Algebra MATH-310 fall semester 2024 Anna Lachowska

December 2, 2024
Problem Set 11 Solutions

Exercise 1. Find the smallest positive integer = such that:

x =0 (mod 2) B B
2 =2 (mod 3) z =1 (mod 17) 2 =0 (mod 11)
(a) z =4 (mod 5) (®) =1 (mod 20) (©) z =0 (mod 13)
z =5 (mod 7). z =1 (mod 29). z =1 (mod 2).

Solution 1. (a) By the Chinese remainder theorem, there exists a unique solution of these congruences modulo
2-3-5-7=210.
Using the method of consecutive solution of congruences, we have: z = 0( mod 2) and z = 2( mod 3) implies
z = 2( mod 6). Note that it is enough for us to find any one solution (for example x = 8( mod 6) would
also work). We proceed with the next congruence. Since 6 and 5 are coprime, we need to solve the equation
246t = 4+ 5s, or 6t —5s = 2. We find a solution ¢t = s = 2, and x = 2 + 6t = 14( mod 30). Finally, with
the last congruence this gives 5 4+ 7t = 14 + 30s. We obtain 30s — 7t = —9. It is easy to guess for example
s =—1,t = -3, and then z = —30 + 14 = —16( mod 210). Then the smallest positive integer that solves the
system is —16 + 210 = 194.

(b) This system is easier than it seems. Note that 1 satisfies all three congruences and is the smallest possible positive
integer, so it is the solution.

(¢) The numbers 11, 13 and 2 are mutually prime, and the product 11 - 13 = 143 is an odd number, therefore it
satisfies all the congruences. This is also the smallest positive integer with this property.

Exercise 2.
Show that the system of congruences

z =4 (mod 6)
x =2 (mod 4)
z =5 (mod 15).

has no solution.

Solution 2.
If there exist a solution x, then we have in particular x = 4 + 6k = 5 + 15/, where k and [ are integers. Then
1 = 6k — 15[, which is impossible because the left hand side is not divisible by 3. Therefore the system has no solution.

Exercise 3. Let dy,ds,...,d, be the integers > 2. Recall that an element « in a ring A is nilpotent a # 0 and there
exists k € N such that a* = 0 € A. Find the conditions on dy,ds, . .., d, so that the ring Z/d,Z x Z/d2Z % . .. x Z./d,, 7.
contains nilpotent elements.

(a) What are the nilpotent elements in the ring Z/6Z x Z/7Z x Z/8Z?

(b) Let p1,pa,ps be distinct primes and d = p?p3p3. Show that the rings Z/dZ and Z/pipsZ x Z/papsZ x Z]p1psZ
are non-isomorphic. Use the nilpotent elements, the units and the characteristic of the two rings.

(¢) Show that the rings Z/1260Z and Z/147Z x Z/30Z x Z/3Z are not isomorphic.

(d) Decompose Z/12607Z as a direct product of rings with the maximal number of factors.

Remarque: The exercises (¢) and (d) show that we cannot replace the condition “pairwise coprime” by “coprime” in
the Chinese remainder theorem.

Solution 3. First let us consider the ring Z/dZ for d > 2. We will show that it has a nontrivial nilpotent element if and
only if d is divisible by a square of a prime. Indeed, suppose that d = p*m, where m € Z,. Then pm-pm = p?*m? = 0(
mod d). On the other hand, suppose that the prime factorization of d is square-free: d = p1ps...pg. Then d divides
a” if and only if d divides a, which means that ¢ = 0( mod d).

Now for the ring Z/d1Z x Z/dsZ x ... x Z/d,Z to have nontrivial nilpotent elements it is necessary and sufficient
that at least one of dy,da, ..., d, would be divisible by a square of a prime. Then if ¢ € Z/d;Z is nilpotent, so that
th =0 € Z/d;Z, then (0,...t,...0)F =0 € Z/d1Z x Z]d2Z x ... x Z]d,Z.



(a)
(b)

()

The nilpotent elements in this ring are (0,0, 2), (0,0,4), (0,0,6).

For questions (b) and (c) we can use the statement proven in class: Z/nZ x Z/mZ = Z/nmZ if and only if
ged(n,m) = 1. However, in these exercises we want to compare the number of nilpotent and invertible elements
and the characteristics of the two rings.

The ring Z/dZ contains nontrivial nilpotent elements, for example x = pipops: 2% = 0( mod d). However, the ring
7./ p1p2Z X 7/ papsZx 7/ p1psZ contains no nilpotent elements because none of the rings Z/p1p2Z, Z/papsZ, Z/p1psZ
does. One can also compare the number of units: We have ¢(d) = (p? — p1)(p3 — p2)(p3 — p3) in the ring Z/dZ,
and (p1p2)¢(paps)p(pips) = (p1 — 1)*(p2 — 1)*(ps — 1)* units in the ring Z/p1paZ, Z/papsZ, Z/pipsZ. Clearly,
#(d) > ¢d(p1p2)d(paps)p(pips). To compare the characteristic of the rings, we compute 7(Z/dZ) = d = pipip3,
and 7(Z/p1p2Z x Z/papsZ x Z/p1psZ) = lem(p1p2, paps, p3p1) = p1peps = Vd.

We have 1260 = 22-3%.5-7. The ring Z/1260Z contains nontrivial nilpotent elements, for example 210 = 2-3-5-7:
we have 2102 = 44100 = 35 - 1260. But the direct product ring Z/147Z x Z/30Z x Z/37Z has no nilpotent elements,
because each of 14, 30, 3 is square-free. Therefore the rings cannot be isomorphic.

