October 30, 2023

Problem Set 6 Solutions

Exercise 1. Consider the permutation with the cycle decomposition g = (12)(345) in the symmetric group S_5 . Let $H = \langle g \rangle \subset S_5$ be the subgroup generated by this element.

- (a) Find the order of H.
- (b) Find the stabilizer subgroup in H of the element 1, and the orbit of 1 under the action of H.
- (c) Find the stabilizer subgroup in H of the element 4, and the orbit of 4 under the action of H.
- (d) In both cases, check the formula

$$[H : \operatorname{Stab}(x)] = |\operatorname{Orb}(x)|.$$

Solution 1. The order of g is 6, the product of the orders of the commuting cycles (12) and (345) (cf. Exercise 3(c), Problem Set 3). This can also be checked by a direct computation of the action of powers of g on the set of 5 elements.

- (b) $Stab(1) = \{1, (345), (354)\}, \text{ and } Orb(1) = \{1, 2\}.$ We have 6: 3 = 2.
- (c) $Stab(4) = \{1, (12)\}, \text{ and } Orb(4) = \{3, 4, 5\}.$ We have 6: 2 = 3.
- Exercise 2. (a) Recall that for any $\pi \in S_n$ and any cycle $c \in S_n$, the element $\pi c \pi^{-1}$ is the cycle obtained by replacing each integer i in the cycle c with the integer $\pi(i)$. Use this property to show that $g_1, g_2 \in S_n$ are conjugate if and only if they decompose as a product of disjoint cycles of the same lengths.
- (b) The orbits under the conjugation action are called the conjugacy classes of a group. Describe the conjugacy classes in the group S_5 .
- (c) Recall that the class equation of a finite group is $|G| = |Z| + \sum_{i=1}^{m} |C_i|$, where Z is the center of G (the set of all one-element conjugacy classes), and $\{C_i\}_{i=1}^m$ is the set of all nontrivial conjugacy classes of G. Count the number of elements in each conjugacy class and write the class equation for S_5 .

Solution 2. (a) Let $x \in S_n$ and $x = c_1 c_2 \dots c_k$ the cycle decomposition of x. Then for $g \in S_n$,

$$gxg^{-1} = gc_1g^{-1}gc_2g^{-1}\dots gc_kg^{-1} = u_1u_2\dots u_k,$$

where for each i = 1 ... k the cycle u_i is obtained from the cycle c_i by replacing each integer i with g(i). Therefore, any element conjugate to x has the cycle decomposition with cycles of the same lengths. Now, suppose $x = c_1 ... c_k$ and $y = u_1 ... u_k$ are two permutations such that $|c_i| = |u_i|$ for all i = 1 ... k. Let g be the permutation that sends the ordered set of integers in the cycle decomposition of x to the ordered set of integers in the cycle decomposition of y. Then, using the hint, we see that $gxg^{-1} = y$. Therefore all elements that decompose as a product of disjoint cycles of the same lengths are conjugate in S_n .

- (b) According to (a), the conjugacy classes correspond to the products of disjoint cycles of different lengths. In S_5 we have:
 - 5-cycles
 - 4-cycles
 - 3-cycles
 - 2-cycles
 - a product of two disjoint cycles of length 3 and 2
 - a product of two disjoint 2-cycles
 - the identity permutation.
- (c) Let us count the number of different 5-cycles in S_5 . We have 5! permutations of 5 elements. Two cycles represent the same group element if and only if they are related by a cyclic permutation. Therefore, there are $\frac{5!}{5} = 24$ different 5-cycles.

- To count the 4 cycles, we have first to choose 4 elements out of 5: there are $\binom{5}{4} = 5$ choices. For each choice, just as above, we have 3! different cycles. Totally we have $5 \cdot 3! = 30$ different 4-cycles in S_5 .
- To count the 3 cycles, we have $\binom{5}{3} = \frac{5!}{3!2!} = 10$ choices of 3 numbers, and 2 different 3-cycles for each choice. Totally we have 20 different 3-cycles.
- To count the transpositions, we have to choose 2 numbers out of 5: $\binom{5}{2} = \frac{5!}{2!3!} = 10$.
- The number of products of 3-cycles and 2-cycles is equal to the number of 3-cycles, namely 20.
- To count the products of two transpositions, we have to multiply $\binom{5}{2}$ by $\binom{3}{2}$ and divide by 2, because each transposition will appear in the first choice, and then in the second. We have $\frac{10\cdot3}{2}=15$ such elements.
- There is 1 identity element.

The class equation for 5_5 has the form

$$|S_5| = |\{1\}| + |c_5| + |c_4| + |c_3| + |c_2| + |c_3c_2| + |c_2c_2| = 1 + 24 + 30 + 20 + 10 + 20 + 15 = 120 = 5!$$

Exercise 3. Let G be a group, and $x \in G$ an element. The orbit of the element x under the conjugation action of G on itself, $C_x = \{gxg^{-1}\}_{g \in G}$ is called the conjugacy class of x in G. The subgroup $G_x = \{g \in G : gxg^{-1} = x\}$ is called the centralizer of x in G. Let G be the dihedral group $D_4 = \langle r, s \mid s^2 = 1, r^4 = 1, srs = r^{-1} \rangle$.

