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1 Definition and first examples

Definition 1.1. A group is a set G with a binary operation (multiplication) · : G×G→ G satisfying the axioms:

1. the group operation is associative: (a · b) · c = a · (b · c)

2. there exists an identity element e ∈ G such that a · e = e · a = a for any a ∈ G

3. for each a ∈ G there exists the inverse element a−1 ∈ G such that a · a−1 = a−1 · a = e.

Definition 1.2. A group G is finite if the set G is finite.

Definition 1.3. A group G is abelian (commutative) if a · b = b · a for all a, b ∈ G.

Definition 1.4. If G is finite as a set, then the order of the group G is the number of elements in G. Notation: |G|.
Definition 1.5. Generators of a group G form a subset S ⊂ G such that any element of G can be written as a product
of the elements in S.

Definition 1.6. Any equation satisfied by the generators is a relation in G.

Definition 1.7. A presentation of G in terms of generators and relations is the expression

〈S | R1, R2, . . . Rk〉

where S is a set of generators of G and R1, R2, . . . Rk are the relations satisfied by the elements in S such that any
other relation follows from these.

Definition 1.8. Let g be an element in the group G. The smallest positive integer n such that gn = 1, if it exists, is
called the order of the element g in G and denoted o(g). If there is no such integer, then we say that g is of infinite
order (this implies that the group G is infinite).

2 Group homomorphisms. Subgroups and normal subgroups.

Definition 2.1. A map φ : G→ H between two groups is a group homomorphism if

φ(x ·G y) = φ(x) ·H φ(y)

for any x, y ∈ G.

Definition 2.2. A group isomorphism is a homomorphism φ : G→ H that is a bijection between the sets G and H.

Definition 2.3. A group endomorphism is a homomorphism φ : G → G. A group automorphism is an isomorphism
φ : G→ G.

Definition 2.4. The kernel of a homomorphism φ : G → H is the set of all elements g ∈ G such that φ(g) = 1H :
Kerφ = {g ∈ G : φ(g) = 1}. The image of a homomorphism φ : G→ H is the set Imφ = {h ∈ H |∃g ∈ G : φ(g) = h}.
Remark 2.5. If G is presented in terms of generators and relations, to check if a given map φ : G → H is a group
homomorphism, it suffices to check that the images of the generators of G in H satisfy the relations for the generators
in G.

Definition 2.6. A subgroup H ⊂ G is a nonempty subset of G that forms a group with respect to the group operation
in G. In particular, 1 ∈ H and for any a, b,∈ H, we have a · b ∈ H.

Definition 2.7. A subgroup H ⊂ G is normal if ghg−1 ∈ H for any g ∈ G, h ∈ H. Notation: H CG.

Proposition 2.8. If G is abelian, any subgroup is normal in G: H ⊂ G =⇒ H CG.

Proposition 2.9. Let φ : G→ H be a group homomorphism. Then

1. The image of φ is a subgroup in H: φ(G) ⊂ H.

2. The kernel of φ is a normal subgroup in G: KerφCG.



3 The dihedral group Dn.

Definition 3.1. The dihedral group Dn, n ≥ 3 is the group of rigid symmetries of a flat regular n-gon. The group
operation is composition.

Proposition 3.2. The dihedral group Dn is a non-abelian group of order 2n. It has the following presentation in
generators and relations:

Dn = 〈r, s | rn = 1, s2 = 1, srs = r−1〉.

4 Cosets. Lagrange’s theorem.

Definition 4.1. Let H ⊂ G be a subgroup. A left coset with respect to H in G is the subset of element of G defined
as follows:

gH = {gh, h ∈ H}.

Proposition 4.2. Let H be a subgroup of G.

1. Two cosets xH and yH are either equal, or disjoint.

2. Any element g ∈ G belongs to an H-coset.

3. If H is finite, |xH| = |yH| for any x, y ∈ G.

Theorem 4.3. (Lagrange’s Theorem). Let G be a finite group, and H ⊂ G a subgroup. Then the order of H divides
the order of G.

Definition 4.4. In the conditions of Lagrange’s theorem, the number [G : H] = |G|/|H| is called the index of H in
G. It equals to the number of left H-cosets in G.

Corollary 4.5. In a finite group, the order of any element divides the order of the group.

Corollary 4.6. Let G be a finite group, and g ∈ G an element. Then g|G| = 1.

Corollary 4.7. Let G be a finite group of prime order, |G| = p. Then G is cyclic (= there exists x ∈ G such that
G = {1, x, x2, . . . xp−1}.)

5 Applications of Lagrange’s theorem in arithmetic.

Definition 5.1. The group of units in Z/nZ is the group of all invertible elements in Z/nZ with respect to multipli-
cation. It is denoted ((Z/nZ)∗, ·).

Proposition 5.2. Let [a]n ∈ Z/nZ, [a]n 6= [0]n. Then [a]n is a unit in Z/nZ if and only if gcd(a, n) = 1. In
particular, |((Z/nZ)∗, ·)| = ϕ(n), where ϕ(n) is the Euler’s totient function of n.

Theorem 5.3. (Fermat’s Little Theorem (FLT)). Let p be a prime, and a ∈ Z such that p does not divide a. Then

ap−1 ≡ 1 (mod p).

