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1 Well ordering principle and prime factorization

Definition 1.1. Natural numbers: N = {0, 1, 2, . . .} is the set of natural numbers.

Axiom 1.2. (Well-ordering principle).
Every nonempty subset of natural numbers has a least element.

Axiom 1.3. (Induction principle).
Let S ⊂ N be such that (1) 0 ∈ S, and (2) n ∈ S ⇒ n + 1 ∈ S. Then S = N.

Proposition 1.4. The well-ordering principle is equivalent to the induction principle.

Proof: exercise (see lecture 1).

Definition 1.5. Z = {0,±1,±2, . . .} is the set of integer numbers
Z+ = {1, 2, . . .} is the set of positive integers
Z∗ = {±1,±2, . . .} is the set of nonzero integers

Definition 1.6. If a, b ∈ Z and a 6= 0, we say that a divides b if there exists c ∈ Z such that b = a · c. Notation: a | b.
Then we say that a is a divisor of b.

Definition 1.7. A number p ∈ Z+ is called a prime if p > 1 and if the only positive divisors of p are 1 and p.
Non-prime elements of Z+ different from 1 are called composite.

Theorem 1.8. (Fundamental theorem of arithmetic)

(a) Any integer greater than 1 is a product of primes.

(b) The prime factorization is unique up to the order of factors.

Proof:

(a) Exercise. Use the well-ordering principle. Assume there exists a non-empty set A of natural numbers greater than
1 that are not products of primes. Then A contains a least element m ∈ A. Derive a contradiction.

(b) This also uses the well-ordering principle, but requires more work. Suppose n = p1 . . . pm = q1 . . . qk is the smallest
positive integer with two different prime factorizations. If pi = qj for some i, j, then the number m = n/pi = n/qj
would be a smaller positive integer with this property, therefore we can assume that all {p1, . . . pm} are distinct
from all {q1, . . . qk}. Without loss of generality, suppose that p1 < q1 and set

t = (q1 − p1)q2 . . . qk.

Then t > 1 and t = q1 . . . qk−p1q2 . . . qk = n−p1q2 . . . qk, therefore t < n. Then by our assumption t has a unique
prime factorization. We have

t = q1q2 . . . qk − p1q2 . . . qk = p1p2 . . . pm − p1q2 . . . qk = p1(p2 . . . pm − q2 . . . qk).

Therefore p1 divides t = (q1 − p1)q2 . . . qk. Since p1 6= qj for all j, we have that p1 divides (q1 − p1). But then
q1 − p1 = p1s =⇒ q1 = p1(s + 1) for a positive integer s, but q1 is a prime. Contradiction.



2 Euclidean division and Bezout’s identity

Lemma 2.1. (Euclid’s lemma ) If p is a prime and p | (ab) for some a, b ∈ Z+, then p | a or p | b.

Proof: exercise (follows directly from the prime factorization).

Definition 2.2. If a, b ∈ Z∗, then d ∈ Z+ is the greatest common divisor of a and b if (1) d | a, d | b, and (2) if e | a,
e | b, then e | d. Notation: gcd(a, b). If gcd(a, b) = 1, we say that a and b are coprime.

Definition 2.3. If a, b ∈ Z∗, then l ∈ Z+ is the least common multiple of a and b if (1) a | l, b | l, and (2) if a | m,
b | m, then l | m. Notation: lcm(a, b).

Exercise 2.4. If p is a prime, then
√
p is irrational.

Theorem 2.5. (Euclidean division) Let n ∈ Z and d ∈ Z+. There exist two integers q, r ∈ Z such that n = qd + r,
and 0 ≤ r < d. The integers q, r are unique.

Proof: exercise. Consider the set {n − kd}k∈Z ∩ N and use the well-ordering principle to find its least element.
Show that it satisfies the conditions for 0 ≤ r < d.

Lemma 2.6. If n, q ∈ Z and d ∈ Z+ are such that n = qd + r, then gcd(n, d) = gcd(d, r).

Proof: exercise.

Example 2.7. (Euclidean algorithm for finding gcd of two integers). Let d1, d2 ∈ Z+ and d1 > d2. To find gcd(d1, d2)
we can use the following algorithm.

1. Use Euclidean division to find 0 ≤ d3 < d2 such that d1 = q1d2 + d3. If d3 = 0, then d2 = gcd(d1, d2).

2. If d3 6= 0, then find 0 ≤ d4 < d3 such that d2 = q2d3 + d4. If d4 = 0, then d3 = gcd(d2, d3) = gcd(d1, d2).

3. If d4 6= 0, continue to find d5 such that d3 = q3d4 +d5, and so on. The algorithm terminates after a finite number
of steps because 0 ≤ ...d5 < d4 < d3 < d2.

Remark 2.8. Since the divisors of a and −a are the same, one can run the Euclidean algorithm for |a|, |b| to find the
gcd(a, b).

Example 2.9. Find gcd(123, 87).
Let d1 = 123, d2 = 87. We have 123 = 87 + 36, so d3 = 36. Now 87 = 2 · 36 + 15, so d4 = 15. Then 36 = 2 · 15 + 6,
so d5 = 6. Then 15 = 2 · 6 + 3, so d6 = 3. Finally 6 = 2 · 3 + 0, so the greatest common divisor is 3 = gcd(15, 6) =
gcd(36, 15) = gcd(87, 36) = gcd(123, 87).

Corollary 2.10. For any a, b ∈ Z∗ there exist x, y ∈ Z such that

gcd(a, b) = ax + by.

Proof: Run the Euclidean algorithm backwards.

Exercise 2.11. Find x, y ∈ Z such that 123x + 87y = gcd(123, 87) = 3 (see Example 2.9).

Corollary 2.12. If a, b ∈ Z∗ and d = gcd(a, b), then the equation ax + by = c, c ∈ Z has integer solutions for x, y if
and only if c ∈ dZ.

Proof: exercise (see PS1).

Corollary 2.13. (Bezout’s identity).
If a, b ∈ Z∗ are coprime, then there exist x, y ∈ Z such that ax + by = 1.

Proof: the case of gcd(a, b) = 1 in Corollary 2.12

Definition 2.14. Euler’s totient function ϕ(n) is defined for any positive integer n as the number of positive integers
a : 1 ≤ a ≤ n such that gcd(a, n) = 1.

Exercise 2.15. (a) Show that ϕ(p) = p− 1 for any prime p.

(b) Find ϕ(18) by a direct computation.

(c) Find ϕ(8), ϕ(9) and ϕ(16). Guess the formula for ϕ(pk) where k is a positive integer, and prove it (see PS2).

Remark 2.16. Later we will prove using ring theory that for any coprime integers n and m, we have ϕ(nm) =
ϕ(n)ϕ(m).


