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Exercise 1. Let R be a ring and I, J (two-sided) ideals in R. Show that I +J , I ∩J and IJ are ideals in R. Compute
the ideals I + J , I ∩ J , IJ if I = 30Z and J = 24Z in the ring of integers Z.

Solution 1. • I + J :

(i) I and J are non-empty sets since they are ideals, so we can take a ∈ I and b ∈ J . Then a + b ∈ I + J , so
I + J is not empty. In particular 0 ∈ I + J .

(ii) Let a = a1 + a2 ∈ I + J , where a1 ∈ I, a2 ∈ J , and let x ∈ R. Then xa1 ∈ I and xa2 ∈ J since I and J are
ideals, so we have xa = x(a1 + a2) = xa1 + xa2 ∈ I + J .

(iii) Let a = a1 + a2 ∈ I + J and b = b1 + b2 ∈ I + J , where a1, b1 ∈ I and a2, b2 ∈ J . Then a1 + b1 ∈ I and
a2 + b2 ∈ J since I and J are ideals, so we have a+ b = (a1 + a2) + (b1 + b2) = (a1 + b1) + (a2 + b2) ∈ I +J .

• I ∩ J :

(i) We have 0 ∈ I and 0 ∈ J since I and J are ideals. Thus 0 ∈ I ∩ J , i.e. I ∩ J is not empty.

(ii) Let a ∈ I ∩ J and let x ∈ R. Then xa ∈ I and xa ∈ J since I and J are ideals, so we have xa ∈ I ∩ J .

(iii) Let a ∈ I ∩J and b ∈ I ∩J . Then a+ b ∈ I and a+ b ∈ J since I and J are ideals, so we have a+ b ∈ I ∩J .

• IJ :

(i) We have 0 ∈ IJ , so IJ is not empty.

(ii) Let x =
∑n

i=1 aibi ∈ IJ where a1, . . . , an ∈ I and b1, . . . , bn ∈ J . Let y ∈ R. Then ya1, . . . , yan ∈ I as I is an
ideal, so we obtain yx = y ·

∑n
i=1 aibi =

∑n
i=1(yai)bi ∈ IJ . Similarly, xy =

∑n
i=1 aibiy =

∑n
i=1 ai(biy) ∈ IJ .

(iii) x =
∑n

i=1 aibi ∈ IJ and x′ =
∑m

i=1 a
′
ib
′
i ∈ IJ where a1, . . . , an, a

′
1, . . . , a

′
m ∈ I and b1, . . . , bn, b

′
1, . . . , b

′
m ∈ J .

We set an+k = a′k and bn+k = b′k for 1 ≤ k ≤ m. Then we have x + x′ =
∑n

i=1 aibi +
∑m

i=1 a
′
ib
′
i =∑n+m

i=1 aibi ∈ IJ .

• Consider the ideals I = 30Z ⊂ Z and J = 24Z ⊂ Z. The ideal I + J contains numbers of the form 24x + 30y.
We know from Bezout’s theorem that the equation 24x + 30y = d has (infinitely many) integer solutions for
x, y if and only if d is a multiple of gcd(24, 30). Therefore, the ideal I + J is generated by gcd(24, 30) = 6, and
so I + J = 6Z ⊂ Z. The ideal I ∩ J contains the elements that belong to both ideals, meaning that they are
divisible by 24 and by 30. Since lcm(24, 30) = 120, we have I ∩ J = 120Z. Finally, the ideal IJ is spanned by
sums of products of elements of I and J , therefore each element of IJ is divisible by the product 30 · 24 = 720.
We have IJ = 720Z. Note that IJ ⊂ I ∩ J ⊂ I ⊂ I + J : 720Z ⊂ 120Z ⊂ 30Z ⊂ 6Z.

Exercise 2. (a) Consider the ring Z[X] of polynomials in one variable with integer coefficients. Let I = (2, X) be
the ideal generated by elements 2 and X. Describe the polynomials in this ideal.

(b) Let A be a commutative ring and I, J ideals in A. Show also that the set I ? J = {ab | a ∈ I, b ∈ J} is not in
general an ideal in A, by providing the counter-example of the set I ? J ⊂ Z[X], where I = J = (2, X) ⊂ Z[X].

(c) Let I = (m) ⊂ Z and J = (n) ⊂ Z. Is I ? J an ideal in Z?

Solution 2. (a) Consider the ring Z[X], and I = (2, X). By definition the ideal I is spanned by the elements of the
form

2p(X) + Xq(X),

where p(X), q(X) ⊂ Z[X] are arbitrary polynomials. Therefore, the elements in I have the form

2a0 + a1X + a2X
2 + · · ·+ anX

n,

for some n ∈ N, where a0, a1, . . . an ∈ Z. This is the set of all polynomials with integer coefficients, where the
constant coefficient is even.



