December 16, 2024

Problem Set 13

Exercise 1. Let $\mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$ be the field of 3 elements. Let $I = ((X^2 + 1))$ be the ideal in $\mathbb{F}_3[X]$.

- (a) Show that $X^2 + 1$ is irreducible in $\mathbb{F}_3[X]$ and deduce that the quotient ring $\mathbb{F}_3[X]/I$ is a field.
- (b) How many elements are there in this field? List all the elements.
- (c) Show that g(X) = 2X + 1 is a generator of the multiplicative group of units of this field.

Exercise 2. Let $K = \mathbb{Q}[X]/(X^2 + 2X + 3)$. Denote by α the class of X in K.

- (a) Show that K is a field.
- (b) Show that $2\alpha 1$ is nonzero and compute its inverse in K.

Exercise 3. Let $K = \mathbb{F}_7[X]/(X^3 - 2)$

- (a) Show that the polynomial $P(X) = X^3 2$ is irreducible over \mathbb{F}_7 .
- (b) Decompose the polynomial $(X^3 2)$ into irreducible factors over K.
- (d) Give a basis of K as a vector space over \mathbb{F}_7 .
- (e) Find the number of elements of K.

Exercise 4. (a) Find an explicit isomorphism between the rings $\mathbb{F}_2[x]/(x^2)$ and $\mathbb{F}_2[x]/(x^2+1)$. Are they also isomorphic to the ring $\mathbb{Z}/4\mathbb{Z}$? Is any of these rings an integral domain?

- (b) Show that the ring $\mathbb{F}_2[x]/(x^2+x+1)$ is a field of 4 elements and therefore is not isomorphic to $\mathbb{F}_2[x]/(x^2)$ or $\mathbb{Z}/4\mathbb{Z}$.
- (c) Check that the group of units of the field $\mathbb{F}_2[x]/(x^2+x+1)$ is cyclic and find a generator.
- (d) The fields $K_1 = \mathbb{F}_2[x]/(x^3 + x + 1)$ and $K_2 = \mathbb{F}_2[x]/(x^3 + x^2 + 1)$ are isomorphic. Find an explicit isomorphism between them.