November 18, 2024

Problem Set 9 Solutions

Exercise 1. Let R be a ring and I, J (two-sided) ideals in R. Show that $I + J, I \cap J$ and IJ are ideals in R. Compute the ideals $I + J, I \cap J, IJ$ if $I = 30\mathbb{Z}$ and $J = 24\mathbb{Z}$ in the ring of integers \mathbb{Z} .

Solution 1. • I + J:

- (i) I and J are non-empty sets since they are ideals, so we can take $a \in I$ and $b \in J$. Then $a + b \in I + J$, so I + J is not empty. In particular $0 \in I + J$.
- (ii) Let $a = a_1 + a_2 \in I + J$, where $a_1 \in I$, $a_2 \in J$, and let $x \in R$. Then $xa_1 \in I$ and $xa_2 \in J$ since I and J are ideals, so we have $xa = x(a_1 + a_2) = xa_1 + xa_2 \in I + J$.
- (iii) Let $a = a_1 + a_2 \in I + J$ and $b = b_1 + b_2 \in I + J$, where $a_1, b_1 \in I$ and $a_2, b_2 \in J$. Then $a_1 + b_1 \in I$ and $a_2 + b_2 \in J$ since I and J are ideals, so we have $a + b = (a_1 + a_2) + (b_1 + b_2) = (a_1 + b_1) + (a_2 + b_2) \in I + J$.
- $I \cap J$:
 - (i) We have $0 \in I$ and $0 \in J$ since I and J are ideals. Thus $0 \in I \cap J$, i.e. $I \cap J$ is not empty.
 - (ii) Let $a \in I \cap J$ and let $x \in R$. Then $xa \in I$ and $xa \in J$ since I and J are ideals, so we have $xa \in I \cap J$.
 - (iii) Let $a \in I \cap J$ and $b \in I \cap J$. Then $a + b \in I$ and $a + b \in J$ since I and J are ideals, so we have $a + b \in I \cap J$.
- *IJ*:
 - (i) We have $0 \in IJ$, so IJ is not empty.
 - (ii) Let $x = \sum_{i=1}^n a_i b_i \in IJ$ where $a_1, \ldots, a_n \in I$ and $b_1, \ldots, b_n \in J$. Let $y \in R$. Then $ya_1, \ldots, ya_n \in I$ as I is an ideal, so we obtain $yx = y \cdot \sum_{i=1}^n a_i b_i = \sum_{i=1}^n (ya_i)b_i \in IJ$. Similarly, $xy = \sum_{i=1}^n a_i b_i y = \sum_{i=1}^n a_i (b_i y) \in IJ$.
 - (iii) $x = \sum_{i=1}^{n} a_i b_i \in IJ$ and $x' = \sum_{i=1}^{m} a_i' b_i' \in IJ$ where $a_1, \dots, a_n, a_1', \dots, a_m' \in I$ and $b_1, \dots, b_n, b_1', \dots, b_m' \in J$. We set $a_{n+k} = a_k'$ and $b_{n+k} = b_k'$ for $1 \le k \le m$. Then we have $x + x' = \sum_{i=1}^{n} a_i b_i + \sum_{i=1}^{m} a_i' b_i' = \sum_{i=1}^{n+m} a_i b_i \in IJ$.
- Consider the ideals $I = 30\mathbb{Z} \subset \mathbb{Z}$ and $J = 24\mathbb{Z} \subset \mathbb{Z}$. The ideal I + J contains numbers of the form 24x + 30y. We know from Bezout's theorem that the equation 24x + 30y = d has (infinitely many) integer solutions for x, y if and only if d is a multiple of $\gcd(24, 30)$. Therefore, the ideal I + J is generated by $\gcd(24, 30) = 6$, and so $I + J = 6\mathbb{Z} \subset \mathbb{Z}$. The ideal $I \cap J$ contains the elements that belong to both ideals, meaning that they are divisible by 24 and by 30. Since $\operatorname{lcm}(24, 30) = 120$, we have $I \cap J = 120\mathbb{Z}$. Finally, the ideal IJ is spanned by sums of products of elements of I and J, therefore each element of IJ is divisible by the product $30 \cdot 24 = 720$. We have $IJ = 720\mathbb{Z}$. Note that $IJ \subset I \cap J \subset I \subset I + J$: $720\mathbb{Z} \subset 30\mathbb{Z} \subset 6\mathbb{Z}$.
- **Exercise 2.** (a) Consider the ring $\mathbb{Z}[X]$ of polynomials in one variable with integer coefficients. Let I = (2, X) be the ideal generated by elements 2 and X. Describe the polynomials in this ideal.
- (b) Let A be a commutative ring and I, J ideals in A. Show also that the set $I \star J = \{ab \mid a \in I, b \in J\}$ is not in general an ideal in A, by providing the counter-example of the set $I \star J \subset \mathbb{Z}[X]$, where $I = J = (2, X) \subset \mathbb{Z}[X]$.
- (c) Let $I = (m) \subset \mathbb{Z}$ and $J = (n) \subset \mathbb{Z}$. Is $I \star J$ an ideal in \mathbb{Z} ?
- **Solution 2.** (a) Consider the ring $\mathbb{Z}[X]$, and I = (2, X). By definition the ideal I is spanned by the elements of the form

$$2p(X) + Xq(X),$$

where $p(X), q(X) \subset \mathbb{Z}[X]$ are arbitrary polynomials. Therefore, the elements in I have the form

$$2a_0 + a_1X + a_2X^2 + \cdots + a_nX^n$$
.

for some $n \in \mathbb{N}$, where $a_0, a_1, \dots a_n \in \mathbb{Z}$. This is the set of all polynomials with integer coefficients, where the constant coefficient is even.

