (X−1), I+M = R[X], I ∩L = (X2−X), J+I+M = R[X],
IJ ∩K = (X6 −X5 −X2 +X)

Exercise 3. Show that the ideal I = (2, X) in the ring Z[X] is not principal. Describe the ideal I = (2, X) in the ring
Q[X].

Solution 3. Assume that the ideal (2, X) ⊆ Z[X] is generated by a single element P ∈ Z[X], i.e. (2, X) = (P ). Then,
since 2, X ∈ (P ), we can find Q,Q′ ∈ Z[X] with 2 = PQ and X = PQ′.

Since 0 = deg(2) = degP + degQ, (since Z is an integral domain), P must be a polynomial of degree 0, i.e. a
constant non-zero polynomial aX0 for some a ∈ Z \ {0}. Similarly, since 1 = degX = degP + degQ′ = degQ′, Q′

must be of the form bX + c for b, c ∈ Z. Thus we obtain X = PQ′ = a(bX + c) = (ab)X + ac. In particular, ab = 1,
so a ∈ {1,−1}.

Now we have aX0 = P ∈ (2, X) by our assumption (2, X) = (P ), so we can find T,U ∈ Z[X] s.t. aX0 = X ·T+2·U .
Let u0 ∈ Z be the constant coefficient of U . Then, by the equation above, we have a = 2u0 since X · T contains
only terms of positive degree. This yields a contradiction since a ∈ {1,−1} cannot be a multiple of 2. Hence the
assumption is false and (2, X) ⊆ Z[X] is not a principal ideal.

In the ring Q[X], the ideal generated by 2 and X is in fact the whole ring: We can write 1Q[X] as X · 0 + 2 · 12 ,
so 1 ∈ (2, X)Q[X]. Then for all P ∈ Q[X], we have P = P · 1 ∈ (2, X)Q[X] since (2, X)Q[X] is an ideal. Hence
(2, X)Q[X] = Q[X] = (1)Q[X] is a principal ideal.

Exercise 4. Let A and B be two rings, U(A) ⊂ A and U(B) ⊂ B the groups of invertible elements and Φ : A→ B a
ring homomorphism.

(a) Show that the set Φ(U(A)) is a subgroup of U(B).

(b) Suppose that Φ : A → B is surjective. Is it always true that Φ(U(A)) = U(B)? Hint: consider the case A = Z,
B = Z/7Z and Φ(k) = [k]7 for all k ∈ Z.

Solution 4. (a) If x, y ∈ U(A), then Φ(x)Φ(y) = Φ(xy) ∈ Φ(U(A)), Φ(1A) = 1B and Φ(x)Φ(x−1) = 1B , therefore
Φ(U(A)) ⊂ U(B) is closed with respect to products and taking inverses, contains the neutral element, and is a
subgroup.

(b) If Φ : A → B is surjective, this does not imply that Φ(U(A)) = Φ(U(B)). In particular, for any prime p ∈ Z,
we have Φ : Z → Z/pZ is the unique ring homomorphism, that is surjective. However, U(Z) = {±1} and
U(Z/pZ) = {[1]p, [2]p, . . . [p− 1]p}, so Φ : U(Z)→ U(Z/pZ) is not surjective for any prime p > 3.

Exercise 5. Let Φ1 : Z/11Z→ A and Φ2 : Z/15Z→ B be ring homomorphisms. What can be the number of elements
in the image of Φ1 (respectively Φ2)?

Solution 5. The kernel of a ring homomorphism is an ideal in the ring. There are only two ideals, Z/11Z and {0} in
the ring Z/11Z. In addition, by definition of a ring homomorphism, Φ(1) = 1 and therefore the entire ring cannot be
in the kernel of Φ. Then the only choice for the kernel of Φ1 is the trivial ideal {0}, and the image is isomorphic to
the whole ring Z/11Z, containing 11 elements.
The kernel of Φ2 can be equal to any of the the ideals (0) ∈ Z/15Z, (3) ∈ Z/15Z or (5) ∈ Z/15Z. Respectively, the
number of elements in the image can be 15, 3 or 5.

