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Exercise 1. Find the smallest positive integer x such that:

(a)


x ≡ 0 (mod 2)

x ≡ 2 (mod 3)

x ≡ 4 (mod 5)

x ≡ 5 (mod 7).

(b)


x ≡ 1 (mod 17)

x ≡ 1 (mod 20)

x ≡ 1 (mod 29).

(c)


x ≡ 0 (mod 11)

x ≡ 0 (mod 13)

x ≡ 1 (mod 2).

Solution 1. (a) By the Chinese remainder theorem, there exists a unique solution of these congruences modulo
2 · 3 · 5 · 7 = 210.
Using the method of consecutive solution of congruences, we have: x ≡ 0( mod 2) and x ≡ 2( mod 3) implies
x ≡ 2( mod 6). Note that it is enough for us to find any one solution (for example x ≡ 8( mod 6) would
also work). We proceed with the next congruence. Since 6 and 5 are coprime, we need to solve the equation
2 + 6t = 4 + 5s, or 6t − 5s = 2. We find a solution t = s = 2, and x = 2 + 6t ≡ 14( mod 30). Finally, with
the last congruence this gives 5 + 7t = 14 + 30s. We obtain 30s − 7t = −9. It is easy to guess for example
s = −1, t = −3, and then x ≡ −30 + 14 ≡ −16( mod 210). Then the smallest positive integer that solves the
system is −16 + 210 = 194.

(b) This system is easier than it seems. Note that 1 satisfies all three congruences and is the smallest possible positive
integer, so it is the solution.

(c) The numbers 11, 13 and 2 are mutually prime, and the product 11 · 13 = 143 is an odd number, therefore it
satisfies all the congruences. This is also the smallest positive integer with this property.

Exercise 2.
Show that the system of congruences 

x ≡ 4 (mod 6)

x ≡ 2 (mod 4)

x ≡ 5 (mod 15).

has no solution.

Solution 2.
If there exist a solution x, then we have in particular x = 4 + 6k = 5 + 15l, where k and l are integers. Then
1 = 6k−15l, which is impossible because the left hand side is not divisible by 3. Therefore the system has no solution.

Exercise 3. Let d1, d2, . . . , dn be the integers ≥ 2. Recall that an element a in a ring A is nilpotent a 6= 0 and there
exists k ∈ N such that ak = 0 ∈ A. Find the conditions on d1, d2, . . . , dn so that the ring Z/d1Z×Z/d2Z× . . .×Z/dnZ
contains nilpotent elements.

(a) What are the nilpotent elements in the ring Z/6Z× Z/7Z× Z/8Z?

(b) Let p1, p2, p3 be distinct primes and d = p21p
2
2p

2
3. Show that the rings Z/dZ and Z/p1p2Z × Z/p2p3Z × Z/p1p3Z

are non-isomorphic. Use the nilpotent elements, the units and the characteristic of the two rings.

(c) Show that the rings Z/1260Z and Z/14Z× Z/30Z× Z/3Z are not isomorphic.

(d) Decompose Z/1260Z as a direct product of rings with the maximal number of factors.

Remarque: The exercises (c) and (d) show that we cannot replace the condition “pairwise coprime” by “coprime” in
the Chinese remainder theorem.

Solution 3. First let us consider the ring Z/dZ for d ≥ 2. We will show that it has a nontrivial nilpotent element if and
only if d is divisible by a square of a prime. Indeed, suppose that d = p2m, where m ∈ Z+. Then pm ·pm = p2m2 ≡ 0(
mod d). On the other hand, suppose that the prime factorization of d is square-free: d = p1p2 . . . pk. Then d divides
ak if and only if d divides a, which means that a ≡ 0( mod d).
Now for the ring Z/d1Z × Z/d2Z × . . . × Z/dnZ to have nontrivial nilpotent elements it is necessary and sufficient
that at least one of d1, d2, . . . , dn would be divisible by a square of a prime. Then if t ∈ Z/diZ is nilpotent, so that
tk = 0 ∈ Z/diZ, then (0, . . . t, . . . 0)k = 0 ∈ Z/d1Z× Z/d2Z× . . .× Z/dnZ.



