December 2, 2024

Problem Set 11 Solutions

Exercise 1. Find the smallest positive integer x such that:

(a)
$$\begin{cases} x \equiv 0 \pmod{2} \\ x \equiv 2 \pmod{3} \\ x \equiv 4 \pmod{5} \\ x \equiv 5 \pmod{7}. \end{cases}$$
 (b)
$$\begin{cases} x \equiv 1 \pmod{17} \\ x \equiv 1 \pmod{20} \\ x \equiv 1 \pmod{29}. \end{cases}$$
 (c)
$$\begin{cases} x \equiv 0 \pmod{11} \\ x \equiv 0 \pmod{13} \\ x \equiv 1 \pmod{29}. \end{cases}$$

Solution 1. (a) By the Chinese remainder theorem, there exists a unique solution of these congruences modulo $2 \cdot 3 \cdot 5 \cdot 7 = 210$.

Using the method of consecutive solution of congruences, we have: $x \equiv 0 \pmod{2}$ and $x \equiv 2 \pmod{3}$ implies $x \equiv 2 \pmod{6}$. Note that it is enough for us to find any one solution (for example $x \equiv 8 \pmod{6}$ would also work). We proceed with the next congruence. Since 6 and 5 are coprime, we need to solve the equation 2+6t=4+5s, or 6t-5s=2. We find a solution t=s=2, and $x=2+6t\equiv 14 \pmod{30}$. Finally, with the last congruence this gives 5+7t=14+30s. We obtain 30s-7t=-9. It is easy to guess for example s=-1, t=-3, and then $x\equiv -30+14\equiv -16 \pmod{210}$. Then the smallest positive integer that solves the system is -16+210=194.

- (b) This system is easier than it seems. Note that 1 satisfies all three congruences and is the smallest possible positive integer, so it is the solution.
- (c) The numbers 11, 13 and 2 are mutually prime, and the product $11 \cdot 13 = 143$ is an odd number, therefore it satisfies all the congruences. This is also the smallest positive integer with this property.

Exercise 2.

Show that the system of congruences

$$\begin{cases} x \equiv 4 \pmod{6} \\ x \equiv 2 \pmod{4} \\ x \equiv 5 \pmod{15}. \end{cases}$$

has no solution.

Solution 2.

If there exist a solution x, then we have in particular x = 4 + 6k = 5 + 15l, where k and l are integers. Then 1 = 6k - 15l, which is impossible because the left hand side is not divisible by 3. Therefore the system has no solution.

Exercise 3. Let d_1, d_2, \ldots, d_n be the integers ≥ 2 . Recall that an element a in a ring A is nilpotent $a \neq 0$ and there exists $k \in \mathbb{N}$ such that $a^k = 0 \in A$. Find the conditions on d_1, d_2, \ldots, d_n so that the ring $\mathbb{Z}/d_1\mathbb{Z} \times \mathbb{Z}/d_2\mathbb{Z} \times \ldots \times \mathbb{Z}/d_n\mathbb{Z}$ contains nilpotent elements.

- (a) What are the nilpotent elements in the ring $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$?
- (b) Let p_1, p_2, p_3 be distinct primes and $d = p_1^2 p_2^2 p_3^2$. Show that the rings $\mathbb{Z}/d\mathbb{Z}$ and $\mathbb{Z}/p_1 p_2 \mathbb{Z} \times \mathbb{Z}/p_2 p_3 \mathbb{Z} \times \mathbb{Z}/p_1 p_3 \mathbb{Z}$ are non-isomorphic. Use the nilpotent elements, the units and the characteristic of the two rings.
- (c) Show that the rings $\mathbb{Z}/1260\mathbb{Z}$ and $\mathbb{Z}/14\mathbb{Z} \times \mathbb{Z}/30\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ are not isomorphic.
- (d) Decompose $\mathbb{Z}/1260\mathbb{Z}$ as a direct product of rings with the maximal number of factors.

Remarque: The exercises (c) and (d) show that we cannot replace the condition "pairwise coprime" by "coprime" in the Chinese remainder theorem.

