Algebra MATH-310 fall semester 2024 Anna Lachowska

October 7, 2024
Problem Set 4 Solutions

Exercise 1. Let D,, be the dihedral group of rigid symmetries of a regular n-gon, n > 3:
D,={(rs|r=1s=1srs=r"1)={1,r,...7r" 1 s,sr,...50" '}
(a) Show that sris=r""forall0 <i<n—1.

(b) Identify the element r2sr~lsr=%s € D, in the list of all elements of D,,.
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(¢) Find all elements « € D,, such that gxg~' = z for all g € D,,. The elements with this property are called central

in the group.
(d) Find the order of the elements # = sr? and y = 72 in D,,.

Solution 1. (a) The equation srs = r~! (for i = 1) holds as one of the defining relations in D,,. If i = 0 we have

s2 = 70 = 1 which is one of the defining relations. Now let ¢ > 2. Using the defining relation s> = 1, we can write

sris = (srs)(srs)...(srs) = (r~ 1) =r""

The factors (srs) are repeated ¢ times.
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(b) Using the relations of the form sris = r =% we compute (remember that the powers of r are integers modulo n):
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rgsr_l(sr_‘ls) =(r S)T_1r4 —ep—2,—1,4

sr r °r ST.

(c) Let 2 € D,,. Then grg~! = x for all g € D,, if and only if sxs = z and rar~! = . “Only if” holds because s and

r are elements of D,,. “If” holds because any element of D,, is a product of the generators s and r.

Now let z = r*, 0 < k < n — 1. Clearly rr*r=' = r* for all k, so that 7* commutes with all rotations. Suppose
that sr*s = r¥. By the relation obtained in (1) we have srfs = r=%. If ¥ = r=F then r2* = 1. This is only
possible if 2k = ¢n for a nonnegative integer ¢. Since 2k < 2(n — 1), the only possibilities for ¢ are t = 0 and k = 0,

or t = 1 and 2k = n. In the first case, z = 1, and in the second case n must be even and = = /2 satisfies the
condition.
Suppose « = sr¥. Then rar—!' = rsrk=1 = s~ k=1 = sp%=2_ The equation sr*=2 = sr* implies 2 = 1, which is

false in D,,. Therefore no elements of the form sr* satisfy the condition.

Finally, if n is odd, the only element x € D, such that grg~! = z for all ¢ € D,, is 1. If n is even, then
x e {1,r/%}.
(d) We need to find the smallest positive integer k such that z¥ = (sr?)¥ = 1. Using the relations sr's = r~%, we
compute
srisr? =r73% = 1.

Therefore, the order of = sr? in any group D,,, n > 3, is 2.
Now consider the element 72 € D,,. We have to find the smallest positive integer k such that r2* = 1. This is
equivalent to the requirement n|2k. If n is even, the smallest positive integer solution is k = n/2. If n is odd, then
k = n. Therefore, the order of 72 is n/2 if n is even, and n if n is odd. For example, the order of 72 is 5 in D5 and

4in Ds.
Exercise 2. Consider the dihedral group Dg = (5,7 | 52 = 1,70 = 1, srs = r71).
(a) Show that R = {1,r,72,r3 r*.75} C Dg is a normal subgroup.

(b) Show that H = {1,r3} C D is a normal subgroup.

(c) Show that T = {1,sr®} C Dg is a subgroup in Dg that is not normal.



k k k k

Solution 2. (a) For any rotation r® we have r¥rir=% = r? and for any element of the form sr
(srF)ri(sr?) =1 = srfrir=Fs—! = sris = r=% € R. Here we used the relations s?> = 1, sris = r~

the subgroup of rotations is normal in Dg (the same holds for any dihedral group).

we compute

L. Therefore,

(b) Clearly H is a subgroup because (r3)? = 1 in Dg. We have to show that for any g € Dg = {1,7,...7° s, sr,...57°},
gr3g~! € H. We compute:
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ripdr=t =13 ¢ H, (sr)r3(sr) ™ = srirdrTis = sr¥s =73 =3 € H.

The last equality holds because 7% = 1 in Dg. So H C Dg is a normal subgroup.

(c) First we have to check that T is a subgroup. We have (sr3)2 = sr3sr® = 7373 = 1. So T is a subgroup

of two elements in Dg. Next we need to determine if the condition g(sr3)g~! € T holds for all g € Dg =
{1,7,...7%,s,sr,...5r°}. We compute r(sr3)r~1 = rsr? = sr~172 = sr ¢ T. Here we used the identity rs = sr—1.

Therefore T' C Dg is not a normal subgroup.
Exercise 3. (a) Show that if G is such that a® = e for all @ € G then G is abelian.
(b) Show that any group of order 4 is abelian.

(b) Let G be an abelian group and a,b € G two elements of finite order. Suppose that o(a) and o(b) are mutually
prime. Show that ab is of finite order o(ab) = o(a)o(b).