(a) The nilpotent elements in this ring are (0, 0, 2), (0, 0, 4), (0, 0, 6).

(b) For questions (b) and (c) we can use the statement proven in class: Z/nZ × Z/mZ ∼= Z/nmZ if and only if
gcd(n,m) = 1. However, in these exercises we want to compare the number of nilpotent and invertible elements
and the characteristics of the two rings.
The ring Z/dZ contains nontrivial nilpotent elements, for example x = p1p2p3: x2 ≡ 0( mod d). However, the ring
Z/p1p2Z×Z/p2p3Z×Z/p1p3Z contains no nilpotent elements because none of the rings Z/p1p2Z, Z/p2p3Z, Z/p1p3Z
does. One can also compare the number of units: We have φ(d) = (p21 − p1)(p22 − p2)(p23 − p3) in the ring Z/dZ,
and φ(p1p2)φ(p2p3)φ(p1p3) = (p1 − 1)2(p2 − 1)2(p3 − 1)2 units in the ring Z/p1p2Z, Z/p2p3Z, Z/p1p3Z. Clearly,
φ(d) > φ(p1p2)φ(p2p3)φ(p1p3). To compare the characteristic of the rings, we compute τ(Z/dZ) = d = p21p

2
2p

2
3,

and τ(Z/p1p2Z× Z/p2p3Z× Z/p1p3Z) = lcm(p1p2, p2p3, p3p1) = p1p2p3 =
√
d.

(c) We have 1260 = 22 ·32 ·5 ·7. The ring Z/1260Z contains nontrivial nilpotent elements, for example 210 = 2 ·3 ·5 ·7:
we have 2102 = 44100 = 35 · 1260. But the direct product ring Z/14Z×Z/30Z×Z/3Z has no nilpotent elements,
because each of 14, 30, 3 is square-free. Therefore the rings cannot be isomorphic.
Alternatively, we can compare the characteristic of the rings. We have char(Z/1260Z) = 1260. For the direct
product of rings, we have char(Z/14Z × Z/30Z × Z/3Z) = lcm(14, 30, 3) = 210. Since the rings have different
characteristics, they are not isomorphic.

(d) By the Chinese remainder theorem, if a set of integers d1, d2, . . . , dn are pairwise mutually prime, then there is a
ring isomorphism

Z/(d1 . . . dn)Z ∼= Z/d1Z× Z/d2Z× . . .× Z/dnZ.

In our case, we have
Z/1260Z ∼= Z/4Z× Z/9Z× Z/5Z× Z/7Z,

this is the maximal number of factors that correspond to mutually pairwise prime integers.

Exercise 4. Recall that if K is a field, the polynomial ring K[X] is a Euclidean domain: for two polynomials
P,Q ∈ K[X] with degQ ≥ 1 there exist polynomials D,R ∈ K[X] such that P = QD + R where either R = 0, or
deg(R) < deg(Q). Use the Euclidean algorithm in K[X] to find F , the monic (with dominant coefficient equal to 1)
greatest common divisor of the given polynomials P and Q. Then use Bezout’s theorem to express F in the form
F = aP + bQ, where a, b ∈ K[X].
(In parts (c) and (d) the notation [a]d stands for the congruence class of a (mod)d in Z/dZ)

(a) P = X4 − 5X2 + 4 et Q = X2 − 3X + 2, K = Q

(b) P = X4 − 3X3 + 3X2 −X et Q = 5X2 − 2X − 3, K = Q

(c) Q = X2 + [2]3, P = X3 +X + [1]3, K = Z/3Z

(d) P = X3 + [2]5X + [2]5, Q = X3 +X2 − [1]5, K = Z/5Z

Solution 4. (a) We have
X4 − 5X2 + 4 = (X2 − 3X + 2) · (X2 + 3X + 2) + 0,

so gcd(P,Q) = Q = X2 − 3X + 2.

