September 9, 2024

Problem Set 1

Exercise 1. Use the fundamental theorem of arithmetic and the well-ordering principle to show that for a prime number p, the square root \sqrt{p} is irrational.

Exercise 2. Show that the strong induction principle implies the well-ordering principle. Strong induction principle: Let P(n) be a statement that depends on $n \in \mathbb{N}$. If

- 1. P(0) is true, and
- 2. $\{P(0), P(1), \dots P(n)\}\ imply\ P(n+1)\ for\ any\ n\in\mathbb{N},$

then P(n) is true for all $n \in \mathbb{N}$.

Well-ordering principle: Every nonempty subset $S \subset \mathbb{N}$ contains a least element.

Exercise 3. Use the Euclidean algorithm to find the greatest common divisor gcd(a, b) for the following integers:

- (a) a = 73 and b = 12.
- (b) a = 101 and b = -32.
- (c) a = 9050 and b = 1004.

In each case find integers $x, y \in \mathbb{Z}$ such that $xa + yb = \gcd(a, b)$.

Exercise 4. 1. Show that if $a, b \in \mathbb{Z}^*$ and $d = \gcd(a, b)$, then the equation

$$ax + by = c$$

has a solution in integer numbers if and only if $c \in d\mathbb{Z}$.

2. Suppose that $a, b \in \mathbb{Z}^*$ and $c \in \mathbb{Z}$ are such that the equation ax + by = c has a solution (x_0, y_0) in integer numbers. Find all possible pairs of integer solutions (x, y) in terms of x_0, y_0, a, b .

Exercise 5. Bézout's theorem states that two integers s and t are coprime if and only if there exist two integers x and y such that xs + yt = 1. Use Bézout's theorem to show that if an integer n divides a product of two integers a and b, and n is coprime with a, then n divides b.