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Summary: Groups

1 Definition and first examples

Definition 1.1. A group is a set G with a binary operation (multiplication) - : G x G — G satisfying the axioms:
1. the group operation is associative: (a-b)-c=a-(b-c)
2. there exists an identity element e € G such that a-e =¢e¢-a =a for any a € G
3. for each a € G there exists the inverse element ¢! € G such that a-a™ ! =a~'-a =e.

Definition 1.2. A group G is finite if the set G is finite.

Definition 1.3. A group G is abelian (commutative) if a-b=1b-a for all a,b € G.

Definition 1.4. If G is finite as a set, then the order of the group G is the number of elements in G. Notation: |G]|.

Definition 1.5. Generators of a group G form a subset S C G such that any element of G can be written as a product
of the elements in S.

Definition 1.6. Any equation satisfied by the generators is a relation in G.
Definition 1.7. A presentation of G in terms of generators and relations is the expression
(S| R1,Ra,...Rg)

where S is a set of generators of G and R;, Rs, ... Ry are the relations satisfied by the elements in S such that any
other relation follows from these.

Definition 1.8. Let g be an element in the group G. The smallest positive integer n such that g™ = 1, if it exists, is
called the order of the element g in G and denoted o(g). If there is no such integer, then we say that g is of infinite
order (this implies that the group G is infinite).

2  Group homomorphisms. Subgroups and normal subgroups.

Definition 2.1. A map ¢ : G — H between two groups is a group homomorphism if
d(z-cy)=o(z) u oy
for any z,y € G.
Definition 2.2. A group isomorphism is a homomorphism ¢ : G — H that is a bijection between the sets G and H.

Definition 2.3. A group endomorphism is a homomorphism ¢ : G — G. A group automorphism is an isomorphism
o:G— G.

Definition 2.4. The kernel of a homomorphism ¢ : G — H is the set of all elements g € G such that ¢(g) = 1g:
Kerg = {g € G : ¢(g) = 1}. The image of a homomorphism ¢ : G — H is the set Inp = {h € H |Jg € G : ¢(g) = h}.

Remark 2.5. If GG is presented in terms of generators and relations, to check if a given map ¢ : G — H is a group
homomorphism, it suffices to check that the images of the generators of G in H satisfy the relations for the generators
in G.

Definition 2.6. A subgroup H C G is a nonempty subset of G that forms a group with respect to the group operation
in G. In particular, 1 € H and for any a,b,€ H, we have a-b € H.

Definition 2.7. A subgroup H C G is normal if ghg=! € H for any g € G,h € H. Notation: H < G.
If G is abelian, any subgroup is normal in G: H C G — H < G.
Let ¢ : G — H be a group homomorphism. Then
1. The image of ¢ is a subgroup in H: ¢(G) C H.
2. The kernel of ¢ is a normal subgroup in G: Kergp < G.



3 The dihedral group D,.

Definition 3.1. The dihedral group D,, n > 3 is the group of rigid symmetries of a flat regular n-gon. The group
operation is composition.

The dihedral group D, is a mon-abelian group of order 2n. It has the following presentation in
generators and relations:
D,=(rs|rm=1s=1,srs=1r"1).

4 Cosets. Lagrange’s theorem.

Definition 4.1. Let H C G be a subgroup. A left coset with respect to H in G is the subset of element of G defined

as follows:
gH = {gh,h € H}.

Let H be a subgroup of G.
1. Two cosets xH and yH are either equal, or disjoint.
2. Any element g € G belongs to an H-coset.
3. If H is finite, |xH| = |yH| for any x,y € G.

(Lagrange’s Theorem). Let G be a finite group, and H C G a subgroup. Then the order of H divides
the order of G.

Definition 4.4. In the conditions of Lagrange’s theorem, the number [G : H] = |G|/|H]| is called the index of H in
G. Tt equals to the number of left H-cosets in G.

In a finite group, the order of any element divides the order of the group.
Let G be a finite group, and g € G an element. Then g/¢l = 1.

Let G be a finite group of prime order, |G| = p. Then G is cyclic (= there exists x € G such that
G={1,z,2% ... 2P 1}.)

5 Applications of Lagrange’s theorem in arithmetic.

Definition 5.1. The group of units in Z/nZ is the group of all invertible elements in Z/nZ with respect to multipli-
cation. It is denoted ((Z/nZ)*,-).

Let [a], € Z/nZ, [a], # [0]n. Then [a], is a unit in Z/nZ if and only if ged(a,n) = 1. In
particular, |((Z/nZ)*, )| = p(n), where p(n) is the Euler’s totient function of n.