(b) Consider the ideals $I = J = (2, X) \subseteq \mathbb{Z}[X]$. We claim that $I \star J = \{ab \mid a \in I, b \in J\}$ is not an ideal in $\mathbb{Z}[X]$. Indeed, we have $2, X \in I$ and $2, X \in J$, so $4 = 2 \cdot 2, X^2 = X \cdot X \in I \star J$. Thus, if $I \star J$ were an ideal, we would have $X^2 + 4 \in I \star J$. This would in particular mean that $X^2 + 4 = PQ$ for some $P, Q \in I = J$.

If, in such a factorization, one of P and Q is of the form aX^0 for some $a \in \mathbb{Z}$, then a must be 1 or -1 since it must divide the leading coefficient of X^2+4 , i.e. 1. Note, however, that I=J contains neither 1 nor -1 since every element of I+J has a constant coefficient divisible by 2. The other case, i.e. that P=X+a and Q=X+b are linear polynomials, is also impossible since that would mean that $PQ=(X+a)(X+b)=X^2+(a+b)X+ab=X^2+4$, which implies b=-a and $-a^2=4$. This equation has no solution in \mathbb{Z} .

Thus we have $X^2 + 4 \notin I \star J$ and hence $I \star J$ is not an ideal.

(c) In case $I=(n)\subset\mathbb{Z}$ and $J=(m)\subset\mathbb{Z}$, we have $I\star J=\{nxmy\mid x,y\in\mathbb{Z}\}$, which is equivalent to $\{nmt\mid t\in\mathbb{Z}\}=(nm)=I\cdot J$. This is an ideal in \mathbb{Z} .

Exercise 3. Let I be the smallest ideal in \mathbb{Z} containing $\{392, 224, 168\}$. Find $d \in \mathbb{N}$ such that $I = (d) \subset \mathbb{Z}$.

Solution 3. We know from the course that any ideal in \mathbb{Z} is *principal*, meaning that it is generated by a single natural number. From the proof of this property we know that, if the ideal is nonzero, the number d such that $I=(d)\subset\mathbb{Z}$ is the smallest positive integer contained in the given ideal I. So we need to find the smallest positive integer contained in the ideal I. The numbers of the form 392a+224b, where a,b are integers, are the multiples of the greatest common divisor of $392=7^2\cdot 2^3$ and $224=7\cdot 2^5$, which is $7\cdot 2^3=56$. The numbers of the form 392a+224b+168c=56k+168c are the multiples of the greatest common divisor of $56=7\cdot 2^3$ and $168=7\cdot 3\cdot 2^3$, which is 56. Therefore, d=56, and $I=(56)\subset\mathbb{Z}$.

Exercise 4. Let $I = ((x^2+x-6)) \subset \mathbb{R}[x]$ be the ideal of polynomials divisible by (x^2+x-6) , and $J = ((x^2-x-2)) \subset \mathbb{R}[x]$ the ideal of polynomials divisible by (x^2-x-2) . Describe the ideals $I, J, I \cap J, I \cdot J, I + J$.

Solution 4. Consider the ideals $I = ((x^2 + x - 6)) = ((x - 2)(x + 3)), J = ((x^2 - x - 2)) = ((x - 2)(x + 1)).$ We have:

- $I \cap J = ((x-2)(x+3)(x+1)) = I$ is the ideal of polynomials divisible by (x-2)(x+3)(x+1).
- $I \cdot J = ((x-2)^2(x+3)(x+1))$ is the ideal of polynomials divisible by $(x-2)^2(x+3)(x-1)$.
- I+J is the ideal spanned by sums of polynomials divisible by polynomials of the form (x-2)(x+3)f(x)+(x-2)(x+1)g(x), where $f(x),g(x)\in\mathbb{R}[x]$. Therefore, I+J contains all polynomials divisible by (x-2): I+J=((x-2)).

Note that, all of the ideals we considered above are *principal*, meaning that they are generated by a single element in $\mathbb{R}[x]$. We will see later on that, similarly to the ideals in the ring \mathbb{Z} , any ideal in the ring $\mathbb{R}[x]$ is principal. There are other similarities between these two rings.

Exercise 5. Let A be a commutative ring and $N \subset A$ a subset of all nilpotent elements in A:

$$N = \{ x \in A : \exists n \in \mathbb{N} : x^n = 0 \}.$$

Show that $N \subset A$ is an ideal. This ideal is called the *nilradical* of the ring. Show that the quotient ring A/N has no nonzero nilpotent elements.

Solution 5. The set N contains zero and is closed with respect to addition: if $x, y \in N$, such that $x^n = 0$ and $y^k = 0$, then we can choose $m = \max(n, k)$ and we have $x^m = y^m = 0$. Then $(x + y)^{2m} = \sum_{k=0}^{2m} {2m \choose k} x^k y^{2m-k} = 0$, because every summand contains a power of x or y greater or equal to m. Here we used the Newton's binomial formula that holds in commutative rings (see Proposition 1.7 in Rings). Also, if $a \in A$ and $x \in N$, such that $x^n = 0$, then $(ax)^n = a^n x^n = a^n \cdot 0 = 0$, therefore N is an ideal in A.

Now suppose $a \in A \setminus N$. Then $a^n \neq 0$ for any $n \in \mathbb{N}$. Therefore in the quotient ring we have $(a+N)^n \neq 0$ for any $n \in \mathbb{N}$ (we can choose a as a representative of the congruence class (a+N)). Therefore there are no nilpotent nonzero elements in the quotient ring A/N.