- (a) For each $x \in D_4$ find its centralizer subgroup.
- (b) Describe all the conjugacy classes in $G = D_4$.
- (c) Check the Orbit-Stabilizer formula $|C_x| = [G:G_x]$ for each conjugacy class in D_4 and write the class equation for D_4 .

Solution 3. (a) Every element in D_4 is of the form r^i or sr^i for some $i=0,\ldots 3$. Let $x=r^i$. We have

$$r^{j}r^{i}r^{-j} = r^{i}, \quad (sr^{j})r^{i}(sr^{j})^{-1} = sr^{j}r^{i}r^{-j}s = r^{-i}$$

for any i, j = 0, ... 3. Note that $r^i = r^{-i}$ if and only if i = 2. Therefore, the centralizer subgroup of r and r^3 is the group of all rotations, $G_r = G_{r^3} = \{1, r, r^2, r^3\}$. The centralizer subgroup of r^2 and of the identity element is the whole group: $G_1 = G_{r^2} = D_4$. For sr^i we have

$$r^{j}sr^{i}r^{-j} = sr^{i-2j}, \quad sr^{j}sr^{i}(sr^{j})^{-1} = sr^{j}sr^{i-j}s = sr^{2j-i}$$

We have $r^i = r^{i-2j}$ if and only if j = 0, 2. Also, $r^i = r^{2j-i}$ if and only if j - i = 0, j - i = 2. Therefore we have the following centralizer subgroups for the elements of the form sr^i :

$$x = s \implies G_s = \{1, r^2, s, sr^2\}$$

$$x = sr \implies G_{sr} = \{1, r^2, sr, sr^3\}$$

$$x = sr^2 \implies G_{sr^2} = \{1, r^2, s, sr^2\}$$

$$x = sr^3 \implies G_{sr^3} = \{1, r^2, sr, sr^3\}$$

- (b) Using the computations above we conclude that there are two 1-element conjugacy classes: $\{1\}$, $\{r^2\}$. These elements are central in D_4 : they commute with any element in D_4 . The remaining rotations form one conjugacy class $C_r = \{r, r^3\}$. Because the conjugation of sr^i result in the elements sr^{i-2j} or sr^{2j-i} , the parity of the power of r is preserved by conjugation. Therefore, the elements of the form sr^i are split between two conjugacy classes $C_s = \{s, sr^2\}$ and $C_{sr} = \{sr, sr^3\}$.
- (c) The Orbit-Stabilizer formula has the form:

$$|C_1| = |C_{r^2}| = [D_4:D_4] = 8:8, \quad |C_r| = [D_4:G_r] = 8:4, \quad |C_s| = [D_4:G_s] = 8:4, \quad |C_{sr}| = [D_4:G_{sr}] = 8:4.$$

Let $Z = C_1 \cup C_{r^2} = \{1, r^2\}$ be the center of D_4 . The class equation for D_4 is

$$|D_4| = |Z| + |C_r| + |C_s| + |C_{sr}| = 2 + 2 + 2 + 2 = 8.$$

Exercise 4. Consider the dihedral group D_4 acting as the group of symmetries of a square in \mathbb{R}^2 centered at the origin. Then each element of D_4 acts on the set of vertices by permutations. This defines an injective (with kernel containing only the identity element) group homomorphism

$$\phi: D_4 \to S_4$$
.

Find the subgroup $H = \text{Im}(\phi) \subset S_4$, and write the elements of H as products of disjoint cycles in S_4 .

Solution 4. Suppose that $D_4 = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$, where r is a rotation counterclockwise by $\pi/2$ and s is the reflection about the axis passing through a pair of vertices. The cycle decompositions of the image of ϕ depend on the numbering of the vertices of the square. For example, if we number the vertices counterclockwise, and let s be the reflection about the axis going through the vertices 1 and 3, we will have the following permutations in the image of ϕ , besides the identity:

$$\phi(r) = (1234), \ \phi(r^2) = (13)(24), \ \phi(r^3) = (1432), \ \phi(s) = (24), \ \phi(sr) = (14)(23), \ \phi(sr^2) = (13), \ \phi(sr^3) = (12)(43).$$

Note that independently of the numbering of the vertices and the choice of ϕ , the image always contains the Klein subgroup $\{1, (12)(34), (13)(24), (14)(23)\}$, where one of the nontrivial elements is a rotation, and the other two - reflections. By the group homomorphism theorem, we have $\operatorname{im} \phi \simeq D_4/\ker \phi \simeq D_4 \subset S_4$. Note that $\operatorname{im} \phi \subset S_4$ is a subgroup of order 8 and index 3.