(Fermat’s Little Theorem (FLT)). Let p be a prime, and a € Z such that p does not divide a. Then
a?~t =1 (mod p).
(Euler’s Theorem). Let a,n € Z*, such that ged(a,n) = 1. Then
a?™ =1 (modn),
where p(n) is Euler’s totient function of n.

Remark 5.5. For a prime p, the group ((Z/pZ)*,") is cyclic of order p — 1.

6 Quotient group.

Let G be a group, and N <A G a normal subgroup. The set of left N-cosets in G is a group under

the operation
(zN)(yN) = (zyN).

Definition 6.2. Let N < G. Then the group of left N-cosets in G is called the quotient group and denoted G/N.
Let ¢ : G — H be a group homomorphism. Then G/Ker¢ ~ Img.



7 The symmetric group S,

Definition 7.1. Let G be a finite group and F a finite set. We say that G acts on E (by permutations) if for all
x € F and g € G the element g -z € F is defined, such that

1.1-z2=2 VrekE,
2. (1g2) x=g1-(92-¢) Vg1,920 € G, Vx € E.
Definition 7.2. Let G act on the set E. The orbit of x € E is the set

Orb, ={g-z, g€ G}.
The orbits of size 1 are called the fized points of the action.

Definition 7.3. The symmetric group of order n is the group of all permutations (bijective maps) of n > 1 ordered
elements:
p:{1,2,...n} = {1,2,...n},

where p(i) = k € {1,2,...n} and i #j = p(i) # p(j). The product in S, is the composition of permutations.
The neutral element is the trivial permutation. The inverse element for such that p(i) = k is p~*(k) = i for all
i,k € {1,...n}. The group is denoted S,,. We have |S,,| = n!, the number of all permutations of n elements.

Definition 7.4. Let 0 € S,, be a permutation and consider the subgroup (o) C S,, generated by o. If the action of
(o) by permutations of the set of n elements contains exactly one nontrivial orbit with & > 1 elements (and possibly
some fixed points), then o € S, is called a k-cycle.

Definition 7.5. A 2-cycle is called a transposition.

Notation 7.6. Let m € S,, be a k-cycle, and = € {1,2,...n} a number in the nontrivial orbit of 7. Then in the cycle
notation we represent 7 as follows: m = (z,7(x), 7%(z),... 7" 1(2)).

Definition 7.7. Two cycles 71,79 € S, are disjoint if their nontrivial orbits do not intersect.
Disjoint cycles commute in S,,.
Any permutation in Sy, is a product of disjoint cycles, uniquely up to the order of the factors.

Let w,p € S,,. The cycle decomposition of mpm—!

integer i in the disjoint cycle decomposition of p by the integer (i).

is obtained from that of p by replacing each

Every k-cycle in Sy, is a product of (k — 1) transpositions. In particular,
(12... k) = (1k)(1 k—1)...(13)(12).

Caution: The decomposition of a permutation as a product of disjoint cycles is unique. The transpositions in the
Proposition above are not disjoint.

The group S, is generated by the transpositions {(ij) 1<i<j<n

No permutation in S, can be written both as a product of an odd number of transpositions and as
a product of an even number of transpositions.

Definition 7.14. A permutation is odd if it is a product of an odd number of transpositions, and even if it is a product
of an even number of transpositions. A transposition is an odd permutation.

The set A, of all even permutations form a normal subgroup in S, of index 2: [S, : A,] = 2.

8 The orbit-stabilizer theorem.

Let G be a finite group acting on a finite set F. Then the orbit of z € F is the set Orb, = {g-x € G} (see Definitions
7.17.2).

Definition 8.1. Let G act on the set E. The stabilizer of x € E is

Stab, ={g € G |g-x = x}.



Let G act on the set E. The stabilizer Stab, of an element x € E is a subgroup in G.

Let G act on the set E. Two orbits of the G-action Orb, and Orb, either coincide, or do not
intersect. In particular, E splits as a disjoint union of orbits of G-action: E = U;Orb,,.

(The Ortbit-Stabilizer theorem). Let a finite group G act on a finite set E. Then for any element
x € E, the number of elements in the orbit of x under the G-action equals to the index of the stabilizer subgroup of x
in G:
|Orb,| =[G : Stab,].

9 Conjugacy classes and the class equation

Definition 9.1. Let G be a group acting on itself by conjugations: ¢ - = gxg~' Vx € G,g € G. Then an orbit of
x € G is called the conjugacy class of x in G and denoted C,, and the stabilizer of x with respect to this action is
called the centralizer of x € G and denoted G, C G.

