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December 9, 2024
Problem Set 12 Solutions

Exercise 1. Find the units and irreducible elements in the ring Z/4Z.

Solution 1. Consider the multiplication table in the ring Z/47Z:
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This shows that the elements 1,3 € Z/4Z are the units. The element 2 =2 -3 = 2. 1, therefore it is always a product
of 2 and a unit. Therefore, 2 irreducible.

Exercise 2. (a) Let K be a field and p(X) € K[X]. Show that if for a € K, we have p(a) = 0, then X — a divides p.

(b) Let p(X) = an X" + a1 X" ' 4+ -+ ao € Z[X], a, # 0. Suppose that £ € Q is a root of p(X), such that
ged(r, s) = 1, so that we have p(%) = 0. Show that s|a,, and r|ag in Z. In particular, if p(X) is monic (i.e., a,, = 1),
the only rational roots of p(X) are integers. Use this property to determine which of the following polynomials
are irreducible in Q[X].

X222, X34 X+1,

X34+2X2 -3, 2X°-X -1, b5X®-2X%46

Solution 2. (a) Consider the euclidean division of the polynomial p by (X —«): p = (X —a)g+r, where ¢, r € K[X]
and either r = 0 or deg(r) < deg(X — «). Suppose that r # 0, then deg(r) = 0 and r = k # 0 for some k € K.
Then, p(a) = k # 0, a contradiction. Therefore X — o divides p.

(b) Consider p(g) = a"(g)n + an—l(g)ﬂH1 + - +ap=0:

e if we multiply both sides by s™, shift the constant term to the right hand side, and factor out r on the left
hand side, we have 7(a, 7"~ + a, 17" 25+ -+ + a;s" 1) = —aps™. Therefore, since (r,s) = 1, (r,s") =1
and so r must divide ay.

e if we multiply both sides by s™, shift the leading term to the right hand side, and factor out s. We obtain
s(an_18""t+an_98" 2+ +apr"t) = —a,r™. As before, we can conclude that s must divide a,.

Using this criteria we will check if the given polynomials are irreducible in Q[X]. Recall that a polynomial in Q[z] of
degree < 3 is irreducible if an only if it has no roots in Q.

e The roots of the monic polynomial X? — 2 can only be integers dividing 2 therefore &1, 2. We can easily check
that these are not the roots.

e The roots of the monic polynomial X3 + X + 1 can only be integers dividing 1 therefore £1. We have can easily
check that these are not the roots.

e Suppose p(X) = X3 + 2X?2 — 3 factors; then one of the factors is degree 1 and so p has a root in Q. Suppose
L eQ, (r,s) =1 and it is a root of p(X) = X3 4 2X? — 3. We have that s = 1 and r € +1,43. Sinc p(1) =0,
X — 1 divides p(X) and so p(X) is not irreducible in Q[X].

o If we find a root of p(X), then it is not irreducible. However, if we find no roots, we cannot conclude that the
polynomial is irreducible because its degree is > 3. Suppose = € Q, (r,s) = 1 and it is a root of 2X9 — X — 1.
We must have that s € {£1,+2} and r = £1. Observe that p(1) = 0, thus by (a), (X — 1) divides p and so p is
not irreducible in Q[X].

e We argue as for the first polynomial above, since here as well we have a polynomial of degree three. Suppose
2 €Q, (r,s) =1and it is a root of 5X® —2X? 4+ 6. We must have that s € {£1,£5} and r € {1, +2, +3, +6}.
So we need to check if there is any root of p in the set S = {£1,42,+3, +6, %, %, %, %} With a little bit
of patience, one can see that each element of the set .S is not a root of p, therefore p is irreducible.



Exercise 3. Show that the polynomial X3 + 462X?2 + 2433X — 67692 is irreducible over Q.
Hint: Use the Eisenstein criterion.

Solution 3. Let p = 3 and observe that p divides 462,2433 and 67692 but doesn’t divide the coefficient of X3.
Moreover, p? = 9 doesn’t divide 67692. Therefore, we can use Eisenstein Criterion to conclude that f(X) is irreducible
over Q.

Exercise 4. (Chinese remainder theorem for polynomial rings). Find a polynomial f(X) € Q[X] such that

f=X (mod X% +1)
=-1(mod X — 1)
f=X+2 (mod X2 —4).
Solution 4. Fix a = X?+1,b= X — 1 and ¢ = X? — 4. The elements a, b, ¢ are pairwise coprime in Q[X].
(a) Since a,b and ¢ divide m = (X? 4+ 1)(X — 1)(X? — 4), we have a well defined ring homomorphism:

¢ : Q[X]/(m) — Q[X]/(a) x Q[X]/(b) x Q[X]/(c)
[sle = ([sas [s]b, [s]e)-
Moreover a, b and ¢ are pairwise coprime polynomials in Q[X], therefore by the CRT (Chinese Remainder Theorem)

we know that our system has a unique solution f modulo m.

(b) We will start by solving the first two equations of the system:

f=X (moda)
f=-1(modb)

Since a and b are coprime, we know that the system has a solution modulo d = a-b = (X% +1)(X — 1). Observe
that f is a solution if and only if there are polynomials ¢ and h such that f = g-a+ X = h-b— 1. Thus,
g-a—h-b=—1—X. One can take g = —1 et h = —X, which will give us f = —X2 + X — 1. If one doesn’t
find g, h with a straightforward method, it’s recommended using the Bézout Identity and the Extended Euclidean
Algorithm.

Now, the original system is equivalent to the following one:

f=-X2+X -1 (modd)
f=X+42 (modc).

Again since ¢ and d are coprime polynomials, by the CRT one knows that there exists a solution modulo m = d-c =
a-b-c. A polynomial f is a solution if there are polynomial g and h such that f = g-d— X2+ X —1=h-c+ X +2.
Meaning that

t=g-d—h-c, (1)
where t = X2 + 3.

Since it’s hard to find straightforward g and h we will use the Bézout Identity and the Extended Euclidean
Algorithm. We use them to compute z,w such that:

l=w-c+z-d (2)
In our case w = —1=(X?+4) and z = 1=(X + 1). Then, by multiplying both sides of equation (2) by t = X% +3
we obtain:
t=t-w-c+t-z-d. (3)
Therefore, comparing equation (1) and (2), one can take g =t -z and h = —t - w.

Then the set of the solutions of the system of congruences is the set of all the values congruent to

f=—t-w-c+ X +2 modulo m.

Exercise 5. Let F5 = Z/5Z be the field of 5 elements. Use the Euclidean algorithm in Fj[z] to find F, the monic
greatest common divisor of the given polynomials P = 32° +z + 1 and Q = 22 + 3z + 1. Then use Bezout’s theorem
to express F in the form F = aP + bQ, where a,b € F5[x].

Solution 5. By Euclidean division we find P(z) = Q(z)(323 — 42?2 — 2+ 2) + (x — 1), and Q(z) = (z — 1)(z + 4).
Therefore, z — 1 is the monic ged(P(z), Q(x)) over F5. Reading the Euclidean algorithm backwards we find (z — 1) =
P(z) — (323 — 42 — 2 + 2)Q(x).



