September 9, 2024

Problem Set 1 Solutions

Exercise 1. Use the fundamental theorem of arithmetic and the well-ordering principle to show that for a prime number p, the square root \sqrt{p} is irrational.

Solution 1. Assume to the contrary, that there exist $a, b \in \mathbb{Z}^+$ such that $\sqrt{p} = \frac{a}{b}$. By the well-ordering principle, of all such couples (a, b) we can choose the one where a is the least element. Then a and b are relatively prime. Then $p = \frac{a^2}{b^2}$, so $pb^2 = a^2$. By the unique factorisation in \mathbb{Z}^+ , we have that p divides a. So a = pk for some $k \in \mathbb{Z}^+$. So $pb^2 = (pk)^2 = p^2k^2$ and we have $b^2 = pk^2$. Again by the unique factorisation, we see that p divides b, which contradicts the choice of (a, b) where a is the least element, and therefore a and b have no common divisor. Hence \sqrt{p} is not rational.

Exercise 2. Show that the strong induction principle implies the well ordering principle. Strong induction principle: Let P(n) be a statement that depends on $n \in \mathbb{N}$. If

- 1. P(0) is true, and
- 2. $\{P(0), P(1), \dots P(n)\}\ imply\ P(n+1)\ for\ any\ n\in\mathbb{N},$

then P(n) is true for all $n \in \mathbb{N}$.

Solution 2. Suppose to the contrary that there exists a nonempty subset $Y \subset \mathbb{N}$ that contains no least element. Let P(n) be the statement " $n \notin Y$ ".

Base: If $0 \in Y$, then 0 is the least element because it is the least element in \mathbb{N} . Therefore $0 \notin Y$ and P(0) is true. Induction step: Suppose that for some $n \in \mathbb{N}$, $\{P(0), P(1), \dots P(n)\}$ are true. This means that none of the numbers $0, 1, \dots n$ are in Y. Then if $(n+1) \in Y$, it is the least element in Y. Therefore, $(n+1) \notin Y$ and P(n+1) is true. Conclusion: By the strong induction, for all $n \in \mathbb{N}$ we have $n \notin Y$. But Y is a nonempty subset of \mathbb{N} , contradiction.

Exercise 3. Use the Euclidean algorithm to find the greatest common divisor gcd(a,b) for the following integers:

- (a) a = 73 and b = 12.
- (b) a = 101 and b = -32.
- (c) a = 9050 and b = 1004.

In each case find integers $x, y \in \mathbb{Z}$ such that $xa + yb = \gcd(a, b)$.

Solution 3. (a) By the Euclidean algorithm we have:

$$73 = 6 \cdot 12 + 1$$
$$12 = 12 \cdot 1 + 0.$$

So the greatest common divisor of 73 and 12 is 1.

Reversing the same algorithm we find:

$$1 = 73 - 6 \cdot 12 = 1 \cdot 73 + (-6)12.$$

Therefore we have (x, y) = (1, -6).

(b) By the Euclidean algorithm we have:

$$101 = -3 \cdot (-32) + 5$$

$$-32 = -7 \cdot 5 + 3$$

$$5 = 1 \cdot 3 + 2$$

$$3 = 1 \cdot 2 + 1$$

$$2 = 2 \cdot 1 + 0$$

So the greatest common divisor of 101 and -32 is 1.

Reversing the same algorithm we find:

$$\begin{aligned} 1 &= 3 - 1 \cdot 2 = -32 + 7 \cdot 5 - (5 - 1 \cdot 3) \\ &= -32 + 6(101 + 3 \cdot (-32)) + (-32 + 7 \cdot 5) \\ &= 6 \cdot 101 + 20 \cdot (-32) + 7(101 + 3 \cdot (-32)) \\ &= 13 \cdot 101 + 41 \cdot (-32). \end{aligned}$$

Therefore we have (x, y) = (13, 41).

We can arrive at the same result running the Euclidean algorithm for 101 and 32 = |-32|:

$$101 = 3 \cdot 32 + 5$$
$$32 = 6 \cdot 5 + 2$$
$$5 = 2 \cdot 2 + 1$$
$$2 = 2 \cdot 1 + 0$$

Reversing the algorithm we find:

$$1 = 5 - 2 \cdot 2 = (101 - 3 \cdot 32) - 2 \cdot (32 - 6 \cdot 5)$$

= 101 - 3 \cdot 32 - 2 \cdot 32 + 12 \cdot (101 - 3 \cdot 32)
= 13 \cdot 101 - 41 \cdot 32
= 13 \cdot 101 + 41 \cdot (-32).

