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Exercise 1. Find the units and irreducible elements in the ring Z/4Z.

Solution 1. Consider the multiplication table in the ring Z/4Z:

0̄ 1̄ 2̄ 3̄
0̄ 0̄ 0̄ 0̄ 0̄
1̄ 0̄ 1̄ 2̄ 3̄
2̄ 0̄ 2̄ 0̄ 2̄
3̄ 0̄ 3̄ 2̄ 1̄

.

This shows that the elements 1̄, 3̄ ∈ Z/4Z are the units. The element 2̄ = 2̄ · 3̄ = 2̄ · 1̄, therefore it is always a product
of 2̄ and a unit. Therefore, 2̄ irreducible.

Exercise 2. (a) Let K be a field and p(X) ∈ K[X]. Show that if for α ∈ K, we have p(α) = 0, then X−α divides p.

(b) Let p(X) = anX
n + an−1X

n−1 + · · · + a0 ∈ Z[X], an 6= 0. Suppose that r
s ∈ Q is a root of p(X), such that

gcd(r, s) = 1, so that we have p( r
s ) = 0. Show that s|an and r|a0 in Z. In particular, if p(X) is monic (i.e., an = 1),

the only rational roots of p(X) are integers. Use this property to determine which of the following polynomials
are irreducible in Q[X].

X2 − 2, X3 +X + 1,

X3 + 2X2 − 3, 2X9 −X − 1, 5X3 − 2X2 + 6

Solution 2. (a) Consider the euclidean division of the polynomial p by (X−α): p = (X−α)q+r, where q, r ∈ K[X]
and either r = 0 or deg(r) < deg(X − α). Suppose that r 6= 0, then deg(r) = 0 and r = k 6= 0 for some k ∈ K.
Then, p(α) = k 6= 0, a contradiction. Therefore X − α divides p.

(b) Consider p( r
s ) = an( r

s )n + an−1( r
s )n−1 + · · ·+ a0 = 0:

• if we multiply both sides by sn, shift the constant term to the right hand side, and factor out r on the left
hand side, we have r(anr

n−1 + an−1r
n−2s + · · · + a1s

n−1) = −a0sn. Therefore, since (r, s) = 1, (r, sn) = 1
and so r must divide a0.

• if we multiply both sides by sn, shift the leading term to the right hand side, and factor out s. We obtain
s(an−1s

n−1 + an−2s
n−2r + · · ·+ a0r

n−1) = −anrn. As before, we can conclude that s must divide an.

Using this criteria we will check if the given polynomials are irreducible in Q[X]. Recall that a polynomial in Q[x] of
degree ≤ 3 is irreducible if an only if it has no roots in Q.

• The roots of the monic polynomial X2− 2 can only be integers dividing 2 therefore ±1,±2. We can easily check
that these are not the roots.

• The roots of the monic polynomial X3 +X + 1 can only be integers dividing 1 therefore ±1. We have can easily
check that these are not the roots.

• Suppose p(X) = X3 + 2X2 − 3 factors; then one of the factors is degree 1 and so p has a root in Q. Suppose
r
s ∈ Q, (r, s) = 1 and it is a root of p(X) = X3 + 2X2 − 3. We have that s = 1 and r ∈ ±1,±3. Sinc p(1) = 0,
X − 1 divides p(X) and so p(X) is not irreducible in Q[X].

• If we find a root of p(X), then it is not irreducible. However, if we find no roots, we cannot conclude that the
polynomial is irreducible because its degree is > 3. Suppose r

s ∈ Q, (r, s) = 1 and it is a root of 2X9 −X − 1.
We must have that s ∈ {±1,±2} and r = ±1. Observe that p(1) = 0, thus by (a), (X − 1) divides p and so p is
not irreducible in Q[X].

