
Algebra MATH-310 fall semester 2024 Anna Lachowska

September 23, 2024
Problem Set 2 Solutions

Exercise 1. Recall that the Euler’s totient function ϕ(n) is defined for any n ∈ Z+ as the number of positive integers
smaller than n, that are coprime to n.

(a) Show that ϕ(pk) = pk − pk−1, where p is a prime and k ∈ Z+.

(b) Show that ϕ(p1p2) = (p1 − 1)(p2 − 1), where p1 6= p2 are two distinct primes.

(c) Compute ϕ(n) for all natural n ≤ 20.

(d) Assuming that for any a, b ∈ Z+ such that gcd(a, b) = 1 ϕ(ab) = ϕ(a)ϕ(b) (we will prove this later), derive a
formula for ϕ(n) in terms of the prime factorization of n.

(e)∗ Let mn = p1p2 . . . pn denote a product of the first n primes. Show that

lim
n→∞

ϕ(mn)

mn
= 0.

Hint: Use the fact that

∞∑
i=1

1

pi
is divergent.

Solution 1. (a) Since p is a prime, the only numbers that have nontrivial common divisors with pk are the multiples
of p. There are pk−1 total positive integers smaller than pk, and (pk−1−1) of them are multiples of p. Therefore,
ϕ(pk) = pk − 1− (pk−1 − 1) = pk − pk−1. In particular ϕ(p) = p− 1.

(b) Let us count the number of positive integers < p1p2 that have nontrivial common divisors with p1p2. We have
p1p2 − 1 positive integers smaller than p1p2. Out of these, (p2 − 1) are multiples of p1 and (p1 − 1) are multiples
of p2. Since p1 and p2 are distinct primes, no other number < p1p2 can have a nontrivial common divisor with p1
or p2. So we have:

ϕ(p1p2) = p1p2 − 1− (p2 − 1)− (p1 − 1) = p1p2 − p2 − p1 + 1 = (p1 − 1)(p2 − 1).

(c)
ϕ(1) = 1, ϕ(2) = 1, ϕ(3) = 2, ϕ(4) = 2, ϕ(5) = 4, ϕ(6) = 2, ϕ(7) = 6,

ϕ(8) = 4, ϕ(9) = 6, ϕ(10) = 4, ϕ(11) = 10, ϕ(12) = 4, ϕ(13) = 12, ϕ(14) = 6,

ϕ(15) = 8, ϕ(16) = 8, ϕ(17) = 16, ϕ(18) = 6, ϕ(19) = 18, ϕ(20) = 8.

(d) Let n = pa1
1 pa2

2 . . . pa
m

m be the prime factorization of n. Since the primes pi 6= pj , we have

ϕ(n) =

m∏
i=1

ϕ(pai
i ) =

m∏
i=1

pai

(
1− 1

pi

)
=

m∏
i=1

pai
i

m∏
i=1

(
1− 1

pi

)
= n

m∏
i=1

(
1− 1

pi

)
.

(e) By the formula above we have ϕ(mn)
mn

=
∏n

i=1

(
1− 1

pi

)
. Consider the limit of the inverse expression:

lim
n→∞

mn

ϕ(mn)
= lim

n→∞

n∏
i=1

1

1− 1
pi

= lim
n→∞

n∏
i=1

∞∑
k=0

1

pki
≥

≥ lim
n→∞

n∏
i=1

(
1 +

1

pi

)
≥ lim

n→∞

(
1 +

n∑
i=1

1

pi

)
≥
∞∑
i=1

1

pi
=∞.

Here we use that

∞∑
i=1

1

pi
is divergent. Since the quantity mn

ϕ(mn)
grows to infinity as n→∞, we can conclude that

the inverse limit is zero:

lim
n→∞

ϕ(mn)

mn
= 0.



Exercise 2. Recall that for an RSA encryption we need a number N that is a product of two large distinct primes
and an encryption key e such that gcd(e, ϕ(N)) = 1, where ϕ(N) is the Euler totient function of N . Any number M
in the set {1, 2, . . . N} can be encoded by computing C = Me (modN). The decryption key consists of a number d
such that ed ≡ 1 (modϕ(N)). We have proved in class that if we know d, we can decode the original message M as
M = Cd (modN). For this exercise suppose that N = 527 and e = 17.

(a) Encode the message M = 113.

(b) Encode the message M = 500.

(c) This RSA example has weak security because the number N is small. Break the RSA by factoring N and finding
ϕ(N) and d.

(d) Using the value of d found above, decode the message C = 3.

(e) Check that for C found in (a), you have Cd ≡ 113 (mod) 527, so that indeed you can recover the original message.

Solution 2. (a) We need to compute C = Me (modN) = 11317 (mod 527). The number 11317 is too large to
handle by a calculator, but we can use the properties of congruences to simplify the computation. We find
1132 = 12769 ≡ 121 (mod) 527. Note that e = 24 + 1. The number e is often chosen in a form that allows to
speed up the computation. Then we repeat the same idea to compute

11317 ≡ (((1132)2)2)2 · 113 (mod) 527 ≡ ((1212)2)2 · 113 (mod) 527 ≡ (4122)2 · 113 (mod) 527 ≡

≡ 502 · 113 (mod) 527 ≡ 28 (mod) 527.

So C = 28.