Solution 3. (a) Let a, b € G. We need to show that ab = ba. By the hypothesis a®> = e, b> = e and (ab)? = e.
Multiply the last equation on both sides on the right by b:

b=(a-b)>-b=a-b-a-b-b=a-b-a-b>*=a-b-a.

Then multiply on the right by a:
a-b-a-a=a-b-a>=a-b=">-a.

Therefore G is abelian.

(b) Let € G, x # e. Then « has order 2 or 4. If = has order 4, then x is a generator of the group G and G is cyclic
and so is abelian. If G is not cyclic then all elements of G satisfy the identity 22 = e and then by part (a), G is
abelian.

(¢) Suppose m is the order of a € G and n is the order of b € G and that m and n are coprime. This means that, m
and n are the minimum natural values such that ¢™ = e and 0" = e and ged(m, n) = 1. Then, since G is abelian,
(ab)™ = @™ = (a™)" (™)™ = e (here we use that G is abelian). This implies that o(ab)|mn.

Conversely, let o(ab) = h, we want to prove that mn|h. As e = (ab)® = (ab)™" = (a™)" - b™", we have that
b™" = ¢ and so n|(mh). Therefore, since (m,n) = 1, n divides h. With the same argument prove that m|h. This
implies that lem(m,n) = mn divides h. We can conclude that o(ab) = mn = o(a)o(b), as desired.

Exercise 4. Let p be a prime. Show that any group of order p is cyclic.

Solution 4. Let p be a prime number and G a group of order p. Then G has order bigger than 1. Let g € G such
that g # e. Then the group generated by g, denoted by (g), contains more than one element. Since (g) C G, by
Lagrange theorem its order divides p. By the fact that (g) has more than one element, it follows that the order of (g)
is p. Therefore, we can conclude that (g) = G.

Exercise 5. Pollard’s algorithm for factorizing large integers works as follows:

Suppose you are given an integer n and you want to find its prime factors. Take a small number a and check that
ged(a,n) = 1 (if not, you already have found a nontrivial factor of n). For m = 2,3,..., compute ged(a® — 1,n),
where K = lem(2,3,...m). If ged(a® — 1,n) > 1, then you have found a nontrivial factor of n. If ged(a® —1,n) =1,
increase m < 4/n until you get a nontrivial factor of n.

(a) Explain why Pollard’s algorithm works well for finding prime factors p of n in case when (p — 1) is a product of
small powers of small primes. Use Fermat’s little theorem.

(b) Obtain the prime factorization of n = 15041 using Pollard’s algorithm. You can take ¢ = 2 and use the following
website to compute the ged of two integers: http://www.alcula.com/calculators/math/gcd/.



Solution 5. (a) Suppose that p is a prime factor of n, and a is not divisible by p. Then Fermat’s little theorem tells

us that a?~! = 1 mod(p), therefore a?~! —1 is divisible by p and so ged(a?~! —1,n) is a multiple of p. If (p—1) is
a product of small powers of small primes, the number K = lem(2,3,...m) is a multiple of (p — 1) for a relatively
small m. Then we have K = t(p — 1) for some integer ¢, and a® = a!®~1) =1 mod(p). Therefore, a’ — 1 is
divisible by p, and ged(a® — 1,n) > 1 produces a multiple of p. We can obtain the prime factor p in a relatively
small number of steps m, if p — 1 divides lem(2,3,...m) of the first few natural numbers. This happens when
p—11is a product of small powers of small primes (such numbers are also called powersmooth).

Let n = 15041. Then a = 2 is coprime with n.

Step 1: Let m = 2, we have K = m = 2 and ged(a® — 1,n) = ged(2% — 1,15041) = 1.

Step 2: Let m = 3. Then K = lem(2,3) = 6 and ged(a® — 1,n) = ged(2° — 1,15041) = gcd(63, 15041) = 1.

Step 3: Let m = 4. Then K = lem(2,3,4) = 12 and ged(a® —1,n) = ged(2'2 — 1,15041) = ged (4095, 15041) = 13.
Therefore, 15041 is divisible by 13, and we have 15041 : 13 = 1157. Repeating the same algorithm for n = 1157
and a = 2, we get

Step 1: Let m = 2, we have ged(a® — 1,n) = ged (22 — 1,1157) = 1.

Step 2: Let m = 3. Then ged(a® — 1,n) = ged(2° — 1,1157) = ged(63,1157) = 1.

Step 3: Let m = 4. Then ged(a® — 1,n) = ged(2'2 — 1,1157) = ged(4095, 1157) = 13.

Therefore, 1157 is divisible by 13 and we get 1157 : 13 = 89, which is a prime. Finally we get 15041 = 132 - 89.

Note that in our case p —1 = 12 = 22.3. In practice Pollard’s algorithm can be efficient to find much larger prime
factors p of large integers n, but only if p — 1 is a product of many relatively small primes.