Exercise 6. (a) Find the characteristic of the polynomial rings Z[x], R[x] et Fp[x].

(b) Find the order and the characteristic of F2[x]/I, where I is generated by the ideal x3 − 1.

Solution 6. (a) Since the image of 1 under the unique ring homomorphism φ : Z → A is 1, and we have that
n · 1 6= 0 in Z[x] and in R[x], the characteristic of these rings is 0. We have p · 1 = 0 ∈ Z/pZ, and therefore
(p) = kerφ : Z→ Fp[x], and the characteristic of Fp[x] is p.

(b) We have x3 − 1 = (x− 1)(x2 + x+ 1) ∈ F2[x] the factorization of the polynomial x3 − 1 into irreducibles over F2.
Since the polynomials x− 1, x2 + x+ 1 are coprime, we have by the Chinese remainder theorem:

F2[x]/(x3 − 1) ' F2[x]/(x− 1)× F2[x]/(x2 + x+ 1) = A×B.



We have A = F2[x]/(x− 1) ' F2 with order |A| = 2 and the characteristic cA = 2. Also, B = F2[x]/(x2 + x+ 1)
is a field, and |B| = 4 since x2 + x + 1 is irreducible polynomial of order 2 over F2. Its characteristic is equal to
the characteristic of F2[x], which is 2. The number of elements in A × B is |A × B| = |A||B| = 8. By Exercise
3, PS11, we have that the characteristic of a direct product is the least common multiple of the characteristics of
the two rings. Therefore, cA×B = lcm(2, 2) = 2.

Exercise 7. (a) Find the monic greatest common divisor of the polynomials 2x3− 11x2 + 2x− 11 and x2 + 1 in Q[x].

(b) Are the polynomials h1(x) = x3 − 2x2 − x− 18 and h2(x) = x2 − 5x− 6 coprime in Q[x]?

(c) Which of the polynomials f1(x) = x3 + 1, f2(x) = x3 + x2 + 1, f3(x) = x3 + x2 + x + 1 are irreducible in F2[x]?
Give the factorization into irreducible factors for those that are not irreducible.

(d) Are the polynomials g1(x) = x2 − 2 and g2(x) = x2 − 3 irreducible in Q[x]? in F11[x]?

Solution 7. (a) We have 2x3 − 11x2 + 2x − 11 = (x2 + 1)(2x − 11), therefore the monic polynomial x2 + 1 is the
gcd(2x3 − 11x2 + 2x− 11, x2 + 1) in Q[x].

(b) We have h2(x) = x2− 5x− 6 = (x− 6)(x+ 1). Since h1(−1) < 0 and h1(6) > 0, the the elements h1(x) and h2(x)
are coprime in Q[x].

(c) Since the given polynomials are of degree 3, it suffices to check if they have roots in F2. We have f1(0) = 1, f1(1) =
0, f2(0) = 1, f2(1) = 1, f3(0) = 1, f3(1) = 0. Therefore only f2(x) is irreducible in F2[x]. For other polynomials,
we have f1(x) = (x+ 1)(x2 + x+ 1), f3(x) = (x+ 1)3.

(d) Again, since the polynomials are of degree 2, it suffices to check for the roots. We have that g1(x) and g2(x) have
no roots in Q, and therefore they are irreducible in Q[x]. In F11 we have: 22 = 4, 32 = 9, 42 = 5, 52 = 3, 62 =
3, 72 = 5, 82 = 9, 92 = 4, 102 = 1. Therefore the poynomial g2(x) = x2 − 3 = (x− 5)(x− 6) is not irreducible, but
g1(x) = x2 − 2 is irreducible in F11[x].

Exercise 8. (a) Show that the fields Q[
√

3] and Q[
√

5] are not isomorphic.

(b) Show that the rings F5[x]/(x2 − 2) are F5[x]/(x2 − 3) are fields. Are they isomorphic?

(c) Find an explicit isormophism between the fields R[x]/(x2 − 2x+ 2) and R[x]/(x2 + 1).

