Algebra MATH-310 fall semester 2024 Anna Lachowska

November 4, 2024
Problem Set 7 Solutions

Exercise 1. (a) Let G1,G2 be two groups. Show that the group G; x G is abelian if and only if both G; and G,
are abelian.

(b) If G; and G4 are both cyclic groups, find the conditions for G7 x G2 to be cyclic.

Solution 1. (a) < Suppose G; and G2 are abelian then for every (a,b), (¢,d) € G1 X G2 we have that (a,b)(c,d) =
(ac,bd) = (ca,db) = (c,d)(a,b). Therefore G; x Gg is abelian. = Suppose G; x Gz is abelian. Then for every
a,c € Gy and (ac,e) = (a,e)(c,e) = (c,e)(a,e) = (ca,e). Therefore ac = ca in G;. Similarly, one shows that G,
is abelian. Therefore, G; and G5 are abelian.

(b) Let G; = C),, and G2 = Cy,, cyclic groups of orders n and m. Then C,, x C,, is cyclic (of order mn) if and only if
ged(n,m) = 1.
Indeed, let a € C,, and b € C,, be elements of orders k and [ respectively. Then (a,b)! = (a*,b") = (1,1) if and
only if k|t and [|t. Therefore, the order of (a,b) € C,, x Cy, is lem(k,1). Since k|n and I|m, the order of the element
is maximal if £ = n and | = m, and in this case the order of (a,b) is lem(n, m). We have lem(n, m) = nm if and
only if ged(n, m) = 1. Therefore, C,, X C,, contains an element of order nm if and only if n and m are coprime.

Exercise 2. We proved in class that in any abelian group G such that its order |G| is divisible by a prime p, there
exists an element of order p. Use this to prove the same statement for non-abelian groups. As a conclusion, we obtain
Cauchy’s theorem: any group G such that |G| is divisible by a prime p, contains an element of order p.

Solution 2. Let Z C G be the center of the group. If p divides |Z|, then Z contains an element of order p by the
statement proven in class, since Z is an abelian subgroup. If not, then according to the class equation
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there is at least one nontrivial conjugacy class, say C;, of order that is not divisible by p. By the orbit-stabilizer
theorem we have then |C;| = [G : G;] = |G|/|G;|, where G; C G is the centralizer subgroup of the conjugacy class
C;. Since |C}| is not divisible by p we have that |G| is divisible by p, and is a proper subgroup of G. We have
1 <|G,| < |G|, and we can finish the proof by induction on the order of G.

Exercise 3. In each case provide the list of elementary divisors and invariant factors for each group.
(a) List all abelian groups of order 8 (up to an isomorphism).
(b) List all abelian groups of order 120 (up to an isomorphism).

Solution 3. (a) By the Theorem of classification of finite abelian groups, we need to consider the prime factorization
of the order. We have 8 = 23. Unisomorphic finite abelian groups of order 8 are in 1 — 1 correspondence with the
partitions of 3: 3,{1,2},{1,1,1}. We obtain the following list:

Cg, 04 X 02, CQ X 02 X Cg.

The elementary divisors are
{8},{4,2},{2,2,2}.

The list of invariant factors is the same in this case.

(b) Using the same theorem, we obtain 120 = 23 -3-5. We have the following list of finite abelian groups of order 120
(up to an isomorphism):

C5><C3><Cg, C5X03XC4XOQ, C5X03XCQXCQXCQ.

The elementary divisors are
{5,3,8 },{5,3,4,2},{5,3,2,2,2}.



This list can be rewritten using the invariant factors instead of prime powers. These are the integers dy, ds, ... dx
such that n = dids...d; and di|dk_1]...|d2]|d;. We have that any abelian group of order 120 is isomorphic to
one of the following:

0120, Cﬁo X CQ, Cgo X Cg X Cg.

The invariant factors are
{120}, {60, 2}, {30,2,2}.

Exercise 4. (a) Find all abelian groups of order 180 up to an isomorphism and for each group list the elementary

(b)
()

divisors (the prime powers in the decomposition of an abelian group as a product of cyclic p-groups) and the
invariant factors (the integers dy,ds,...d; such that dg|di_1]...|d2|d; and didsy...dj; equals the order of the
group).

Find the prime power divisors and invariant factors for the group C3 x Ci5 X Cyg.

Are the groups G1 = 016 X Clg X 05 and GQ = ClO X 024 X C4 iSOHlOI‘phiC?

Solution 4. (a) We have 180 = 22.32.5. By the fundamental theorem of finite abelian groups if G is a finite abelian

group of order 180, then G is isomorphic to one of the following 4 groups:
C5X09XC4, C5><Cg><02><02, C5><03><03><C4, C5X03X03X02X02.
Then elementary divisors are:
{57 97 4}7 {57 97 27 2}7 {57 37 3, 4}7 {57 37 37 27 2}'

The invariant factors are obtained by multiplying the highest powers of each prime in the list:

{180}, 90,2}, {60,3}, {30, 6}.
We have
03XC15X020’103XC;),XC5XC5XC4ZC(;0X015.
So the elementary divisors are {5,5,3,3,4}, and the invariant factors are {60, 15}.