Alternatively, we can compare the characteristic of the rings. We have char(Z/1260Z) = 1260. For the direct
product of rings, we have char(Z/14Z x Z/30Z x Z/3Z) = lcm(14,30,3) = 210. Since the rings have different
characteristics, they are not isomorphic.

By the Chinese remainder theorem, if a set of integers dy, ds, ..., d, are pairwise mutually prime, then there is a
ring isomorphism

Z)(dy...d)Z 2 L) X AT x ... x T)dn .

In our case, we have
ZJ1260Z 2 Z./AZ x Z]9Z X 7./57 x Z]7Z,

this is the maximal number of factors that correspond to mutually pairwise prime integers.

Exercise 4. Recall that if K is a field, the polynomial ring K[X] is a Euclidean domain: for two polynomials
P,Q € K[X] with deg@ > 1 there exist polynomials D, R € K[X] such that P = @D + R where either R = 0, or
deg(R) < deg(@®). Use the Euclidean algorithm in K[X] to find F', the monic (with dominant coefficient equal to 1)
greatest common divisor of the given polynomials P and ). Then use Bezout’s theorem to express F in the form
F = aP + bQ, where a,b € K[X].

(

(a
(b
(c

)
)
)
(d)

In parts (c) and (d) the notation [a]y stands for the congruence class of a (mod)d in Z/dZ)

P=X*-5X?+4etQ=X?>-3X+2 K=0Q
P=X*"-3X3+3X2-XetQ=5X2-2X-3K=0Q
Q=X?+12]3,P=X>+X+[1]3, K =7/3Z
P=X3+ 12X +[25Q=X>+X2—[l]5, K =2/5Z

Solution 4. (a) We have

(b)

X*—5X?+4=(X?-3X+2) (X*>+3X +2)+0,
soged(P,Q) =Q = X% —3X +2.

As Bézout coefficients we have:

X2 -3X+2=0-(X*"-5X2+4)+1-(X?-3X+2).

We have
X? 13X 64
X4—3X3+3X2—X:(5X2—2X—3)-(_+>+(_

125 125

192X 192
) 25 125

The Euclidean algorithm terminates in the next step:

192X 192 625X 125
5X2-2X —3=(—— 4 ) (-2 -2 ) 40
< 5 125> ( 192 64 >

Hence the monic representative for ged(P, Q) is

125 ( 192X 192)_

192\ 125 125



As Bézout coefficients we have:

125 X% 13X 64
X—1l=—T . ((X*"=3X343X2-X)—-(5X?—-2X-3) [ — - — + —
192 (( SATHS )= 6 3) 5 25 125

125 25X2 65X @ 64
=(-=") . (X*-3X%3+3X%2-X = 4 ) (5X%2—2X - 3).
( 192) ( + )+ 192 192 + 192 ( )

We use the Euclidean algorithm to find ged(P(X),Q(X)) where P(X) = X + X + [1]3 and Q(X) = X2 + [2]5.
By the Euclidean division of P(X) by Q(X) we have:

(X7 + X +[1]5) = (X* + [2]3) - X + ([21sX + [1]3),
and so S1(X) = X et Ry1(X) = [2]3X + [1]3. Since Ry(X) is nonzero, we divide Q(X) by Ry (X):
X2+ 23 = (215X + [13) - (203X + [2]3) + [0]s,

therefore S2(X) = [2]3X + [2]5 et Ra(X) = [0]5. Since Ro(X) is a zero polynomial, the algorithm terminates.

The last nonzero remainder is Ry (X) = [2]3X + [1]3. To obtain a monic polynomial, we multiply it by [2]3 which
gives X + [2]5. So ged(P(X),Q(X)) = X + [2]s.

The Bezout’s theorem gives: X +[2]3 = [2]3-((X?+X +[1]3)— X - (X2+[2]3)) = [2]5- (X3 + X +[1]3) + X - (X% +[2]3).

We use the Euclidean algorithm to find ged(P(X), Q(X)) where P(X) = X3 + [2]5X + [2]5 and Q(X) = X3 +
X2 + [4]5. By the Euclidean division of P(X) by Q(X) we have:

X2+ 25X + [2s = (X° + X2 + [4]5) - [1]s + (=X + [2]sX — [2]s),

and so S1(X) = [1]5 et R1(X) = —X2+[2]5X — [2]5 = [4]5X? + [2]5X + [3]5. SInce R;(X) is nonzero, we proceed
with the Euclidean division of Q(X) by Ry (X):

X2+ X2+ [Als = ([4sX2 + 215X + [3]5) - ([4]sX + [2]5) + [4]sX + (3]s,

and therefore S3(X) = [4]5X + [2]5 and Rao(X) = [4]5X + [3]5. SInce Ro(X) is again nonzero, we continue with
the Euclidean division of R;(X) by Ra(X):

[4]5X7 + [2]5X + [3]s = ([4]5X + [3]5) - (X + [1]5) + [0]5,

and therefore S3(X) = X + [1]5 and R3(X) = [0]5. Now R3(X) is zero, and the algorithm terminates. The last
nonzero remainder is Ra(X) = [4]sX + [3]5. To obtain a monic polynomial, we multiply it by [4]s which gives
X + [2]s. S0 ged(P(X),Q(X)) = X + [2]5.

We read the Euclidean algorithm backwards to obtain the Bezout’s coefficients :
X+ 25 =45 (X°+ X2+ [4]5) — (45 X° + [2]sX + [3]5) - ([4]sX + [2]5))
= [4]s - (X7 + X2+ [4]5) = (X° + [2sX + [2]5) — (X7 + X2 + [4]5)) - ([4sX + [2]5))-