Solution 8. (a) Suppose there exists an isomorphism f : Q[
√

3]→ Q[
√

5]. Then we must have f(1) = 1, and therefore
f(3) = 3. Let f(

√
3) = a+ b

√
5 ∈ Q[

√
5] for some a, b ∈ Q. Then f(

√
3)2 = f(3) = 3 = a2 + 2ab

√
5 + 5b2. Then

either a = 0, or b = 0. If b = 0, then a2 = 3, which is impossible for an a ∈ Q. If a = 0, then 5b2 = 3, say b = r
s

for integers r, s ∈ Z with gcd(r, s) = 1. Then 5r2 = 3s2, so r = 3k and s = 5m, so we have 45k2 = 75m2, or
3k2 = 5m2. Repeating the same argument, we get k = 5u,m = 3v, and 5u2 = 3v2, where r

s = 3k
5m = 15u

15v = u
v ,

which contradicts the choice of r, s ∈ Z such that gcd(r, s) = 1. Therefore no isomorphism between the fields
Q[
√

3] and Q[
√

5] is possible.
Note that the argument works as well for any pair of distinct primes p 6= q: Q[

√
p] 6= Q[

√
q].

(b) The polynomials x2 − 2 and x2 − 3 are irreducible over F5, since they have no roots in F5. Indeed, 12 = 1, 22 =
4, 32 = 4, 42 = 1 in F5. Since according to theorem from the course there exists a unique field of 52 elements up
to isomorphism, these fields are isomorphic.

(c) We have the congruence class of ±x in R[x]/(x2 + 1) are square roots of −1, therefore they can be denoted ±i
and the field is isomorphic to C. In the other ring we have (x − 1 − i)(x − 1 + i) = x2 − 2x + 2. Therefore
f : [x](x2−2x+2) 7→ 1 + [x](x2+1) defines a field isomorphism R[x]/(x2 − 2x+ 2)→ R[x]/(x2 + 1) ' C.

Exercise 9. Give examples of fields of 25 and 27 elements.

Solution 9. By theorems from the course, It suffices to find an irreducible polynomial of degree 2 over F5 and of
degree 3 over F3. For example, we have x2 − 2 is irreducible over F5 (since a2 6= 2 for any a ∈ F5), and the field
F5[x]/(x2 − 2) contains 25 elements. We have also that f(x) = x3 + x2 + 2 is irreducible over F3 (we have f(0) = 2,
f(1) = 1, f(2) = 2). Then the field F3[x]/(x3 + x2 + 2) contains 33 = 27 elements.

Exercise 10. (a) Show that the polynomial X4 +X + 1 is irreducible over F2.

(b) Let I be the ideal (X4 +X + 1) in F2[X]. Find the number of elements in the field F2[X]/I and the inverse of the
element g = [X + 1]I .

(c) List all irreducible polynomials of degree 4 over F2.



Solution 10. (a) The polynomial f(X) = X4 +X+1 is irreducible in F2[X]. We’ll prove that f(X) cannot be factor
as a product either of a polynomial of degree 1 with a polynomial of degree 3 or of two polynomials of degree 2.
Suppose f is the product of two polynomials respectively of degree 3 and 1. Then f(X) would have a root in
F2[X]. But in F2 one has: f(0) = 1 and f(1) = 1. Therefore f(X) cannot be factored by polynomials of degree
1 and 3. Now, suppose f(X) is the product of two polynomial of degree 2. The polynomials of degree 2 in F2[X]
are X2, X2 + X, X2 + 1, and X2 + X + 1. The first and second of these polynomials are divisible by X, and
hence we can return to the previous case. The third polynomial has 1 as a root, and hence we can return to the
first case. The last polynomial, X2 + X + 1, is the only irreducible polynomial of degree 2 in F2[X]. So if f(X)
were not irreducible, it would have to be equal to

(X2 +X + 1)2 = X4 + 2X3 + 3X2 + 2X + 1 = X4 +X2 + 1.

But it’s not, hence f(X) is irreducible in F2[X].