• We argue as for the first polynomial above, since here as well we have a polynomial of degree three. Suppose
r
s ∈ Q, (r, s) = 1 and it is a root of 5X3 − 2X2 + 6. We must have that s ∈ {±1,±5} and r ∈ {±1,±2,±3,±6}.
So we need to check if there is any root of p in the set S = {±1,±2,±3,±6, ±1

5 ,
±2
5 ,

±3
5 ,

±6
5 }. With a little bit

of patience, one can see that each element of the set S is not a root of p, therefore p is irreducible.



Exercise 3. Show that the polynomial X3 + 462X2 + 2433X − 67692 is irreducible over Q.
Hint: Use the Eisenstein criterion.

Solution 3. Let p = 3 and observe that p divides 462, 2433 and 67692 but doesn’t divide the coefficient of X3.
Moreover, p2 = 9 doesn’t divide 67692. Therefore, we can use Eisenstein Criterion to conclude that f(X) is irreducible
over Q.

Exercise 4. (Chinese remainder theorem for polynomial rings). Find a polynomial f(X) ∈ Q[X] such that
f ≡ X (modX2 + 1)

f ≡ −1 (modX − 1)

f ≡ X + 2 (modX2 − 4).

Solution 4. Fix a = X2 + 1, b = X − 1 and c = X2 − 4. The elements a, b, c are pairwise coprime in Q[X].

(a) Since a, b and c divide m = (X2 + 1)(X − 1)(X2 − 4), we have a well defined ring homomorphism:

ϕ : Q[X]/(m) −→ Q[X]/(a)×Q[X]/(b)×Q[X]/(c)

[s]c 7→ ([s]a, [s]b, [s]c).

Moreover a, b and c are pairwise coprime polynomials in Q[X], therefore by the CRT (Chinese Remainder Theorem)
we know that our system has a unique solution f modulo m.

(b) We will start by solving the first two equations of the system:{
f ≡ X (mod a)

f ≡ −1 (mod b)

Since a and b are coprime, we know that the system has a solution modulo d = a · b = (X2 + 1)(X − 1). Observe
that f is a solution if and only if there are polynomials g and h such that f = g · a + X = h · b − 1. Thus,
g · a − h · b = −1 − X. One can take g = −1 et h = −X, which will give us f = −X2 + X − 1. If one doesn’t
find g, h with a straightforward method, it’s recommended using the Bézout Identity and the Extended Euclidean
Algorithm.

Now, the original system is equivalent to the following one:{
f ≡ −X2 +X − 1 (mod d)

f ≡ X + 2 (mod c).

Again since c and d are coprime polynomials, by the CRT one knows that there exists a solution modulo m = d·c =
a ·b ·c. A polynomial f is a solution if there are polynomial g and h such that f = g ·d−X2 +X−1 = h ·c+X+2.
Meaning that

t = g · d− h · c, (1)

where t = X2 + 3.

Since it’s hard to find straightforward g and h we will use the Bézout Identity and the Extended Euclidean
Algorithm. We use them to compute z, w such that:

1 = w · c+ z · d (2)

In our case w = − 1
15 (X2 + 4) and z = 1

15 (X + 1). Then, by multiplying both sides of equation (2) by t = X2 + 3
we obtain:

t = t · w · c+ t · z · d. (3)

Therefore, comparing equation (1) and (2), one can take g = t · z and h = −t · w.

Then the set of the solutions of the system of congruences is the set of all the values congruent to

f = −t · w · c+X + 2 modulo m.

Exercise 5. Let F5 = Z/5Z be the field of 5 elements. Use the Euclidean algorithm in F5[x] to find F , the monic
greatest common divisor of the given polynomials P = 3x5 + x+ 1 and Q = x2 + 3x+ 1. Then use Bezout’s theorem
to express F in the form F = aP + bQ, where a, b ∈ F5[x].

Solution 5. By Euclidean division we find P (x) = Q(x)(3x3 − 4x2 − x + 2) + (x − 1), and Q(x) = (x − 1)(x + 4).
Therefore, x− 1 is the monic gcd(P (x), Q(x)) over F5. Reading the Euclidean algorithm backwards we find (x− 1) =
P (x)− (3x3 − 4x2 − x+ 2)Q(x).