We decompose both groups into a direct product of prime power cyclic groups (cyclic groups corresponding to the
elementary divisors):
G1:C16X012XC52016XC3XC4XC5.

GQZCloXOQ4XC’4202XO5X08X03XC4.

The elementary divisors of the two groups are different: {5,3,16,4} and {5,3,8,4,2}. Therefore by the Theorem
of classification of finite abelian groups, they are non-isomorphic. We can also note that GG; contains an element of
order 16, and G5 does not. Using the invariant factors, we can write: G1 =~ Co49 X Cy, and Go ~ C199 X Cy X Cs.

Exercise 5. Let G = (Z/315Z)*, the group of units in Z/315Z with respect to the multiplication.

(a)

Find the order of G. Hint: You can use the multiplicative property of the Euler’s totient function: ¢(mn) =
p(m)p(n) if ged(m, n) = 1.

Show that for all z € G, we have 2288 = 1.
Show that for all m € Z such that (m,630) = 1, we have m!4* =1 (mod 315).

Find all solutions modulo 315 of the equation #2° = 1. (Hint: Note that such z is invertible, and therefore an
element in (Z/315Z)*.

Solution 5. (a) We have 315 = 5-7-32. The order of the group G is 144 and is given by the Euler’s totient function:

(b)

()

(d)

©(315) = (5—1)- (7T—1)- (9 —3) = 144.

By Lagrange’s theorem the order of each element in G has to divide the order of G. In our case the order of each
element x € G divides 144. Therefore for every z € G we have that 244 = 1, and also (z144)? = 1.

Observe that (m,630) = 1 implies that (m,315) = 1. Therefore by Euler’s Theorem one has that m!#* =
1 (mod 315).

Note that a solution = has to belong to (Z/315Z)*. Now, observe that since #2°> = 1 the order of z has to divide
25. But z belongs to (Z/315Z)*, therefore its order has to divide also 144. Hence the only solution is z = 1.



Exercise 6. Use Lagrange’s theorem to classify all groups of order 6 up to isomorphism. Let |G| = 6.

(a
(b
(c

)
)
)
(d)

Consider possible orders of elements in G. Consider the case when G contains an element of order 6.
Show that G cannot contain only elements of order 1 and 2.
Show that G cannot contain only elements of order 1 and 3.

Identify the group of 6 elements that contains elements of order 1, 2 and 3, and does not contain an element of
order 6.

Solution 6. (a) By a corollary of Lagrange’s theorem, the order of elements of G divide the order of G. Therefore,

(d)

we can only have elements of order 1, 2, 3 and 6 in G. If g € G has order 6, then G contains the set of elements
{1,9,9%,9%, 9% ¢°} C G, where all the elements are distinct (if g° = ¢g*, then g°~* = 1 which is only possible if 6
divides i — k). Therefore, in this case G is isomorphic to a cyclic group Cg.

Suppose G contains only elements of order 1 and 2. The only element of order 1 is the identity. If a,b € G
are two elements of order 2, then ab € G and we suppose that ab is also of order 2. Then abab = 1 and we
have ab = (ab)~! = b~'a~! = ba. But then {1,a,b,ab} C G is a subgroup of G, which is impossible because by
Lagrange’s theorem the order of a subgroup divides the order of the group.

Also, by Cauchy’s theorem (Ex. 2 PS7) if a prime 3 divides |G|, then G contains an element of order 3.

Suppose G contains only elements of order 1 and 3. If a € G is an element of order 3, then G also contains its
inverse a~! = a?. Similarly, any element of order 3 and its inverse form a subset of two elements in G, so G
contains several pairs of elements and the identity. Then the number of elements in G is odd, which is impossible.

Also, by Cauchy’s theorem (Ex. 2 PS7) if a prime 2 divides |G|, then G contains an element of order 2.

We have shown that G must contain an element of order 2 and an element of order 3. Denote them as a € G,
a®=1and b€ G, b?> = 1. Then the subgroup they generate in G must contain the elements {1, a, a2, b, ba,ba?}.
It also has to contain ab. Since there are already 6 elements listed, ab is equal to one of them. Clearly, ab # a,
ab # a? and ab # b which leads to b =1, a = 1 or @ = b. If ab = ba, then the subgroup generated by a and b
in G is abelian, and in this case the order of ab is 6, the product of the coprime orders of a and b (see Exercise
3(c), PS3), which means G is cyclic of order 6. Finally, if ab = ba? = ba~!, then we see that a, b generate a group
isomorphic to the dihedral group Ds:

G = {a,b|a® =1,0*> = 1,bab = a™ ).

Finally, there are 2 groups of order 6 up to isomorphism: the cyclic group Cg and the dihedral group Dj.