(b) Since f(X) = X4 +X + 1 is irreducible in F2[X] and F2 is a field with 2 elements, we know that F2[X]/I, where
I = (f(X)), is a field with 24 = 16 elements (since deg(f) = 4). Now, we want to find the inverse of g in the field
F2[X]/I. Meaning that we are looking for a polynomial h such that gh ≡ 1 (mod f), or equivalently gh+ kf = 1
for some k ∈ F2[X]. The Euclidean algorithm can be used to find h and k. Dividing f by g we obtain:

f = (X3 −X2 +X) · g + 1

Thus, we know that 1 = (−X3 +X2 −X) · g + f and that [−X3 +X2 −X]I is the inverse of g in F2[x]/I.

(c) LetQ(X) be an irreducible polynomial of degree 4 in F2[X]. We can writeQ(X) in the formX4+aX3+bX2+cX+d
with a, b, c, d ∈ F2. If d = 0, then 0 is a root. Therefore d = 1. If exactly one or all three out of a, b, c are zero,
then 1 is a root. Therefore either three coefficients a, b, c are nonzero, or exactly two of them are zeros. Therefore
the irreducible polynomials are in the following list:

X4 +X + 1, X4 +X2 + 1, X4 +X3 + 1, X4 +X3 +X2 +X + 1.

In part (a) we found that there exists a unique reducible polynomial of degree 4 that has no roots in F2, it is
X4 +X2 + 1.Then the irreducible polynomials of degree 4 in F2[X] are:

X4 +X + 1, X4 +X3 + 1, X4 +X3 +X2 +X + 1.

Exercise 11. Let S2k denote the symmetric group of permutation of 2k elements.

(a) Prove that S2k contains an abelian subgroup of order 2k such that all of its elements except 1 have order 2.

(b) Determine the decomposition of this subgroup as a direct product of cyclic groups with orders given by the elemen-
tary divisors.

Solution 11. (a) We can divide the set of 2k elements into k pairs, for example {(1, k + 1), (2, k + 2), . . . (k, 2k)}.
Then the transpositions t1 = (1, k + 1), t2 = (2, k + 2) ... tk = (k, 2k) are disjoint cycles of order 2, and therefore
they pairwise commute: titj = tjti for any 1 ≤ i, j ≤ k. We also have t2i = 1 for all 1 ≤ i ≤ k. Let K be
the subgroup of S2k generated by the elements {t1, t2, . . . tk}. Then it is abelian, and the order of any nontrivial
element is 2: indeed (ti1ti2 . . . tir )2 = t2i1t

2
i2
. . . t2ir = 1. The order of the group is equal to the sum of the numbers

of choices of m elements out of k elements, when m runs from 0 to k (this lists the group elements according to
the disjoint transpositions in each element). Then

|K| =
k∑

m=0

(
k

m

)
= (1 + 1)k = 2k.

(b) Since the order of the group K is 2k, any nontrivial subgroup has the order 2i for 1 ≤ i ≤ k. Suppose C2i is
present in the decomposition of K into a direct product of cyclic groups according to the classification theorem
of finite abelian groups. Then K contains an element of order 2i. Since all elements of K have order 2, the only
possibility is i = 1, and therefore K is isomorphic to a direct product of k copies of the group C2:

K ' C2 × C2 × . . .× C2 = (C2)×k.

The elementary divisors of K are (2, 2, . . . 2) (2 is repeated k times).



Exercise 12. Let Sn denote the symmetric group of permutation of n elements, and suppose that n ≥ k1+k2+ . . .+kr
for some integers ki ≥ 2. Let t ∈ Sn be a product of disjoint cycles of lengths k1, k2, . . . kr,

t = πk1πk2 . . . πkr .

Find the order of the element t in Sn.

Solution 12. Suppose that tm = 1 ∈ Sn for some m ∈ N. Then since the disjoint cycles commute, we have

tm = (πk1πk2 . . . πkr )m = πm
k1
πm
k2
. . . πm

kr
= 1.

