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Exercise 1. Determine which of the following groups are cyclic.

(a) (Z/12Z)∗, ·)

(b) (Z/12Z,+)

(c) ((Z/8Z)∗, ·)

Solution 1. (a) The group (Z/12Z)∗, ·) is not cyclic. Observe that G = {[1]12, [5]12, [7]12, [11]12} and that 52 ≡ 72 ≡
112 ≡ 1 mod 12. Therefore none of the elements of the group can be a generator.

(b) The group G = (Z/12Z,+) is cyclic. Observe that the element [1]12 with the operation sum can generate every
element of the group.

(c) The group G = ((Z/8Z)∗, ·) is not cyclic. Note that G = {[1]8, [3]8, [5]8, [7]8} and that 32 ≡ 52 ≡ 72 ≡ 1 mod 8.
Therefore none of these elements can generate G.

Remark: It is easy to see that for any prime p the group ((Z/pZ)∗, ·) is cyclic. More generally, there is the following
result (that we cite here without a proof):

Theorem (Gauss). The group ((Z/nZ)∗, ·) is cyclic if and only if n = 2, 4, any power of an odd prime or twice any
power of an odd prime.

Exercise 2. For each of the groups below, find the order of the element g ∈ G;

(a) G = ((Z/20Z)∗, ·), g = [3]20.

(b) G = ((Z/24Z)∗, ·), g = [5]24 and g = [11]24.

(c) G = GL2(R), g =

(
0 1
−1 0

)
and g =

(
1 −1
0 1

)
.

Solution 2. (a) Note that 34 = 81, then 34 ≡ 1 mod 20. Also ([3]20)j 6= [1]20 for j = 1, 2, 3. Thus [3]20 has order 4.

(b) Observe that 52 = 25 and 112 = 121 , then 52 ≡ 1 mod 24 and 112 ≡ 1 mod 24. Thus both [5]24 and [11]24 have
order 2.

(c) The element g =

(
0 1
−1 0

)
has order 4:

g2 =

(
−1 0
0 −1

)
,

g3 =

(
0 −1
1 0

)
,

g4 =

(
1 0
0 1

)
.

Consider the element g =

(
1 −1
0 1

)
. For any n ∈ Z+ we compute:

(
1 −n
0 1

) (
1 −1
0 1

)
=

(
1 −1
0 1

)(
1 −n
0 1

)
=

(
1 −n− 1
0 1

)
.

Therefore, for any n ∈ Z+ we have gn =

(
1 −n
0 1

)
6= e. The element g has infinite order in G = GL2(R).



Exercise 3. (a) Find the last digit of 71000.

(b) Show that 72 divides 5348 − 1.

(c) Show that the number a = (2916 + 2816)(298 + 288)(294 + 284)(292 + 282)(29 + 28) is divisible by 51.
Hint: Use Euler’s theorem.

Solution 3. (a) By Euler’s theorem, aϕ(n) ≡ 1 (mod n) for any a ∈ N coprime to n ∈ Z+. We have ϕ(10) = 4, and
therefore 74 ≡ 1 (mod 10). Then we obtain (74)250 ≡ 1 (mod 10) = 71000 ≡ 1 (mod 10). The last digit is 1.

(b) We use the prime factorization of 72 = 23 · 32. We have ϕ(23) = 23 − 22 = 4, ϕ(32) = 32 − 3 = 6. As 53 is
prime, by Euler’s theorem we have 534 ≡ 1 (mod 8) and 536 ≡ 1 (mod 9). Therefore, 5348 ≡ 1 (mod 8) and
5348 ≡ 1 (mod 9). Since 5348 − 1 is divisible by both 8 and 9, it is divisible by 72.

(c) Note that 51 = 3 · 17. First, 29 + 28 = 57 = 3 · 19, so a is divisible by 3. Now we can write

a = a(29− 28) = (2916 + 2816)(298 + 288)(294 + 284)(292 + 282)(29 + 28)(29− 28) =

= (2916 + 2816)(298 + 288)(294 + 284)(292 + 282)(292 − 282) = (2916 + 2816)(298 + 288)(294 + 284)(294 − 284) =

= (2916 + 2816)(298 + 288)(298 − 288) = (2916 + 2816)(2916 − 2816) = 2932 − 2832.

By Euler’s theorem we have 2916 ≡ 1 (mod 17) and 2816 ≡ 1 (mod 17), therefore 2932 ≡ 2832 (mod 17), and
a = 2932 − 2832 is divisible by 17. Finally, a is divisible by 3 · 17 = 51.

Exercise 4. (a) Show that a13 ≡ a (mod 2730) for any integer a.

