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Exercise 1. Let Dn be the dihedral group of rigid symmetries of a regular n-gon, n ≥ 3:

Dn = 〈r, s | rn = 1, s2 = 1, srs = r−1〉 = {1, r, . . . rn−1, s, sr, . . . srn−1}.

(a) Show that sris = r−i for all 0 ≤ i ≤ n− 1.

(b) Identify the element r2sr−1sr−4s ∈ Dn in the list of all elements of Dn.

(c) Find all elements x ∈ Dn such that gxg−1 = x for all g ∈ Dn. The elements with this property are called central
in the group.

(d) Find the order of the elements x = sr2 and y = r2 in Dn.

Solution 1. (a) The equation srs = r−1 (for i = 1) holds as one of the defining relations in Dn. If i = 0 we have
s2 = r0 = 1 which is one of the defining relations. Now let i ≥ 2. Using the defining relation s2 = 1, we can write

sris = (srs)(srs) . . . (srs) = (r−1)i = r−i.

The factors (srs) are repeated i times.

(b) Using the relations of the form sris = r−i, we compute (remember that the powers of r are integers modulo n):

r2sr−1(sr−4s) = (r2s)r−1r4 = sr−2r−1r4 = sr.

(c) Let x ∈ Dn. Then gxg−1 = x for all g ∈ Dn if and only if sxs = x and rxr−1 = x. “Only if” holds because s and
r are elements of Dn. “If” holds because any element of Dn is a product of the generators s and r.

Now let x = rk, 0 ≤ k ≤ n − 1. Clearly rrkr−1 = rk for all k, so that rk commutes with all rotations. Suppose
that srks = rk. By the relation obtained in (1) we have srks = r−k. If rk = r−k, then r2k = 1. This is only
possible if 2k = tn for a nonnegative integer t. Since 2k ≤ 2(n−1), the only possibilities for t are t = 0 and k = 0,
or t = 1 and 2k = n. In the first case, x = 1, and in the second case n must be even and x = rn/2 satisfies the
condition.

Suppose x = srk. Then rxr−1 = rsrk−1 = sr−1rk−1 = srk−2. The equation srk−2 = srk implies r2 = 1, which is
false in Dn. Therefore no elements of the form srk satisfy the condition.

Finally, if n is odd, the only element x ∈ Dn such that gxg−1 = x for all g ∈ Dn is 1. If n is even, then
x ∈ {1, rn/2}.

(d) We need to find the smallest positive integer k such that xk = (sr2)k = 1. Using the relations sris = r−i, we
compute

sr2sr2 = r−2r2 = 1.

Therefore, the order of x = sr2 in any group Dn, n ≥ 3, is 2.
Now consider the element r2 ∈ Dn. We have to find the smallest positive integer k such that r2k = 1. This is
equivalent to the requirement n|2k. If n is even, the smallest positive integer solution is k = n/2. If n is odd, then
k = n. Therefore, the order of r2 is n/2 if n is even, and n if n is odd. For example, the order of r2 is 5 in D5 and
4 in D8.

Exercise 2. Consider the dihedral group D6 = 〈s, r | s2 = 1, r6 = 1, srs = r−1〉.

(a) Show that R = {1, r, r2, r3, r4.r5} ⊂ D6 is a normal subgroup.

(b) Show that H = {1, r3} ⊂ D6 is a normal subgroup.

(c) Show that T = {1, sr3} ⊂ D6 is a subgroup in D6 that is not normal.



Solution 2. (a) For any rotation rk we have rkrir−k = ri and for any element of the form srk we compute
(srk)ri(srk)−1 = srkrir−ks−1 = sris = r−i ∈ R. Here we used the relations s2 = 1, sris = r−1. Therefore,
the subgroup of rotations is normal in D6 (the same holds for any dihedral group).

(b) Clearly H is a subgroup because (r3)2 = 1 in D6. We have to show that for any g ∈ D6 = {1, r, . . . r5, s, sr, . . . sr5},
gr3g−1 ∈ H. We compute:

rir3r−i = r3 ∈ H, (sri)r3(sri)−1 = srir3r−is = sr3s = r−3 = r3 ∈ H.

The last equality holds because r6 = 1 in D6. So H ⊂ D6 is a normal subgroup.

(c) First we have to check that T is a subgroup. We have (sr3)2 = sr3sr3 = r−3r3 = 1. So T is a subgroup
of two elements in D6. Next we need to determine if the condition g(sr3)g−1 ∈ T holds for all g ∈ D6 =
{1, r, . . . r5, s, sr, . . . sr5}. We compute r(sr3)r−1 = rsr2 = sr−1r2 = sr /∈ T . Here we used the identity rs = sr−1.
Therefore T ⊂ D6 is not a normal subgroup.

Exercise 3. (a) Show that if G is such that a2 = e for all a ∈ G then G is abelian.

(b) Show that any group of order 4 is abelian.

(b) Let G be an abelian group and a, b ∈ G two elements of finite order. Suppose that o(a) and o(b) are mutually
prime. Show that ab is of finite order o(ab) = o(a)o(b).