The elements g1 € S, and g2 € S, belong to the same conjugacy class in S, if and only if
they decompose as a product of disjoint cycles of the same lengths. The set of lengths of cycles in a disjoint cycle
decomposition of an element g € S, is called the cycle type of g. Conjugacy classes in S, are in bijection with cycles

types.
Definition 9.3. The center Z(G) of the group G is the set of elements that commute with any element in G:
Z(G)={x € G|xg=gx Vg € G}

(The class equation). Let G be a finite group, and let Z(G) be its center, and {x;}1™, a set of
representatives the conjugacy classes {Cy, Y, containing more than one element each. Let G, be the stabilizer
subgroup for x;. Then

Gl =Z(G)| + Y |C,| = 12(G)| + ) _[G: Gu).
i=1

i=1

10 Direct product of groups

Definition 10.1. Let G, H be groups. The direct product G x H is the group whose elements are pairs G x H =
{(g,h) | g € G,h € H} with the multiplication (g1, h1) - (92, ha) = (9192, h1hs) for any g1,92 € G, Hy, hs € H.

It is easy to check that (1g,1y) € G x H is the identity element, and (g,h)~! = (g7, h71).
Properties of the direct product:
(o) Gx H~HxG
(b) G x H is abelian if an only if G and H are both abelian
(c) {(1,h}hen C G x H is a subgroup isomorphic to H, and {(g,1}4ec C G x H is a subgroup isomorphic to G
(d) For the cyclic groups, Cp, X Cp, >~ Cyp if and only If ged(n,m) =1

(e) Suppose that H/K C G are two subgroups such that (a) HNK = {1}, (b) Yh € H,k € K, hk = kh, (c) G is
spanned by the products {hk}pem rex. Then G~ H x K.

11 Classification of finite abelian groups.

Definition 11.1. A group G is simple if it has no nontrivial (# {1}) proper (# G) normal subgroups.

(Cauchy). If G is a finite abelian group and a prime p divides the order of G, then G contains an
element of order p.

If G is a finite abelian simple group, then G is isomorphic to a cyclic group of prime order.

To classify all finite abelian groups we will use direct products to build more complicated groups out of smaller
groups.



Definition 11.4. Let n be a positive integer. A partition of n is a set of positive integers i1 > io > ... > i > 1 such

Let G be an abelian group of prime power order, |G| = p™. Then G is isomorphic to a direct
product of cyclic groups G = Cpiy X Cpiy X ... X Cpiy., where (iy > i3 > ...1ix) is a partition of n. Different partitions
of n correspond to non-isomorphic abelian groups.

Let G be a finite abelian group, and |G| = pI* ...plr is the prime factorization of |G| (here p; are
all distinct primes). Then G is isomorphic to a direct product of abelian groups of orders pi*,p3?,...pr :

G~ Gp;ll X Gp;m X .. .Gp?r.

(Classification of finite abelian groups). Let G be a finite abelian group. Then G is isomorphic to a
direct product of cyclic groups with prime power orders:

G:Cptlu XCpgz X ...Cpmn,

where {p1,...pm} are primes, not necessarily distinct, and |G| = p*ps? ... plm.
Definition 11.8. The numbers (py*,p5?,...,p%) are called the elementary divisors of G.

Let G be a finite abelian group. Then G is isomorphic to a direct product of cyclic groups with
consecutively dividing orders:

G:C’dl X Cd2 X ...de
where dg|dg—1, dg—1|dg—2 and so on, dzldy, and |G| = dids . . . dk.
Definition 11.10. The numbers (dy,dk—_1,...ds,d1) are called the invariant factors of G.

Example 11.11. Let G be an abelian group, |G| = 360 = 23 .32 .5. The partitions of the power of 2 are
(3),(2,1),(1,1,1). The partitions of the power of 3 are (2),(1,1). According to Theorem 11.7, we have the following
list of unisomorphic abelian groups of order 360:

CgXCgXC5, C‘gXC‘gXC‘gXC%7 C4XCQX09XC5, C4XCQX03X03XC5,

CQXCQXCQXCQXCE,, CQXCQXCQXCgXCgXC5.

The elementary divisors are (8,9,5),(8,3,3,5),(4,2,9,5),(4,2,3,3,5),(2,2,2,9,5),(2,2,2,3,3,5). Let us collect the
powers of distinct primes to rewrite the same list of groups according to Theorem 11.9:

Cs60, Cho0 X C3, Chgo x Ca, Cgp x Cg, Cogg x Ca x Cz, Csp x Cg x Cs.

The invariant factors of G are (360), (120, 3), (180, 2), (60, 6), (90, 2, 2), (30,6, 2).



