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Exercise 1. (a) Let m be an integer. Show that the ring modulo m, Z/mZ, is an integral domain if and only if m
is a prime.

(b) Find all zero divisors and all invertible elements (units) in Z/30Z.

(c) Show that [a]m ∈ Z/mZ is invertible if and only if it is not a zero divisor.

Solution 1. (a) If m is not a prime, then there exist 1 < n, k < m such that m = nk. Then [n]m[k]m = [0]m ∈ Z/mZ,
so the ring Z/mZ is not an integral domain.
If m = p is a prime, then for the product of two integers ab to be congruent to 0 modulo p, either p|a, or p|b. The
numbers {1, 2, . . . p− 1} are not divisible by p, and therefore [a]m[b]m 6= [0]m in Z/pZ, and the ring is an integral
domain.

(b) Units: [1]30, [7]30, [11]30, [13]30, [17]30, [19]30, [23]30, [29]30.

Zero divisors: [2]30, [3]30, [4]30, [5]30, [6]30, [8]30, [9]30, [10]30, [12]30, [14]30, [15]30, [16]30, [18]30, [20]30, [21]30,
[22]30, [24]30, [25]30, [26]30, [27]30, [28]30.

In particular, every nonzero element of Z/30Z is either a unit or a zero divisor.

(c) Suppose [a]m ∈ Z/mZ is not a zero divisor. This holds if and only if gcd(a,m) = 1 (If gcd(a,m) = d > 1, then
[a]m · [m/d]m = [0]m ∈ Z/mZ. If gcd(a,m) = 1, then an = mt for integers n, t implies that m|n, and therefore
[n]m = 0 ∈ Z/mZ). On the other hand, Bezout’s theorem tells us that gcd(a,m) = 1 if and only if there are
integers x, y such that xa + ym = 1. This is equivalent to the statement that [a]m[x]m = [1]m ∈ Z/mZ, or that a
is invertible in Z/mZ.

Exercise 2. (a) Consider the set S of all polynomials with real coefficients of degree up to 3 with the usual addition
and multiplication of polynomials. Is it a ring?

(b) Consider the ring Z[X] of all polynomials with integer coefficients. Check that it is a ring. Is it an integral domain?

(c) Let R = Z/4Z, and consider the ring R[X] of polynomials with coefficients in R. Is it an integral domain? Justify
your answer.

Solution 2. (a) The set S is not a ring. For example, x ∈ S and x3 + 1 ∈ S, but x(x3 + 1) is a polynomial of degree
4 and therefore does not belong to S. The set S is not closed with respect to multiplication of polynomials.

(b) The set Z[X] is an abelian group with respect to addition (0 is the neutral element), and is closed with respect
to mulitplication with the neutral element 1, and the distributivity holds. So Z[X] is a commutative ring. For a
polynomial f(x) ∈ Z[x] let n be the leading coefficient, which is defined as the coefficient of the highest power of x
in f(x). Then if n is the leading coefficient of f(x) and m the leading coefficient of g(x), it is easy to see that the
leading coefficient of f(x)g(x) is nm. Suppose that f(x)g(x) = 0, then the leading coefficient of the right-hand
side is 0. The leading coefficients of both sides should be equal, therefore we have nm = 0. Since Z has no zero
divisors, this implies that either n or m is zero. Therefore, either f = 0 or g = 0. This shows that Z[x] is an
integral domain. Note that the argument works for any ring A[x], where A is an integral domain.

(c) R[X] is not integral: [2]4X ∈ R[X] and [2]4 ∈ R[X] are nonzero elements, but we have [2]4 · [2]4X = [0]4X = 0R[X].

Exercise 3. Let C[0, 1] denote the ring of continuous real functions on the interval [0, 1].

(a) Let f ∈ C[0, 1] be such that the set {x : f(x) = 0} contains a closed interval [a, b] ⊂ [0, 1] of positive length
b− a > 0. Show that f is a zero divisor in C[0, 1].

(b) What are the invertible elements in the ring C[0, 1]?