(b) Similarly to the previous exercise we need to compute C = Me (mod) N = 50017 (mod) 527. Here we can use the
prime decomposition of M = 500 = 53 · 22 to simplify further the computations. We have:

(53)17 = (54)12 · 53 = 62512 · 125 ≡ (((98)3)2)2 · 125 (mod) 527 ≡ (4972)2 · 125 (mod) 527 ≡

≡ 3732 · 125 (mod) 527 ≡ 125 (mod) 527.

(22)17 = (210)3 · 24 ≡ 10243 · 16 (mod) 527 ≡ (−30)3 · 16 (mod) 527 ≡ −387 (mod) 527 ≡ 140 (mod) 527.

Finally we have
5009 (mod) 527 ≡ 125 · 140 (mod) 527 ≡ 109 (mod) 527.

So C = 109.

(c) Since we know that N is a product of exactly two distinct primes, we need to check the divisibility of N by the
primes up to

√
N , in this case

√
527 ∼= 22.9. Dividing by the primes up to 19 gives immediately 527 = 17 · 31.

Then we can compute the Euler totient function of N : ϕ(p · q) = (p− 1)(q− 1) for two distinct primes p and q, so
we have ϕ(527) = 16 · 30 = 480. We have gcd(17, 480) = 1, therefore we can find d ∈ N such that ed + kϕ(N) = 1
for some k ∈ Z. Using the Euclid’s algorithm for 480 and 17 we easily find

1 = 113 · 17− 4 · 480.

Therefore, d = 113.

(d) Now to decode the message we need to compute M = Cd (mod) 527 = 3113 (mod) 527. We can easily find
310 ≡ 25 (mod) 527, and then

3113 = (310)11 · 27 ≡ 2511 · 27 (mod) 527 ≡ (255)2 · 25 · 27 (mod) 527 ≡ 3152 · 25 · 27 (mod) 527 ≡ 445 (mod) 527.

So the message was M = 445.

(e) Here we have to check 28113 ≡ 113 (mod) 527. This is a direct computation. To check your computations here is
an online power congruences calculator: https://www.omnicalculator.com/math/power-modulo.



Exercise 3. Show that the set B of all matrices of the form(
a b
0 a−1

)
, a, b ∈ R, a 6= 0

is a group with respect to the matrix multiplication.
Consider the following subsets in B:

D =

{(
a 0
0 a−1

)}
a6=0

U =

{(
1 b
0 1

)}
b∈R

K =

{(
a b
0 a−1

)}
a>0,b≥0

Which of D,U,K are subgroups of B?

Solution 3. We can check directly that the set B is a group by finding the inverse and the product of two arbitrary
matrices in B and observing that the resulting matrix has the same form.

The set K is not a subgroup, because the inverse to the element(
a b
0 a−1

)
is the element (

a−1 −b
0 a

)
,

which is not in K, because −b ≤ 0.
The sets D and U are both subgroups in B.

Exercise 4. Consider the transformations in R2 given by the matrices

S0 =

(
1 0
0 −1

)
S1 =

(
− 1

2

√
3
2√

3
2

1
2

)

Check that S2
0 = 1 and S2

1 = 1. Let G be the group generated by S0 and S1. Find all elements of G and write down
a multiplication table between them.

Hint: Since S2
0 = S2

1 = 1, the only nontrivial elements in G are the products where S0 and S1 alternate. Find all
distinct elements of this form and determine their products.

Solution 4. The relations S2
0 = 1, S2

1 = 1 follow by direct computation. Since S0 and S1 are generators, we have
that S0S1 and S1S0 are elements of the group. They are distinct:

S0S1 =

(
1 0
0 −1

)(
− 1

2

√
3
2√

3
2

1
2

)
=

(
− 1

2

√
3
2

−
√
3
2 − 1

2

)
,

S1S0 =

(
− 1

2

√
3
2√

3
2

1
2

)(
1 0
0 −1

)
=

(
− 1

2 −
√
3
2√

3
2 − 1

2

)
.

However, the triple products are the same: S0S1S0 = S1S0S1:

S0S1S0 =

(
− 1

2

√
3
2

−
√
3
2 − 1

2

)(
1 0
0 −1

)
=

(
− 1

2 −
√
3
2

−
√
3
2

1
2

)
=

(
− 1

2 −
√
3
2√

3
2 − 1

2

)(
− 1

2

√
3
2√

3
2

1
2

)
= S1S0S1.

Using this and S2
0 = 1, S2

1 = 1, we find S0S1S0S1 = S1S0, S0S1S0S1S0 = S1, and S1S0S1S0 = S0S1, S1S0S1S0S1 = S0.
We have (S0S1)3 = (S1S0)3 = 1. Therefore there the group generated by S0 and S1 has 6 elements: {1, S0, S1, S0S1, S1S0, S0S1S0}.
It can be written in terms of generators and relations as follows:

G = 〈S0, S1 |S2
0 = 1, S2

1 = 1, S0S1S0 = S1S0S1〉.



The multiplication table has the form:

1 S0 S1 S0S1 S1S0 S0S1S0

1 1 S0 S1 S0S1 S1S0 S0S1S0

S0 S0 1 S0S1 S1 S0S1S0 S1S0

S1 S1 S1S0 1 S1S0S1 S0 S0S1

S0S1 S0S1 S0S1S0 S0 S1S0 1 S1

S1S0 S1S0 S1 S1S0S1 1 S0S1 S0

S0S1S0 S0S1S0 S0S1 S1S0 S0 S1 1

The element in the left column stands on the left in the product.