Disjoint cycles have disjoint orbits of action on the set of n elements. Therefore for the product of disjoint cycles πm
ki

to be 1, it is necessary for each disjoint cycle to act trivially on its orbit, meaning that πm
ki

= 1 for all 1 ≤ i ≤ r. The
order of a cycle is equal to its length, and therefore ki | m for all 1 ≤ i ≤ r. So m is a multiple of each of the ki. Then
by definition the order of t, it should be the least common multiple of the numbers k1, k2, . . . kr, and finally we have
that the order of t equal to lcm(k1, k2, . . . kr).

Exercise 13. Let S5 denote the symmetric group of permutation of 5 elements. Let a = (135)(24) ∈ S5, and
b = (134)(24) ∈ S5.

(a) Find the order of a and b in S5.

(b) Let A = 〈a〉 ⊂ S5 and B = 〈b〉 ⊂ S5 be the subgroups generated by these elements in S5. Find the orbit of
the element 1 with respect to the action of A and B, and its stabilizer subgroup in A and B, and show how the
Orbit-Stabilizer theorem works in these cases.

Solution 13. (a) The element a = (135)(24) is a product of disjoint cycles of lengths 3 and 2, therefore its order is
lcm(3, 2) = 6. (See Exercise 12). The element b = (134)(24) is not a product of disjoint cycles. To understand its
structure, let us write it in terms of the disjoint cycles. We observe that b sends 1 to 3, then 3 to 4, then 4 to 2,
then 2 to 4 which goes further to 1. Therefore b = (1342) and it has order 4.

(b) A is a cyclic group of order 6. The orbit of the element 1 under this group is {1, 3, 5} of order 3. The stabilizer
subgroup of the element 1 in A is the subgroup generated by the transposition (24) of order 2. The Orbit-Stabilizer
theorem holds: 6 = |A| = |Orb(1)| · |Stab1| = 3 · 2.
The group B is cyclic of order 4. The orbit of 1 under the action of B is the set {1, 3, 4, 2} of order 4. The
stabilizer subgroup of 1 in B is trivial. The Orbit-Stabilizer theorem holds: 4 = |B| = |Orb(1)| · |Stab1| = 4 · 1.

Exercise 14. What is the smallest symmetric group that contains a subgroup isomorphic to
(a) C60,
(b) C110,
(c) C27 ?

Solution 14. Clearly we have Cn ⊂ Sn for any n, where the subgroup Cn is generated by an n-cycle. But often we
can find a smaller symmetric group containing Cn. Suppose t ∈ Sm generates a subgroup isomorphic to Cn. Recall
that any element of a symmetric group can be written (uniquely up to reordering of cycles) as a product of disjoint
cycles. We also know from Exercise 12 that the order of an element is the least common multiple of the lengths of the
cycles in its decomposition. So we need to find a set of positive numbers k1, k2, . . . kr with lcm(k1, k2, . . . kr) equal to
n and the sum k1 + k2 + . . .+ kr a minimum. Then the product of disjoint cycles of lengths k1, k2, . . . kr will have the
required order and fit into the smallest possible symmetric group.

(a) We have 60 = 22 ·3 ·5, then lcm(3, 4, 5) = 60 and 3+4+5 = 12. This provides the minimum of the sum of lengths,
because the length of at least one of the cycles has to be divisible by 3, 4, 5. So S12 is the smallest symmetric
group containing C60 as a subgroup, generated by a product of disjoint cycles of lengths 3, 4, 5.

(b) We have 110 = 2 ·5 ·11, and by a similar argument we have lcm(2, 5, 11) = 110 and 2+5+11 = 18 is the minimum
of the sum of lengths. So S18 is the smallest symmetric group containing C110 as a subgroup, generated by a
product of disjoint cycles of lengths 2, 5, 11.

(c) We have 27 = 33. Here since the order 27 is a power of a prime, it is the least common multiple only of copies of
itself. So we must have a cycle of length 27, and S27 is the smallest symmetric group containing C27 as a subgroup,
generated by a cycle of length 27.


