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Exercise 1. Recall that a ring homomorphism between two commutative rings f : A→ B is a map that satisfies the
conditions: (1) f(x+ y) = f(x) + f(y), (2) f(xy) = f(x)f(y) for any x, y ∈ A, and (3) f(1A) = 1B .

(a) Show that the map F : C→M2(R) from complex numbers to 2× 2 real matrices defined by

F (a+ ib) =

(
a b
−b a

)
is a ring homomorphism. Find its image and kernel.

(b) Let A be a commutative ring and I ⊂ A an ideal. Prove that the map ψ : A → A/I sending ψ(a) = a + I is a
ring homomorphism. Find its image and kernel.

Solution 1. (a) We check the conditions. Let a, b ∈ R.

F (a+ib+c+id) = F ((a+c)+i(b+d)) =

(
a+ c b+ d
−b− d a+ c

)
=

(
a b
−b a

)
+

(
c d
−d c

)
= F (a+ib)+F (c+id).

F ((a+ib)(c+id)) = F (ac−bd+i(ad+bc)) =

(
ac− bd ad+ bc
−ad− bc ac− bd

)
=

(
a b
−b a

)(
c d
−d c

)
= F (a+ib)F (c+id).

We also have F (1) =

(
1 0
0 1

)
. Therefore F is a ring homomorphism. The kernel is {0} and the image is the set

of all real 2× 2 matrices of the form

(
a b
−b a

)
with a, b ∈ R. In particular, this set of matrices is a field (since

it is isomorphic to C): the multiplication is commutative, as the computation above of F (a+ ib)F (c+ id) shows,
and any nonzero element is invertible. If a+ ib 6= 0 ∈ C, then we have(

a b
−b a

)−1
=

1

a2 + b2

(
a −b
b a

)
.

(b) We check the conditions of a ring homomorphism. We have ψ(a + b) = a + I + b + I = (a + b) + I = ψ(a + b),
ψ(ab) = (a + I)(b + I) = ab + I = ψ(a)ψ(b), where we used the ideal property aI = I and Ib = I. We also have
ψ(1) = 1 + I = 1A/I . The kernel is by construction ker(ψ) = I, and the image is im(ψ) = A/I.

Exercise 2. Find the characteristic of the following rings :

(a) Z/4Z× Z/7Z.

(b) Z/3Z× Z/9Z.

(c) Z/2Z× Z.

(d) Let A and B be rings and cA, cB their characteristics. What is the characteristic of the ring A×B?

(e) Z/6Z× Z/3Z× Z/8Z× Z/9Z

Solution 2. First we check that the map φ : Z → Z/nZ × Z/mZ defined by φ(a) = ([a]n, [a]m) is a ring
homomorphism. Note that φ is well defined. Meaning that if a = b ∈ Z then φ(a) = ([a]n, [a]m) = ([b]n, [b]m) =
φ(b). It is easy to check that φ(a + b) = φ(a) + φ(b) and φ(ab) = φ(a)φ(b), for any a, b ∈ Z. We have φ(1Z) =
([1]n, [1]m) = 1Z/nZ×Z/mZ. Therefore φ is the unique ring homomorphism Z → Z/nZ × Z/mZ. To find the
characteristic of the given rings, we need to find the kernel of φ in each case.

(a) We compute:
φ(n) = ([n]4, [n]7) = 0 ∈ Z/4Z× Z/7Z

if and only if both 4 and 7 divide n, or equivalently, n is a multiple of lcm(4, 7) = 28. Therefore (28) = kerφ and
the characteristic of this ring is 28.



(b) By the same argument, φ(n) = ([n]3, [n]9) = 0 ∈ Z/3Z × Z/9Z if and only if n is a multiple of lcm(3, 9) = 9.
Therefore (9) = kerφ and the characteristic of this ring is 9.

(c) By the same argument, φ(n) = ([n]2, n) is never zero in Z/2Z × Z, therefore kerφ = 0 and the characteristic of
this ring is 0.

(d) We have 1A×B = (1A, 1B). Let n ∈ Z. We have

n · 1A×B = (n · 1A, n · 1B),

and so n · 1A×B = 0 if and only if n · 1A = 0 and n · 1B = 0, if and only if n ∈ cAZ and n ∈ cBZ. Therefore if
cA = 0 or cB = 0, then cA×B = 0. On the other hand, if cA 6= 0 and cB 6= 0, then the characteristic of A × B
equals to the smallest positive integer > 1 in the intersection cAZ ∩ cBZ, therefore to the least common multiple
of cA et cB : cA×B = lcm(cA, cB).

(e) The same argument generalizes to a direct product of multiple rings. Let R = Z/6Z× Z/3Z× Z/8Z× Z/9Z. In
this case, we have cR = lcm(6, 3, 8, 9) = 72.

Exercise 3.
Solve the system of congruences: 

x ≡ 2 (mod 3)

x ≡ 4 (mod 5)

x ≡ 3 (mod 7).

Use the Chinese remainder theorem to show that a solution exists. Then find the complete set of solutions by
solving the congruences consecutively. Solve the congruences (mod 3) and (mod 5) first, then use the obtained solution
(mod 15) together with the last congruence (mod 7).