Solution 3. (a) Suppose that f ∈ C[0, 1] is such that f(x) = 0 for all x ∈ [a, b] ⊂ [0, 1]. Consider the function g :
[0, 1]→ R such that g(x) = 0 for all x ∈ [0, 1]\]a, b[, and g(x) is nonzero on ]a, b[ (for example, g(x) = (x−a)(b−x)
for all x ∈]a, b[, and g(x) = 0 otherwise). Then fg(x) = 0 for all x ∈ [0, 1], so f(x) is a zero divisor.



(b) The invertible elements of C[0, 1] are the functions that have no zeros on [0, 1]. If we have f(x)g(x) = 1 for
all x ∈ [0, 1], then the number f(x) ∈ R has to be nonzero for each x ∈ [0, 1]. Conversely, if f : [0, 1] → R is
nonzero for each x ∈ [0, 1], then g(x) = 1/f(x), x ∈ [0, 1] defines the inverse element with respect to the pointwise
multiplication of functions.

Exercise 4. (a) Show that a finite integral domain is a field.

(b) Find an example of a commutative finite ring that is not an integral domain.

(c) Find an example of an integral domain that is not a field.

Solution 4. (a) Let A be a finite integral domain, or equivalently, a finite commutative ring with no nontrivial zero
divisors. Let |A| = n. Consider an element a ∈ A, a 6= 0 and let {b1, . . . bn−1} = A \ {0} be the set of all nonzero
elements in A. Consider the products

ab1 = c1, ab2 = c2, . . . abn−1 = cn−1.

Suppose that ci = cj for some i and j. Then a(bi − bj) = ci − cj = 0. Since A has no nontrivial zero divisors, this
implies that bi = bj , which contradicts the choice of {bi}n−1

i=1 . Therefore, all {c1, . . . cn−1} are all distinct nonzero
elements of A. Since A has exactly n − 1 nonzero elements, there exists 1 ≤ k ≤ n − 1 such that ck = 1, and
we have abk = 1, which means that a is invertible. We have proved that an arbitrary nonzero element of A is
invertible, and therefore that A is a field.

(b) For example, Z/8Z. The elements [2]8 and [4]8 are zero divisors: [2]8 · [4]8 = [0]8.

(c) For example, Z is an integral domain but is not a field, because 5 ∈ Z does not have a multiplicative inverse in Z.

Exercise 5. Let C[0, 1] be the ring of continuous functions on the interval [0, 1]. Let S be a closed subset of [0, 1] and
set IS = {f ∈ C[0, 1] : f(x) = 0 for all x ∈ S}.

(a) Show that IS is an ideal in C[0, 1].

(b) If S1 = [0, 1
2 ], S2 = [ 12 , 1], S3 = { 13}, S4 = { 23}, describe the ideals IS1

∩ IS2
, IS1

· IS2
, IS1

+ IS2
, IS3

∩ IS4
, IS3

· IS4
,

and IS3 + IS4 .

Solution 5. (a) If g ∈ C[0, 1], we have fg(x) = 0 ∀x ∈ S. Also, if f1(x) = 0 ∀x ∈ S and f2(x) = 0 ∀x ∈ S, then
(f1 + f2)(x) = 0 ∀x ∈ S. Therefore, IS is an ideal.

(b) IS1
∩ IS2

= {f ∈ C[0, 1] : f(x) = 0 ∀x ∈ [0, 1]} = {0}.
IS1
· IS2

= {f ∈ C[0, 1] : f(x) = 0 ∀x ∈ [0, 1]} = {0}.
IS1 + IS2 = {f ∈ C[0, 1] : f( 1

2 ) = 0}
IS3 ∩ IS4 = {f ∈ C[0, 1] : f( 1

3 ) = f( 2
3 ) = 0}

IS3
· IS4

= {f ∈ C[0, 1] : f( 1
3 ) = f( 2

3 ) = 0}
IS3

+ IS4
= C[0, 1]. This holds because the ideal IS3

+ IS4
contains the identity function f(x) = 1, for example:

f(x) = 3

(
x− 1

3

)
− 3

(
x− 2

3

)
= 1.