Solution 3. (a) Let a, b ∈ G. We need to show that ab = ba. By the hypothesis a2 = e, b2 = e and (ab)2 = e.
Multiply the last equation on both sides on the right by b:

b = (a · b)2 · b = a · b · a · b · b = a · b · a · b2 = a · b · a.

Then multiply on the right by a:
a · b · a · a = a · b · a2 = a · b = b · a.

Therefore G is abelian.

(b) Let x ∈ G, x 6= e. Then x has order 2 or 4. If x has order 4, then x is a generator of the group G and G is cyclic
and so is abelian. If G is not cyclic then all elements of G satisfy the identity x2 = e and then by part (a), G is
abelian.

(c) Suppose m is the order of a ∈ G and n is the order of b ∈ G and that m and n are coprime. This means that, m
and n are the minimum natural values such that am = e and bn = e and gcd(m,n) = 1. Then, since G is abelian,
(ab)mn = amnbmn = (am)n(bn)m = e (here we use that G is abelian). This implies that o(ab)|mn.

Conversely, let o(ab) = h, we want to prove that mn|h. As e = (ab)h = (ab)mh = (am)h · bmh, we have that
bmh = e and so n|(mh). Therefore, since (m,n) = 1, n divides h. With the same argument prove that m|h. This
implies that lcm(m,n) = mn divides h. We can conclude that o(ab) = mn = o(a)o(b), as desired.

Exercise 4. Let p be a prime. Show that any group of order p is cyclic.

Solution 4. Let p be a prime number and G a group of order p. Then G has order bigger than 1. Let g ∈ G such
that g 6= e. Then the group generated by g, denoted by 〈g〉, contains more than one element. Since 〈g〉 ⊆ G, by
Lagrange theorem its order divides p. By the fact that 〈g〉 has more than one element, it follows that the order of 〈g〉
is p. Therefore, we can conclude that 〈g〉 = G.

Exercise 5. Pollard’s algorithm for factorizing large integers works as follows:
Suppose you are given an integer n and you want to find its prime factors. Take a small number a and check that
gcd(a, n) = 1 (if not, you already have found a nontrivial factor of n). For m = 2, 3, . . ., compute gcd(aK − 1, n),
where K = lcm(2, 3, . . .m). If gcd(aK − 1, n) > 1, then you have found a nontrivial factor of n. If gcd(aK − 1, n) = 1,
increase m ≤

√
n until you get a nontrivial factor of n.

(a) Explain why Pollard’s algorithm works well for finding prime factors p of n in case when (p − 1) is a product of
small powers of small primes. Use Fermat’s little theorem.

(b) Obtain the prime factorization of n = 15041 using Pollard’s algorithm. You can take a = 2 and use the following
website to compute the gcd of two integers: http://www.alcula.com/calculators/math/gcd/.



Solution 5. (a) Suppose that p is a prime factor of n, and a is not divisible by p. Then Fermat’s little theorem tells
us that ap−1 ≡ 1 mod(p), therefore ap−1− 1 is divisible by p and so gcd(ap−1− 1, n) is a multiple of p. If (p− 1) is
a product of small powers of small primes, the number K = lcm(2, 3, . . .m) is a multiple of (p− 1) for a relatively
small m. Then we have K = t(p − 1) for some integer t, and aK = at(p−1) ≡ 1 mod(p). Therefore, aK − 1 is
divisible by p, and gcd(aK − 1, n) > 1 produces a multiple of p. We can obtain the prime factor p in a relatively
small number of steps m, if p − 1 divides lcm(2, 3, . . .m) of the first few natural numbers. This happens when
p− 1 is a product of small powers of small primes (such numbers are also called powersmooth).

(b) Let n = 15041. Then a = 2 is coprime with n.
Step 1: Let m = 2, we have K = m = 2 and gcd(aK − 1, n) = gcd(22 − 1, 15041) = 1.
Step 2: Let m = 3. Then K = lcm(2, 3) = 6 and gcd(aK − 1, n) = gcd(26 − 1, 15041) = gcd(63, 15041) = 1.
Step 3: Let m = 4. Then K = lcm(2, 3, 4) = 12 and gcd(aK−1, n) = gcd(212−1, 15041) = gcd(4095, 15041) = 13.
Therefore, 15041 is divisible by 13, and we have 15041 : 13 = 1157. Repeating the same algorithm for n = 1157
and a = 2, we get
Step 1: Let m = 2, we have gcd(aK − 1, n) = gcd(22 − 1, 1157) = 1.
Step 2: Let m = 3. Then gcd(aK − 1, n) = gcd(26 − 1, 1157) = gcd(63, 1157) = 1.
Step 3: Let m = 4. Then gcd(aK − 1, n) = gcd(212 − 1, 1157) = gcd(4095, 1157) = 13.
Therefore, 1157 is divisible by 13 and we get 1157 : 13 = 89, which is a prime. Finally we get 15041 = 132 · 89.

Note that in our case p− 1 = 12 = 22 · 3. In practice Pollard’s algorithm can be efficient to find much larger prime
factors p of large integers n, but only if p− 1 is a product of many relatively small primes.