(b) Consider the ideals I = J = (2, X) ⊆ Z[X]. We claim that I ? J = {ab | a ∈ I, b ∈ J} is not an ideal in Z[X].
Indeed, we have 2, X ∈ I and 2, X ∈ J , so 4 = 2 · 2, X2 = X ·X ∈ I ? J . Thus, if I ? J were an ideal, we would
have X2 + 4 ∈ I ? J . This would in particular mean that X2 + 4 = PQ for some P,Q ∈ I = J .

If, in such a factorization, one of P and Q is of the form aX0 for some a ∈ Z, then a must be 1 or −1 since it must
divide the leading coefficient of X2 + 4, i.e. 1. Note, however, that I = J contains neither 1 nor −1 since every
element of I+J has a constant coefficient divisible by 2. The other case, i.e. that P = X+a and Q = X+b are linear
polynomials, is also impossible since that would mean that PQ = (X + a)(X + b) = X2 + (a+ b)X + ab = X2 + 4,
which implies b = −a and −a2 = 4. This equation has no solution in Z.

Thus we have X2 + 4 /∈ I ? J and hence I ? J is not an ideal.

(c) In case I = (n) ⊂ Z and J = (m) ⊂ Z, we have I ? J = {nxmy | x, y ∈ Z}, which is equivalent to {nmt | t ∈ Z} =
(nm) = I · J . This is an ideal in Z.

Exercise 3. Let I be the smallest ideal in Z containing {392, 224, 168}. Find d ∈ N such that I = (d) ⊂ Z.

Solution 3. We know from the course that any ideal in Z is principal, meaning that it is generated by a single natural
number. From the proof of this property we know that, if the ideal is nonzero, the number d such that I = (d) ⊂ Z is
the smallest positive integer contained in the given ideal I. So we need to find the smallest positive integer contained
in the ideal I. The numbers of the form 392a+ 224b, where a, b are integers, are the multiples of the greatest common
divisor of 392 = 72 ·23 and 224 = 7 ·25, which is 7 ·23 = 56. The numbers of the form 392a+ 224b+ 168c = 56k+ 168c
are the multiples of the greatest common divisor of 56 = 7 · 23 and 168 = 7 · 3 · 23, which is 56. Therefore, d = 56, and
I = (56) ⊂ Z.

Exercise 4. Let I = ((x2+x−6)) ⊂ R[x] be the ideal of polynomials divisible by (x2+x−6), and J = ((x2−x−2)) ⊂
R[x] the ideal of polynomials divisible by (x2 − x− 2). Describe the ideals I, J, I ∩ J, I · J, I + J .

Solution 4. Consider the ideals I = ((x2 +x− 6)) = ((x− 2)(x+ 3)), J = ((x2−x− 2)) = ((x− 2)(x+ 1)). We have:

• I ∩ J = ((x− 2)(x + 3)(x + 1)) = I is the ideal of polynomials divisible by (x− 2)(x + 3)(x + 1).

• I · J = ((x− 2)2(x + 3)(x + 1)) is the ideal of polynomials divisible by (x− 2)2(x + 3)(x− 1).

• I + J is the ideal spanned by sums of polynomials divisible by polynomials of the form (x − 2)(x + 3)f(x) +
(x − 2)(x + 1)g(x), where f(x), g(x) ∈ R[x]. Therefore, I + J contains all polynomials divisible by (x − 2):
I + J = ((x− 2)).

Note that, all of the ideals we considered above are principal, meaning that they are generated by a single element in
R[x]. We will see later on that, similarly to the ideals in the ring Z, any ideal in the ring R[x] is principal. There are
other similarities between these two rings.

Exercise 5. Let A be a commutative ring and N ⊂ A a subset of all nilpotent elements in A:

N = {x ∈ A : ∃n ∈ N : xn = 0}.

Show that N ⊂ A is an ideal. This ideal is called the nilradical of the ring. Show that the quotient ring A/N has no
nonzero nilpotent elements.

Solution 5. The set N contains zero and is closed with respect to addition: if x, y ∈ N , such that xn = 0 and
yk = 0, then we can choose m = max(n, k) and we have xm = ym = 0. Then (x + y)2m =

∑2m
k=0

(
2m
k

)
xky2m−k = 0,

because every summand contains a power of x or y greater or equal to m. Here we used the Newton’s binomial formula
that holds in commutative rings (see Proposition 1.7 in Rings). Also, if a ∈ A and x ∈ N , such that xn = 0, then
(ax)n = anxn = an · 0 = 0, therefore N is an ideal in A.

Now suppose a ∈ A \N . Then an 6= 0 for any n ∈ N. Therefore in the quotient ring we have (a+N)n 6= 0 for any
n ∈ N (we can choose a as a representative of the congruence class (a+N)). Therefore there are no nilpotent nonzero
elements in the quotient ring A/N .


