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Well ordering principle and prime factorization

Definition 1.1. Natural numbers: N = {0,1,2,...} is the set of natural numbers.

(Well-ordering principle).

Every nonempty subset of natural numbers has a least element.

(Induction principle).

Let S C N be such that (1) 0€ S, and (2)neS = n+1€S. Then S=N.

The well-ordering principle is equivalent to the induction principle.

Proof: exercise (see lecture 1).

Definition 1.5. Z = {0,+1,£2,...} is the set of integer numbers
Z+ ={1,2,...} is the set of positive integers
Z* = {£1,42,...} is the set of nonzero integers

Definition 1.6. If a,b € Z and a # 0, we say that a divides b if there exists ¢ € Z such that b = a - c. Notation: a | b.
Then we say that a is a divisor of b.

Definition 1.7. A number p € Z™ is called a prime if p > 1 and if the only positive divisors of p are 1 and p.
Non-prime elements of Z™* different from 1 are called composite.

(Fundamental theorem of arithmetic)

(a) Any integer greater than 1 is a product of primes.

(b) The prime factorization is unique up to the order of factors.

(a)

(b)

Proof:

Exercise. Use the well-ordering principle. Assume there exists a non-empty set A of natural numbers greater than
1 that are not products of primes. Then A contains a least element m € A. Derive a contradiction.

This also uses the well-ordering principle, but requires more work. Suppose n = p1 ...pm = q1 . - . qx is the smallest
positive integer with two different prime factorizations. If p; = g; for some ¢, j, then the number m = n/p; = n/q;
would be a smaller positive integer with this property, therefore we can assume that all {p1,...pn} are distinct
from all {q1,...qx}. Without loss of generality, suppose that p; < ¢; and set

t= (g —p1)a2-. G-

Thent>1landt=gq1...qx —DP1G2...qx =N —P1G2 - - - qk, therefore t < n. Then by our assumption ¢ has a unique
prime factorization. We have

t=q1q2-- - Qk —P1G2---Qk = P1P2---Dm — D142 - - - Q& = P1(P2 - - P — Q2 - - - ).

Therefore p; divides ¢t = (g1 — p1)g2 ... qx. Since p1 # g¢; for all j, we have that p; divides (g1 — p1). But then
g1 —p1=p1s = ¢ =pi(s+1) for a positive integer s, but ¢; is a prime. Contradiction.



2 Euclidean division and Bezout’s identity

(Euclid’s lemma ) If p is a prime and p | (ab) for some a,b € Z*, thenp|a or p|b.
Proof: exercise (follows directly from the prime factorization).

Definition 2.2. If a,b € Z*, then d € Z™ is the greatest common divisor of a and b if (1) d | a, d | b, and (2) if e | a,
e | b, then e | d. Notation: ged(a,b). If ged(a,b) = 1, we say that a and b are coprime.

Definition 2.3. If a,b € Z*, then | € ZT is the least common multiple of a and b if (1) a |1, b |, and (2) if a | m,
b | m, then I | m. Notation: lem(a,b).

Exercise 2.4. If p is a prime, then /p is irrational.

(Euclidean division) Let n € Z and d € Z+. There exist two integers q,v € Z such that n = qd +r,
and 0 < r < d. The integers q,r are unique.

Proof: exercise. Consider the set {n — kd}rcz NN and use the well-ordering principle to find its least element.
Show that it satisfies the conditions for 0 < r < d.

Ifn,q €Z and d € Z* are such that n = qd +r, then ged(n,d) = ged(d, ).
Proof: exercise.

Example 2.7. (Euclidean algorithm for finding ged of two integers). Let di,ds € Z* and dy > ds. To find ged(dy, da)
we can use the following algorithm.

1. Use Euclidean division to find 0 < ds < ds such that dy = gq1ds + ds. If d3 = 0, then dy = ged(dy, da).
2. If d3 # 0, then find 0 < d4 < d3 such that do = god3 + dy. If dy = 0, then d3 = ng(dg, dg) = ng(dl7 dg)

3. If d4 # 0, continue to find d5 such that d3 = gq3ds+ds5, and so on. The algorithm terminates after a finite number
of steps because 0 < ...d5 < dy < d3 < ds.

Remark 2.8. Since the divisors of @ and —a are the same, one can run the Euclidean algorithm for |a/, |b| to find the
ged(a, b).

Example 2.9. Find ged(123,87).

Let di = 123, do = 87. We have 123 = 87 + 36, so d3 = 36. Now 87 = 2-36 + 15, so d4 = 15. Then 36 = 2 - 15 + 6,
s0 ds = 6. Then 15 =2-6 + 3, so dg = 3. Finally 6 = 2-3 + 0, so the greatest common divisor is 3 = ged(15,6) =
ged(36,15) = ged(87,36) = ged (123, 87).

For any a,b € Z* there exist x,y € Z such that
ged(a,b) = ax + by.
Proof: Run the Euclidean algorithm backwards.
Exercise 2.11. Find z,y € Z such that 123z + 87y = gcd(123,87) = 3 (see Example 2.9).

If a,b € Z* and d = ged(a, b), then the equation ax + by = ¢, ¢ € Z has integer solutions for x,y if
and only if ¢ € dZ.

Proof: exercise (see PS1).

(Bezout’s identity).
If a,b € Z* are coprime, then there exist x,y € Z such that ax + by = 1.

Proof: the case of ged(a,b) =1 in Corollary 2.12

Definition 2.14. Euler’s totient function ¢(n) is defined for any positive integer n as the number of positive integers
a : 1< a<nsuch that ged(a,n) = 1.

Exercise 2.15. (a) Show that ¢(p) =p — 1 for any prime p.
(b) Find ¢(18) by a direct computation.
(c) Find ¢(8), p(9) and ¢(16). Guess the formula for p(p*) where k is a positive integer, and prove it (see PS2).

Remark 2.16. Later we will prove using ring theory that for any coprime integers n and m, we have ¢(nm) =
p(n)e(m).