As Bézout coefficients we have:

X2 − 3X + 2 = 0 · (X4 − 5X2 + 4) + 1 · (X2 − 3X + 2).

(b) We have

X4 − 3X3 + 3X2 −X = (5X2 − 2X − 3) ·
(
X2

5
− 13X

25
+

64

125

)
+

(
−192X

125
+

192

125

)
.

The Euclidean algorithm terminates in the next step:

5X2 − 2X − 3 =

(
−192X

125
+

192

125

)
·
(
−625X

192
− 125

64

)
+ 0

Hence the monic representative for gcd(P,Q) is

−125

192
·
(
−192X

125
+

192

125

)
= X − 1.



As Bézout coefficients we have:

X − 1 = −125

192
·
(

(X4 − 3X3 + 3X2 −X)− (5X2 − 2X − 3) ·
(
X2

5
− 13X

25
+

64

125

))
=

(
−125

192

)
· (X4 − 3X3 + 3X2 −X) +

(
25X2

192
− 65X

192
+

64

192

)
· (5X2 − 2X − 3).

(c) We use the Euclidean algorithm to find gcd(P (X), Q(X)) where P (X) = X3 + X + [1]3 and Q(X) = X2 + [2]3.
By the Euclidean division of P (X) by Q(X) we have:

(X3 +X + [1]3) = (X2 + [2]3) ·X + ([2]3X + [1]3),

and so S1(X) = X et R1(X) = [2]3X + [1]3. Since R1(X) is nonzero, we divide Q(X) by R1(X):

X2 + [2]3 = ([2]3X + [1]3) · ([2]3X + [2]3) + [0]3,

therefore S2(X) = [2]3X + [2]3 et R2(X) = [0]3. Since R2(X) is a zero polynomial, the algorithm terminates.

The last nonzero remainder is R1(X) = [2]3X + [1]3. To obtain a monic polynomial, we multiply it by [2]3 which
gives X + [2]3. So gcd(P (X), Q(X)) = X + [2]3.

The Bezout’s theorem gives: X+[2]3 = [2]3 ·((X3+X+[1]3)−X ·(X2+[2]3)) = [2]3 ·(X3+X+[1]3)+X ·(X2+[2]3).

(d) We use the Euclidean algorithm to find gcd(P (X), Q(X)) where P (X) = X3 + [2]5X + [2]5 and Q(X) = X3 +
X2 + [4]5. By the Euclidean division of P (X) by Q(X) we have:

X3 + [2]5X + [2]5 = (X3 +X2 + [4]5) · [1]5 + (−X2 + [2]5X − [2]5),

and so S1(X) = [1]5 et R1(X) = −X2 + [2]5X − [2]5 = [4]5X
2 + [2]5X + [3]5. SInce R1(X) is nonzero, we proceed

with the Euclidean division of Q(X) by R1(X):

X3 +X2 + [4]5 = ([4]5X
2 + [2]5X + [3]5) · ([4]5X + [2]5) + [4]5X + [3]5,

and therefore S2(X) = [4]5X + [2]5 and R2(X) = [4]5X + [3]5. SInce R2(X) is again nonzero, we continue with
the Euclidean division of R1(X) by R2(X):

[4]5X
2 + [2]5X + [3]5 = ([4]5X + [3]5) · (X + [1]5) + [0]5,

and therefore S3(X) = X + [1]5 and R3(X) = [0]5. Now R3(X) is zero, and the algorithm terminates. The last
nonzero remainder is R2(X) = [4]5X + [3]5. To obtain a monic polynomial, we multiply it by [4]5 which gives
X + [2]5. So gcd(P (X), Q(X)) = X + [2]5.

We read the Euclidean algorithm backwards to obtain the Bezout’s coefficients :

X + [2]5 = [4]5 · ((X3 +X2 + [4]5)− ([4]5X
2 + [2]5X + [3]5) · ([4]5X + [2]5))

= [4]5 · ((X3 +X2 + [4]5)− ((X3 + [2]5X + [2]5)− (X3 +X2 + [4]5)) · ([4]5X + [2]5)).