Solution 3. First let us consider the ring $\mathbb{Z}/d\mathbb{Z}$ for $d \geq 2$. We will show that it has a nontrivial nilpotent element if and only if d is divisible by a square of a prime. Indeed, suppose that $d = p^2 m$, where $m \in \mathbb{Z}_+$. Then $pm \cdot pm = p^2 m^2 \equiv 0 \pmod{d}$. On the other hand, suppose that the prime factorization of d is square-free: $d = p_1 p_2 \dots p_k$. Then d divides a^k if and only if d divides a, which means that $a \equiv 0 \pmod{d}$.

Now for the ring $\mathbb{Z}/d_1\mathbb{Z} \times \mathbb{Z}/d_2\mathbb{Z} \times \ldots \times \mathbb{Z}/d_n\mathbb{Z}$ to have nontrivial nilpotent elements it is necessary and sufficient that at least one of d_1, d_2, \ldots, d_n would be divisible by a square of a prime. Then if $t \in \mathbb{Z}/d_i\mathbb{Z}$ is nilpotent, so that $t^k = 0 \in \mathbb{Z}/d_i\mathbb{Z}$, then $(0, \ldots, t, \ldots, t)^k = 0 \in \mathbb{Z}/d_1\mathbb{Z} \times \mathbb{Z}/d_2\mathbb{Z} \times \ldots \times \mathbb{Z}/d_n\mathbb{Z}$.

- (a) The nilpotent elements in this ring are (0,0,2), (0,0,4), (0,0,6).
- (b) For questions (b) and (c) we can use the statement proven in class: $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z} \cong \mathbb{Z}/nm\mathbb{Z}$ if and only if $\gcd(n,m)=1$. However, in these exercises we want to compare the number of nilpotent and invertible elements and the characteristics of the two rings.

The ring $\mathbb{Z}/d\mathbb{Z}$ contains nontrivial nilpotent elements, for example $x=p_1p_2p_3$: $x^2\equiv 0\pmod{d}$. However, the ring $\mathbb{Z}/p_1p_2\mathbb{Z}\times\mathbb{Z}/p_2p_3\mathbb{Z}\times\mathbb{Z}/p_1p_3\mathbb{Z}$ contains no nilpotent elements because none of the rings $\mathbb{Z}/p_1p_2\mathbb{Z}$, $\mathbb{Z}/p_2p_3\mathbb{Z}$, $\mathbb{Z}/p_1p_3\mathbb{Z}$ does. One can also compare the number of units: We have $\phi(d)=(p_1^2-p_1)(p_2^2-p_2)(p_3^2-p_3)$ in the ring $\mathbb{Z}/d\mathbb{Z}$, and $\phi(p_1p_2)\phi(p_2p_3)\phi(p_1p_3)=(p_1-1)^2(p_2-1)^2(p_3-1)^2$ units in the ring $\mathbb{Z}/p_1p_2\mathbb{Z}$, $\mathbb{Z}/p_2p_3\mathbb{Z}$, $\mathbb{Z}/p_1p_3\mathbb{Z}$. Clearly, $\phi(d)>\phi(p_1p_2)\phi(p_2p_3)\phi(p_1p_3)$. To compare the characteristic of the rings, we compute $\tau(\mathbb{Z}/d\mathbb{Z})=d=p_1^2p_2^2p_3^2$, and $\tau(\mathbb{Z}/p_1p_2\mathbb{Z}\times\mathbb{Z}/p_2p_3\mathbb{Z}\times\mathbb{Z}/p_1p_3\mathbb{Z})=lcm(p_1p_2,p_2p_3,p_3p_1)=p_1p_2p_3=\sqrt{d}$.

