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Exercise 1. Use the fundamental theorem of arithmetic and the well-ordering principle to show that for a prime
number p, the square root

√
p is irrational.

Solution 1. Assume to the contrary, that there exist a, b ∈ Z+ such that
√
p = a

b . By the well-ordering principle, of
all such couples (a, b) we can choose the one where a is the least element. Then a and b are relatively prime. Then

p = a2

b2 , so pb2 = a2. By the unique factorisation in Z+, we have that p divides a. So a = pk for some k ∈ Z+.
So pb2 = (pk)2 = p2k2 and we have b2 = pk2. Again by the unique factorisation, we see that p divides b, which
contradicts the choice of (a, b) where a is the least element, and therefore a and b have no common divisor. Hence

√
p

is not rational.

Exercise 2. Show that the strong induction principle implies the well ordering principle.
Strong induction principle: Let P (n) be a statement that depends on n ∈ N. If

1. P (0) is true, and

2. {P (0), P (1), . . . P (n)} imply P (n + 1) for any n ∈ N,

then P (n) is true for all n ∈ N.

Solution 2. Suppose to the contrary that there exists a nonempty subset Y ⊂ N that contains no least element. Let
P (n) be the statement “n /∈ Y ”.
Base: If 0 ∈ Y , then 0 is the least element because it is the least element in N. Therefore 0 /∈ Y and P (0) is true.
Induction step: Suppose that for some n ∈ N, {P (0), P (1), . . . P (n)} are true. This means that none of the numbers
0, 1, . . . n are in Y . Then if (n + 1) ∈ Y , it is the least element in Y . Therefore, (n + 1) /∈ Y and P (n + 1) is true.
Conclusion: By the strong induction, for all n ∈ N we have n /∈ Y . But Y is a nonempty subset of N, contradiction.

Exercise 3. Use the Euclidean algorithm to find the greatest common divisor gcd(a, b) for the following integers:

(a) a = 73 and b = 12.

(b) a = 101 and b = −32.

(c) a = 9050 and b = 1004.

In each case find integers x, y ∈ Z such that xa + yb = gcd(a, b).

Solution 3. (a) By the Euclidean algorithm we have:

73 = 6 · 12 + 1

12 = 12 · 1 + 0.

So the greatest common divisor of 73 and 12 is 1.

Reversing the same algorithm we find:

1 = 73− 6 · 12 = 1 · 73 + (−6)12.

Therefore we have (x, y) = (1,−6).



(b) By the Euclidean algorithm we have:

101 = −3 · (−32) + 5

−32 = −7 · 5 + 3

5 = 1 · 3 + 2

3 = 1 · 2 + 1

2 = 2 · 1 + 0

So the greatest common divisor of 101 and −32 is 1.

Reversing the same algorithm we find:

1 = 3− 1 · 2 = −32 + 7 · 5− (5− 1 · 3)

= −32 + 6(101 + 3 · (−32)) + (−32 + 7 · 5)

= 6 · 101 + 20 · (−32) + 7(101 + 3 · (−32))

= 13 · 101 + 41 · (−32).

Therefore we have (x, y) = (13, 41).

We can arrive at the same result running the Euclidean algorithm for 101 and 32 = | − 32|:

101 = 3 · 32 + 5

32 = 6 · 5 + 2

5 = 2 · 2 + 1

2 = 2 · 1 + 0

Reversing the algorithm we find:

1 = 5− 2 · 2 = (101− 3 · 32)− 2 · (32− 6 · 5)

= 101− 3 · 32− 2 · 32 + 12 · (101− 3 · 32)

= 13 · 101− 41 · 32

= 13 · 101 + 41 · (−32).

Therefore we have as before (x, y) = (13, 41).

(c) 9050 = 1004 · 9 + 14

1004 = 14 · 71 + 10

14 = 10 · 1 + 4

10 = 4 · 2 + 2

4 = 2 · 2 + 0, and so the greatest common divisor of 9050 and 1004 is 2.

To find x et y such that 9050x + 1004y = 2, we consider the reverse algorithm:

2 = 10− 4 · 2
= 10− (14− 10) · 2 = 3 · 10− 2 · 14

= 3(1004− 14 · 71)− 2 · 14 = 3 · 1004− 215 · 14

= 3 · 1004− 215(9050− 1004 · 9) = 1938 · 1004− 215 · 9050. Therefore we have (x, y) = (−215, 1938).

Exercise 4. 1. Show that if a, b ∈ Z∗ and d = gcd(a, b), then the equation

ax + by = c

has a solution in integer numbers if and only if c ∈ dZ.



2. Suppose that a, b ∈ Z∗ and c ∈ Z are such that the equation ax+by = c has a solution (x0, y0) in integer numbers.
Find all possible pairs of integer solutions (x, y) in terms of x0, y0, a, b.

Solution 4. 1. ⇒). Since d|a and d|b, the equation implies that d|c and therefore c ∈ dZ.
⇐). By the Euclidean algorithm, there exist x1, y1 ∈ Z such that

ax1 + by1 = d.

If c = dk, k ∈ Z, multiplying the equation by k gives

akx1 + bky1 = dk = c.

Therefore, (x, y) = (kx1, ky1) is a solution.

2. If (x0, y0) is a solution of the equation xa + yb = c, the fact that (x, y) is another solution of the same equation
is equivalent to the statement:

(x− x0)a = (y0 − y)b.

Since d = gcd(a, b), both sides are divisible by d:

a

d
(x− x0) =

b

d
(y0 − y).

Now since a
d and b

d are relatively prime, we have b
d | (x− x0) and a

d | (y0 − y). Dividing the equation by a
d ·

b
d , we

obtain an integer k:
x− x0

b/d
=

y0 − y

a/d
= k ∈ Z.

Finally, we have that for any k ∈ Z the pair x = x0 + k b
d and y = y0 − k a

d provides a solution:

a

(
x0 + k

b

d

)
+ b

(
y0 − k

a

d

)
= c ∀k ∈ Z.

Since all implications are equivalences, these are all possible solutions.

Exercise 5. Bézout’s theorem states that two integers s and t are coprime if and only if there exist two integers x
and y such that xs + yt = 1. Use Bézout’s theorem to show that if an integer n divides a product of two integers a
and b, and n is coprime with a, then n divides b.

Solution 5. We know that a and n are coprime. Therefore, by Bézout’s theorem there exist two integers x and y
such that

xa + yn = 1.

Multiply the obtained equality by the integer b:

xab + ynb = b.

Since n divides the product ab, we can write ab = nk for an integer k. Then

xnk + ynb = n(xk + yb) = Mn = b,

where M = xk + yb is an integer. This implies by definition that n divides b.