Therefore we have as before (x, y) = (13, 41).

(c)
$$9050 = 1004 \cdot 9 + 14$$

 $1004 = 14 \cdot 71 + 10$
 $14 = 10 \cdot 1 + 4$
 $10 = 4 \cdot 2 + 2$

 $4 = 2 \cdot 2 + 0$, and so the greatest common divisor of 9050 and 1004 is 2.

To find x et y such that 9050x + 1004y = 2, we consider the reverse algorithm:

$$\begin{aligned} 2 &= 10 - 4 \cdot 2 \\ &= 10 - (14 - 10) \cdot 2 = 3 \cdot 10 - 2 \cdot 14 \\ &= 3(1004 - 14 \cdot 71) - 2 \cdot 14 = 3 \cdot 1004 - 215 \cdot 14 \\ &= 3 \cdot 1004 - 215(9050 - 1004 \cdot 9) = 1938 \cdot 1004 - 215 \cdot 9050. \text{ Therefore we have } (x, y) = (-215, 1938). \end{aligned}$$

Exercise 4. 1. Show that if $a, b \in \mathbb{Z}^*$ and $d = \gcd(a, b)$, then the equation

$$ax + by = c$$

has a solution in integer numbers if and only if $c \in d\mathbb{Z}$.

- 2. Suppose that $a, b \in \mathbb{Z}^*$ and $c \in \mathbb{Z}$ are such that the equation ax + by = c has a solution (x_0, y_0) in integer numbers. Find all possible pairs of integer solutions (x, y) in terms of x_0, y_0, a, b .
- **Solution 4.** 1. \Rightarrow). Since d|a and d|b, the equation implies that d|c and therefore $c \in d\mathbb{Z}$.
 - \Leftarrow). By the Euclidean algorithm, there exist $x_1, y_1 \in \mathbb{Z}$ such that

$$ax_1 + by_1 = d.$$

If c = dk, $k \in \mathbb{Z}$, multiplying the equation by k gives

$$akx_1 + bky_1 = dk = c.$$

Therefore, $(x, y) = (kx_1, ky_1)$ is a solution.

2. If (x_0, y_0) is a solution of the equation xa + yb = c, the fact that (x, y) is another solution of the same equation is equivalent to the statement:

$$(x - x_0)a = (y_0 - y)b.$$

Since $d = \gcd(a, b)$, both sides are divisible by d:

$$\frac{a}{d}(x-x_0) = \frac{b}{d}(y_0 - y).$$

Now since $\frac{a}{d}$ and $\frac{b}{d}$ are relatively prime, we have $\frac{b}{d} \mid (x - x_0)$ and $\frac{a}{d} \mid (y_0 - y)$. Dividing the equation by $\frac{a}{d} \cdot \frac{b}{d}$, we obtain an integer k:

$$\frac{x - x_0}{b/d} = \frac{y_0 - y}{a/d} = k \in \mathbb{Z}.$$

Finally, we have that for any $k \in \mathbb{Z}$ the pair $x = x_0 + k \frac{b}{d}$ and $y = y_0 - k \frac{a}{d}$ provides a solution:

$$a\left(x_0 + k\frac{b}{d}\right) + b\left(y_0 - k\frac{a}{d}\right) = c \quad \forall k \in \mathbb{Z}.$$

Since all implications are equivalences, these are all possible solutions.

Exercise 5. Bézout's theorem states that two integers s and t are coprime if and only if there exist two integers x and y such that xs + yt = 1. Use Bézout's theorem to show that if an integer n divides a product of two integers a and b, and n is coprime with a, then n divides b.

Solution 5. We know that a and n are coprime. Therefore, by Bézout's theorem there exist two integers x and y such that

$$xa + yn = 1$$
.

Multiply the obtained equality by the integer b:

$$xab + ynb = b$$
.

Since n divides the product ab, we can write ab = nk for an integer k. Then

$$xnk + ynb = n(xk + yb) = Mn = b$$
,

where M = xk + yb is an integer. This implies by definition that n divides b.