Solution 3.
Since the numbers 3, 5 and 7 divide 105, we have a well defined homomorphism of rings:

ψ : Z/105Z −→ Z/3Z× Z/5Z× Z/7Z
[n]105 7→ ([n]3, [n]5, [n]7).

Since 105 = 3 · 5 · 7 and 3, 5 et 7 are pairwise mutually prime, by the Chinese remainder theorem we know that ψ is
an isomorphism.

Therefore for each choice of u, v, w ∈ Z there exists n ∈ Z such that ([n]3, [n]5, [n]7) = ([u]3, [v]5, [w]7), and if
another n′ ∈ Z satisfies the same condition, then [n]105 = [n′]105.

We start by solving the first two congruences. Since 3 and 5 are mutually prime, by the Chinese remainder theorem
we know that there exists a unique solution modulo 3 · 5 = 15. An integer x is a solution if and only if s and t are
such that x = 2 + 3s = 4 + 5t. Then we have 3s− 5t = 2. We can take s = −1 and t = −1, which gives x = −1. If we
cannot guess a solution for (s, t), we could find it by using Euclidean algorithm and Bezout’s identity.

So the original system is equivalent to the system of two congruences{
x ≡ −1 (mod 15)

x ≡ 3 (mod 7).

Again, since 15 and 7 are mutually prime, we know by the Chinese remainder theorem that there exists a unique
solution modulo 15 ·7 = 105. An integer x is a solution if and only if the integers u and v are such that x = −1+15u =
3 + 7v. We obtain 15u− 7v = 4. Note that 15− 2 · 7 = 1, and we obtain u = 4 and v = 8, which gives x = 59.

The set of all solutions of the given system of congruences is the set of integers congruent to 59 modulo 105.
Equivalently, this is the set {59 + 105k, k ∈ Z}.
Another method

1. Using Bezout’s identity for 3 and 35 = 5 · 7, we can find an explicit solution a for the system of congruences:
x ≡ 1 (mod 3)

x ≡ 0 (mod 5)

x ≡ 0 (mod 7).

Euclidean division gives 35 = 11 · 3 + 2 and 3 = 1 · 2 + 1, and we get 1 = 3 − 2 = 3 + 3 · 11 − 35 = 12 · 3 − 35.
Therefore a := 1− 12 · 3 = −35 satisfies the system.



2. We can proceed similarly to find a solution b for the following system of congruences:
x ≡ 0 (mod 3)

x ≡ 1 (mod 5)

x ≡ 0 (mod 7).

We see that b := 21 = 4 · 5 + 1 satisfies the system of congruences b ≡ 0 mod 3, b ≡ 1 mod 5 and b ≡ 0 mod 7.

3. In a similar way, we find a solution c for the following system of congruences:
x ≡ 0 (mod 3)

x ≡ 0 (mod 5)

x ≡ 1 (mod 7).

Finally the eucllidean division gives 15 = 2 · 7 + 1, and we have that c := 15 is a solution of the system of
congruences x ≡ 0 mod 3, x ≡ 0 mod 5, et x ≡ 1 mod 7.

4. Now we can find an explicit solution for the original system of congruences as a linear combination of a, b
et c. We have to find xa, xb, xc ∈ Z such that ψ(xa · [a]105 + xb · [b]105 + xc · [c]105) = ([2]3, [4]5, [3]7). Set
n = 2(−35) + 4(21) + 3(15) = 59. Then by the construction, n satisfies the original congruences. The set of
solutions is {n′ ∈ Z | [n] = [n′] mod 105} = {59 + 105k | k ∈ Z}.

Exercise 4. Is the ring Z/180Z isomorphic to

(a) Z/4Z× Z/3Z × Z/15Z,
(b) Z/9Z× Z/4Z × Z/5Z,
(c) Z/6Z× Z/6Z × Z/5Z?

Hint: To prove that two rings are not isomorphic you can compare the number of invertible elements or the charac-
teristic of the rings.

Solution 4. We have 180 = 22 · 32 · 5. By the Chinese remainder theorem, the ring Z/180Z is isomorphic to the ring
Z/9Z× Z/4Z × Z/5Z as 9, 4, 5 are pairwise mutually prime.

For the other rings, let us consider the number of invertible elements. For a ring Z/dZ it is equal to the Euler’s
totient function ϕ(d). We have ϕ(180) = ϕ(9) · ϕ(4) · ϕ(5) = (9− 3) · (4− 2) · 4 = 48.

Suppose A×B is a direct product of rings. If (a, b) is a unit in A×B, then there exist a−1 ∈ A and b−1 ∈ B such
that (a, b) · (a−1, b−1) = (1A, 1B). Therefore the number of invertible elements in A×B equals to the product of the
numbers of invertible elements in A and in B. This generalizes by induction to multiple direct product.

The number of invertible elements in Z/4Z×Z/3Z×Z/15Z is ϕ(4) ·ϕ(3) ·ϕ(15) = 2× 2× 8 = 32, and the number
of invertible elements in Z/6Z× Z/6Z × Z/5Z is 2× 2× 4 = 16. Also, the characteristic of Z/4Z× Z/3Z × Z/15Z is
lcm(4, 3, 15) = 60, the characteristic of Z/6Z× Z/6Z × Z/5Z is lcm(6, 6, 5) = 30, but the characteristic of Z/180Z is
180. Therefore Z/180Z is not isomorphic to either of the rings (a) or (c).


