November 11, 2024

Problem Set 8

Exercise 1. (a) Let m be an integer. Show that the ring modulo m, $\mathbb{Z}/m\mathbb{Z}$, is an integral domain if and only if m is a prime.

- (b) Find all zero divisors and all invertible elements (units) in $\mathbb{Z}/30\mathbb{Z}$.
- (c) Show that $[a]_m \in \mathbb{Z}/m\mathbb{Z}$ is invertible if and only if it is not a zero divisor.

Exercise 2. (a) Consider the set S of all polynomials with real coefficients of degree up to 3 with the usual addition and multiplication of polynomials. Is it a ring?

- (b) Consider the ring $\mathbb{Z}[X]$ of all polynomials with integer coefficients. Check that it is a ring. Is it an integral domain?
- (c) Let $R = \mathbb{Z}/4\mathbb{Z}$, and consider the ring R[X] of polynomials with coefficients in R. Is it an integral domain? Justify your answer.

Exercise 3. Let C[0,1] denote the ring of continuous real functions on the interval [0,1].

- (a) Let $f \in C[0,1]$ be such that the set $\{x: f(x)=0\}$ contains a closed interval $[a,b] \subset [0,1]$ of positive length b-a>0. Show that f is a zero divisor in C[0,1].
- (b) What are the invertible elements in the ring C[0,1]?

Exercise 4. (a) Show that a finite integral domain is a field.

- (b) Find an example of a commutative finite ring that is not an integral domain.
- (c) Find an example of an integral domain that is not a field.

Exercise 5. Let C[0,1] be the ring of continuous functions on the interval [0,1]. Let S be a closed subset of [0,1] and set $I_S = \{f \in C[0,1] : f(x) = 0 \text{ for all } x \in S\}$.

- (a) Show that I_S is an ideal in C[0,1].
- (b) If $S_1 = [0, \frac{1}{2}]$, $S_2 = [\frac{1}{2}, 1]$, $S_3 = {\frac{1}{3}}$, $S_4 = {\frac{2}{3}}$, describe the ideals $I_{S_1} \cap I_{S_2}$, $I_{S_1} \cdot I_{S_2}$, $I_{S_1} + I_{S_2}$, $I_{S_3} \cap I_{S_4}$, and $I_{S_3} + I_{S_4}$.