- (c) We have $1260 = 2^2 \cdot 3^2 \cdot 5 \cdot 7$. The ring $\mathbb{Z}/1260\mathbb{Z}$ contains nontrivial nilpotent elements, for example $210 = 2 \cdot 3 \cdot 5 \cdot 7$: we have $210^2 = 44100 = 35 \cdot 1260$. But the direct product ring $\mathbb{Z}/14\mathbb{Z} \times \mathbb{Z}/30\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ has no nilpotent elements, because each of 14, 30, 3 is square-free. Therefore the rings cannot be isomorphic. Alternatively, we can compare the characteristic of the rings. We have $\operatorname{char}(\mathbb{Z}/1260\mathbb{Z}) = 1260$. For the direct product of rings, we have $\operatorname{char}(\mathbb{Z}/14\mathbb{Z} \times \mathbb{Z}/30\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}) = \operatorname{lcm}(14, 30, 3) = 210$. Since the rings have different characteristics, they are not isomorphic.
- (d) By the Chinese remainder theorem, if a set of integers d_1, d_2, \dots, d_n are pairwise mutually prime, then there is a ring isomorphism

$$\mathbb{Z}/(d_1 \dots d_n)\mathbb{Z} \cong \mathbb{Z}/d_1\mathbb{Z} \times \mathbb{Z}/d_2\mathbb{Z} \times \dots \times \mathbb{Z}/d_n\mathbb{Z}.$$

In our case, we have

$$\mathbb{Z}/1260\mathbb{Z} \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z},$$

this is the maximal number of factors that correspond to mutually pairwise prime integers.

Exercise 4. Recall that if K is a field, the polynomial ring K[X] is a Euclidean domain: for two polynomials $P,Q \in K[X]$ with $\deg Q \geq 1$ there exist polynomials $D,R \in K[X]$ such that P=QD+R where either R=0, or $\deg(R) < \deg(Q)$. Use the Euclidean algorithm in K[X] to find F, the *monic* (with dominant coefficient equal to 1) greatest common divisor of the given polynomials P and Q. Then use Bezout's theorem to express F in the form F=aP+bQ, where $a,b\in K[X]$.

(In parts (c) and (d) the notation $[a]_d$ stands for the congruence class of $a \pmod{d}$ in $\mathbb{Z}/d\mathbb{Z}$)

(a)
$$P = X^4 - 5X^2 + 4$$
 et $Q = X^2 - 3X + 2$, $K = \mathbb{O}$

(b)
$$P = X^4 - 3X^3 + 3X^2 - X$$
 et $Q = 5X^2 - 2X - 3$, $K = \mathbb{Q}$

(c)
$$Q = X^2 + [2]_3$$
, $P = X^3 + X + [1]_3$, $K = \mathbb{Z}/3\mathbb{Z}$

(d)
$$P = X^3 + [2]_5 X + [2]_5, Q = X^3 + X^2 - [1]_5, K = \mathbb{Z}/5\mathbb{Z}$$

Solution 4. (a) We have

$$X^4 - 5X^2 + 4 = (X^2 - 3X + 2) \cdot (X^2 + 3X + 2) + 0.$$

so
$$gcd(P, Q) = Q = X^2 - 3X + 2$$
.

As Bézout coefficients we have:

$$X^{2} - 3X + 2 = 0 \cdot (X^{4} - 5X^{2} + 4) + 1 \cdot (X^{2} - 3X + 2).$$

(b) We have

$$X^4 - 3X^3 + 3X^2 - X = \left(5X^2 - 2X - 3\right) \cdot \left(\frac{X^2}{5} - \frac{13X}{25} + \frac{64}{125}\right) + \left(-\frac{192X}{125} + \frac{192}{125}\right).$$

The Euclidean algorithm terminates in the next step:

$$5X^2 - 2X - 3 = \left(-\frac{192X}{125} + \frac{192}{125}\right) \cdot \left(-\frac{625X}{192} - \frac{125}{64}\right) + 0$$

Hence the monic representative for gcd(P,Q) is

$$-\frac{125}{192} \cdot \left(-\frac{192X}{125} + \frac{192}{125} \right) = X - 1.$$

As Bézout coefficients we have:

$$\begin{split} X-1 &= -\frac{125}{192} \cdot \left((X^4 - 3X^3 + 3X^2 - X) - (5X^2 - 2X - 3) \cdot \left(\frac{X^2}{5} - \frac{13X}{25} + \frac{64}{125} \right) \right) \\ &= \left(-\frac{125}{192} \right) \cdot (X^4 - 3X^3 + 3X^2 - X) + \left(\frac{25X^2}{192} - \frac{65X}{192} + \frac{64}{192} \right) \cdot (5X^2 - 2X - 3). \end{split}$$