(b) Let q and p be two distinct primes. Show that pq−1 + qp−1 ≡ 1 (mod pq).

(c) Let p be a prime different from 2 and 5. Show that p divides an infinite number of elements of the sequence
9, 99, 999, 9999, . . . . (Hint: note that each element of the sequence can be written as 10a − 1 for an integer a.)

Solution 4. (a) This is equivalent to proving that 2730 divides a− a13, for every value a ∈ Z. First, observe that we
can write 2730 as the product of the following prime values 2730 = 13 · 5 · 7 · 3 · 2. We will show that each of these
prime factors divides a− a13, for any a ∈ Z, i.e. a13 ≡ a (mod p) for p = 2, 3, 5, 7, 13.

By Fermat’s little theorem we have ap ≡ a (mod p) for any integer a. So for p = 13, a13 ≡ a (mod 13), as desired.

For p = 7, a13 = a7a6 et a7a6 ≡ aa6 (mod 7). So we have a13 ≡ a7 (mod 7), and again by Fermat: a13 ≡ a (mod 7).

Similarly for p = 5 : a13 = a5a5a3. So a13 ≡ aaa3 (mod 5) and then further a5 ≡ a (mod 5), as desired.

The arguments for 2 and 3 are entirely similar.

(b) By Fermat’s Little Theorem pq−1 ≡ 1 mod q. This implies that pq−1+qp−1 ≡ 1 mod q. Similarly, pq−1+qp−1 ≡ 1
mod p. Therefore p and q both divide (pq−1 + qp−1 − 1). This means that lcm(p, q) divides (pq−1 + qp−1 − 1).
Now, lcm(p, q) = p · q. Thus we can conclude that pq−1 + qp−1 ≡ 1 mod pq.

(c) Observe that the n-th term in the sequence {9, 99, 999, 9999 . . . } can be written as an = 10n− 1. Let p be a prime
other than 2 or 5. We have that an ≡ 0 mod p if and only if 10n ≡ 1 mod p. Then, by Fermat’s Little Theorem
we can find infinitely many n = k(p− 1) so that 10n = (10p−1)k ≡ 1k ≡ 1 mod p.

Exercise 5. Let Cn denote the cyclic group of order n ∈ Z+.

(a) Describe all group homomorphisms Cn → Cn. How many are there?

(b) The kernel of a group homomorphism Cn → Cn is the set of the elements of Cn that are mapped to 1. A
homomorphism from a group to itself is an automorphism if its kernel is trivial (equal to {1}). Describe all group
automorphisms Cn → Cn. How many are there?

(c) Describe all group homomorphisms Cn → Cm for m,n ∈ Z+, m 6= n. How many are there?

Solution 5. (a) The cyclic group Cn is presented in generators and relations as Cn = 〈t | tn = 1〉. A group homo-
morphism φ : Cn → Cn is defined by assigning φ(t) = tk, where k is an integer considered modulo n. The only
condition to check is that φ(tn) = (φ(t))n = tkn = 1. Since tn = 1, this condition is satisfied for any k. Therefore,
there are n different homomorphisms φ : Cn → Cn defined by φ(t) = tk, k = 0, 1, . . . n− 1.



(b) To ensure that φ : Cn → Cn is an automorphism, we need to check that the kernel of φ is trivial. This means that
we are looking for the homomorphisms φ(t) = tk such that φ(ti) = tki 6= 1 for all i = 1, . . . n−1. This is equivalent
to the condition that n does not divide ik for all i = 1, . . . n − 1, which holds if and only if k is coprime with n.
Therefore, the number of distinct automorphisms of Cn is equal to the value of Euler’s totient function ϕ(n).

(c) Let φ : Cn → Cm be a group homomorphism. It is defined by assigning φ(t) = qi, where t : tn = 1 and q : qm = 1
are generators of the groups Cn and Cm respectively. The condition to check for φ to be a homomorphism is
(φ(t))n = qin = 1. This happens if and only if m divides the product in. We have mk = in for some integer k.
Let d = gcd(m,n). This is equivalent to

k
m

d
= i

n

d

for some integer k. Since m
d and n

d are relatively prime, the condition on i is that it has to be a multiple of m
d .

Since i are integers modulo m, we obtain the following different choices for i:

i = {0, m
d
,

2m

d
, . . .

(d− 1)m

d
}

Finally, there exists gcd(m,n) distinct group homomorphisms φ : Cn → Cm. Note that the answer is symmetric
with respect to the swap m↔ n. The number of group homomorphisms ψ : Cm → Cn is the same.


