December 2020

Practice Problem Set

Exercise 1. For each of the following statements, determine if it is true or false. Justify your answer by a proof or a counter-example.

- (a) There are no nontrivial zero divisors in a field.
- (b) Every element of a field is irreducible.
- (c) In a ring R the element 1_R is always irreducible.
- (d) Let K be a field. The polynomial ring K[X] is a principal ideal domain.
- (e) In a principal ideal domain any irreducible element generates a maximal ideal.
- (f) The ring \mathbb{Z} is a principal ideal domain.
- (g) The ring $\mathbb{Z}[X]$ is a principal ideal domain.
- (h) In the ring \mathbb{Z} any irreducible element is positive.

Exercise 2. Consider the ideals $I = 24\mathbb{Z}$, $J = 30\mathbb{Z}$, $K = 9\mathbb{Z}$, $L = 3\mathbb{Z}$ and $M = 7\mathbb{Z}$ in the ring \mathbb{Z} . For each of the following ideals find $m \in \mathbb{Z}$ such that the given ideal is equal to $(m) = m\mathbb{Z} \in \mathbb{Z}$.

$$I+J$$
, $I\cap J$, $I+J+L$, $I+M$, $I\cap L$, $J+I+M$, $IJ\cap K$.

Do the same for the ring $\mathbb{R}[X]$ and the ideals L=(X-1), K=(X+1), $M=(X^2+1)$, $I=(X^2-X)$ et $J=(X^4-1)$.

Exercise 3. Show that the ideal I = (2, X) in the ring $\mathbb{Z}[X]$ is not principal. Describe the ideal I = (2, X) in the ring $\mathbb{Q}[X]$.

Exercise 4. Let A and B be two rings, $U(A) \subset A$ and $U(B) \subset B$ the groups of invertible elements and $\Phi : A \to B$ a ring homomorphism.

- (a) Show that the set $\Phi(U(A))$ is a subgroup of U(B).
- (b) Suppose that $\Phi: A \to B$ is surjective. Is it always true that $\Phi(U(A)) = U(B)$? Hint: consider the case $A = \mathbb{Z}$, $B = \mathbb{Z}/7\mathbb{Z}$ and $\Phi(k) = [k]_7$ for all $k \in \mathbb{Z}$.

Exercise 5. Let $\Phi_1: \mathbb{Z}/11\mathbb{Z} \to A$ and $\Phi_2: \mathbb{Z}/15\mathbb{Z} \to B$ be ring homomorphisms. What can be the number of elements in the image of Φ_1 (respectively Φ_2)?

Exercise 6. (a) Find the characteristic of the polynomial rings $\mathbb{Z}[x]$, $\mathbb{R}[x]$ et $\mathbb{F}_p[x]$.

(b) Find the order and the characteristic of $\mathbb{F}_2[x]/I$, where I is generated by the ideal x^3-1 .

Exercise 7. (a) Find the monic greatest common divisor of the polynomials $2x^3 - 11x^2 + 2x - 11$ and $x^2 + 1$ in $\mathbb{Q}[x]$.

- (b) Are the polynomials $h_1(x) = x^3 2x^2 x 18$ and $h_2(x) = x^2 5x 6$ coprime in $\mathbb{Q}[x]$?
- (c) Which of the polynomials $f_1(x) = x^3 + 1$, $f_2(x) = x^3 + x^2 + 1$, $f_3(x) = x^3 + x^2 + x + 1$ are irreducible in $\mathbb{F}_2[x]$? Give the factorization into irreducible factors for those that are not irreducible.
- (d) Are the polynomials $g_1(x) = x^2 2$ and $g_2(x) = x^2 3$ irreducible in $\mathbb{Q}[x]$? in $\mathbb{F}_{11}[x]$?

Exercise 8. (a) Show that the fields $\mathbb{Q}[\sqrt{3}]$ and $\mathbb{Q}[\sqrt{5}]$ are not isomorphic.

- (b) Show that the rings $\mathbb{F}_5[x]/(x^2-2)$ are $\mathbb{F}_5[x]/(x^2-3)$ are fields. Are they isomorphic?
- (c) Find an explicit isomorphism between the fields $\mathbb{R}[x]/(x^2-2x+2)$ and $\mathbb{R}[x]/(x^2+1)$.

Exercise 9. Give examples of fields of 25 and 27 elements.

Exercise 10. (a) Show that the polynomial $X^4 + X + 1$ is irreducible over \mathbb{F}_2 .

- (b) Let I be the ideal $(X^4 + X + 1)$ in $\mathbb{F}_2[X]$. Find the number of elements in the field $\mathbb{F}_2[X]/I$ and the inverse of the element $g = [X + 1]_I$.
- (c) List all irreducible polynomials of degree 4 over \mathbb{F}_2 .

Exercise 11. Let S_{2k} denote the symmetric group of permutation of 2k elements.

- (a) Prove that S_{2k} contains an abelian subgroup of order 2^k such that all of its elements except 1 have order 2.
- (b) Determine the decomposition of this subgroup as a direct product of cyclic groups with orders given by the elementary divisors.

Exercise 12. Let S_n denote the symmetric group of permutation of n elements, and suppose that $n \ge k_1 + k_2 + \ldots + k_r$ for some integers $k_i \ge 2$. Let $t \in S_n$ be a product of disjoint cycles of lengths $k_1, k_2, \ldots k_r$,

$$t = \pi_{k_1} \pi_{k_2} \dots \pi_{k_r}.$$

Find the order of the element t in S_n .

Exercise 13. Let S_5 denote the symmetric group of permutation of 5 elements. Let $a=(135)(24) \in S_5$, and $b=(134)(24) \in S_5$.

- (a) Find the order of a and b in S_5 .
- (b) Let $A = \langle a \rangle \subset S_5$ and $B = \langle b \rangle \subset S_5$ be the subgroups generated by these elements in S_5 . Find the orbit of the element 1 with respect to the action of A and B, and its stabilizer subgroup in A and B, and show how the Orbit-Stabilizer theorem works in these cases.

Exercise 14. What is the smallest symmetric group that contains a subgroup isomorphic to

- (a) C_{60} ,
- (b) C_{110} ,
- (c) C_{27} ?