(c) We use the Euclidean algorithm to find gcd(P(X), Q(X)) where $P(X) = X^3 + X + [1]_3$ and $Q(X) = X^2 + [2]_3$. By the Euclidean division of P(X) by Q(X) we have:

$$(X^3 + X + [1]_3) = (X^2 + [2]_3) \cdot X + ([2]_3X + [1]_3),$$

and so $S_1(X) = X$ et $R_1(X) = [2]_3X + [1]_3$. Since $R_1(X)$ is nonzero, we divide Q(X) by $R_1(X)$:

$$X^{2} + [2]_{3} = ([2]_{3}X + [1]_{3}) \cdot ([2]_{3}X + [2]_{3}) + [0]_{3},$$

therefore $S_2(X) = [2]_3 X + [2]_3$ et $R_2(X) = [0]_3$. Since $R_2(X)$ is a zero polynomial, the algorithm terminates.

The last nonzero remainder is $R_1(X) = [2]_3X + [1]_3$. To obtain a monic polynomial, we multiply it by $[2]_3$ which gives $X + [2]_3$. So $gcd(P(X), Q(X)) = X + [2]_3$.

The Bezout's theorem gives: $X + [2]_3 = [2]_3 \cdot ((X^3 + X + [1]_3) - X \cdot (X^2 + [2]_3)) = [2]_3 \cdot (X^3 + X + [1]_3) + X \cdot (X^2 + [2]_3)$.

(d) We use the Euclidean algorithm to find gcd(P(X), Q(X)) where $P(X) = X^3 + [2]_5X + [2]_5$ and $Q(X) = X^3 + X^2 + [4]_5$. By the Euclidean division of P(X) by Q(X) we have:

$$X^{3} + [2]_{5}X + [2]_{5} = (X^{3} + X^{2} + [4]_{5}) \cdot [1]_{5} + (-X^{2} + [2]_{5}X - [2]_{5}),$$

and so $S_1(X) = [1]_5$ et $R_1(X) = -X^2 + [2]_5X - [2]_5 = [4]_5X^2 + [2]_5X + [3]_5$. SInce $R_1(X)$ is nonzero, we proceed with the Euclidean division of Q(X) by $R_1(X)$:

$$X^3 + X^2 + [4]_5 = \left([4]_5 X^2 + [2]_5 X + [3]_5\right) \cdot \left([4]_5 X + [2]_5\right) + [4]_5 X + [3]_5,$$

and therefore $S_2(X) = [4]_5 X + [2]_5$ and $R_2(X) = [4]_5 X + [3]_5$. Since $R_2(X)$ is again nonzero, we continue with the Euclidean division of $R_1(X)$ by $R_2(X)$:

$$[4]_5X^2 + [2]_5X + [3]_5 = ([4]_5X + [3]_5) \cdot (X + [1]_5) + [0]_5,$$

and therefore $S_3(X) = X + [1]_5$ and $R_3(X) = [0]_5$. Now $R_3(X)$ is zero, and the algorithm terminates. The last nonzero remainder is $R_2(X) = [4]_5 X + [3]_5$. To obtain a monic polynomial, we multiply it by $[4]_5$ which gives $X + [2]_5$. So $\gcd(P(X), Q(X)) = X + [2]_5$.

We read the Euclidean algorithm backwards to obtain the Bezout's coefficients :

$$X + [2]_5 = [4]_5 \cdot ((X^3 + X^2 + [4]_5) - ([4]_5 X^2 + [2]_5 X + [3]_5) \cdot ([4]_5 X + [2]_5))$$

= $[4]_5 \cdot ((X^3 + X^2 + [4]_5) - ((X^3 + [2]_5 X + [2]_5) - (X^3 + X^2 + [4]_5)) \cdot ([4]_5 X + [2]_5)).$