Theorem 5.4. (Euler’s Theorem). Let a, n ∈ Z+, such that gcd(a, n) = 1. Then

aϕ(n) ≡ 1 (mod n),

where ϕ(n) is Euler’s totient function of n.

Remark 5.5. For a prime p, the group ((Z/pZ)∗, ·) is cyclic of order p− 1.

6 Quotient group.

Proposition 6.1. Let G be a group, and N CG a normal subgroup. The set of left N -cosets in G is a group under
the operation

(xN)(yN) = (xyN).

Definition 6.2. Let N CG. Then the group of left N -cosets in G is called the quotient group and denoted G/N .

Proposition 6.3. Let φ : G→ H be a group homomorphism. Then G/Kerφ ' Imφ.



7 The symmetric group Sn

Definition 7.1. Let G be a finite group and E a finite set. We say that G acts on E (by permutations) if for all
x ∈ E and g ∈ G the element g · x ∈ E is defined, such that

1. 1 · x = x ∀x ∈ E,

2. (g1g2) · x = g1 · (g2 · x) ∀g1, g2 ∈ G, ∀x ∈ E.

Definition 7.2. Let G act on the set E. The orbit of x ∈ E is the set

Orbx = {g · x, g ∈ G}.

The orbits of size 1 are called the fixed points of the action.

Definition 7.3. The symmetric group of order n is the group of all permutations (bijective maps) of n ≥ 1 ordered
elements:

ρ : {1, 2, . . . n} → {1, 2, . . . n},

where ρ(i) = k ∈ {1, 2, . . . n} and i 6= j =⇒ ρ(i) 6= ρ(j). The product in Sn is the composition of permutations.
The neutral element is the trivial permutation. The inverse element for such that ρ(i) = k is ρ−1(k) = i for all
i, k ∈ {1, . . . n}. The group is denoted Sn. We have |Sn| = n!, the number of all permutations of n elements.

Definition 7.4. Let σ ∈ Sn be a permutation and consider the subgroup 〈σ〉 ⊂ Sn generated by σ. If the action of
〈σ〉 by permutations of the set of n elements contains exactly one nontrivial orbit with k > 1 elements (and possibly
some fixed points), then σ ∈ Sn is called a k-cycle.

Definition 7.5. A 2-cycle is called a transposition.

Notation 7.6. Let π ∈ Sn be a k-cycle, and x ∈ {1, 2, . . . n} a number in the nontrivial orbit of π. Then in the cycle
notation we represent π as follows: π = (x, π(x), π2(x), . . . πk−1(x)).

Definition 7.7. Two cycles π1, π2 ∈ Sn are disjoint if their nontrivial orbits do not intersect.

Proposition 7.8. Disjoint cycles commute in Sn.

Theorem 7.9. Any permutation in Sn is a product of disjoint cycles, uniquely up to the order of the factors.

Proposition 7.10. Let π, ρ ∈ Sn. The cycle decomposition of πρπ−1 is obtained from that of ρ by replacing each
integer i in the disjoint cycle decomposition of ρ by the integer π(i).

Proposition 7.11. Every k-cycle in Sn is a product of (k − 1) transpositions. In particular,

(12 . . . k) = (1k)(1 k − 1) . . . (13)(12).

Caution: The decomposition of a permutation as a product of disjoint cycles is unique. The transpositions in the
Proposition above are not disjoint.

Corollary 7.12. The group Sn is generated by the transpositions {(ij)}1≤i<j≤n

Proposition 7.13. No permutation in Sn can be written both as a product of an odd number of transpositions and as
a product of an even number of transpositions.

Definition 7.14. A permutation is odd if it is a product of an odd number of transpositions, and even if it is a product
of an even number of transpositions. A transposition is an odd permutation.

Proposition 7.15. The set An of all even permutations form a normal subgroup in Sn of index 2: [Sn : An] = 2.

8 The orbit-stabilizer theorem.

Let G be a finite group acting on a finite set E. Then the orbit of x ∈ E is the set Orbx = {g ·x ∈ G} (see Definitions
7.1 7.2).

Definition 8.1. Let G act on the set E. The stabilizer of x ∈ E is

Stabx = {g ∈ G |g · x = x}.



Proposition 8.2. Let G act on the set E. The stabilizer Stabx of an element x ∈ E is a subgroup in G.

Proposition 8.3. Let G act on the set E. Two orbits of the G-action Orbx and Orby either coincide, or do not
intersect. In particular, E splits as a disjoint union of orbits of G-action: E = ∪iOrbxi

.

Theorem 8.4. (The Ortbit-Stabilizer theorem). Let a finite group G act on a finite set E. Then for any element
x ∈ E, the number of elements in the orbit of x under the G-action equals to the index of the stabilizer subgroup of x
in G:

|Orbx| = [G : Stabx].

9 Conjugacy classes and the class equation

Definition 9.1. Let G be a group acting on itself by conjugations: g · x = gxg−1 ∀x ∈ G, g ∈ G. Then an orbit of
x ∈ G is called the conjugacy class of x in G and denoted Cx, and the stabilizer of x with respect to this action is
called the centralizer of x ∈ G and denoted Gx ⊂ G.

Proposition 9.2. The elements g1 ∈ Sn and g2 ∈ Sn belong to the same conjugacy class in Sn if and only if
they decompose as a product of disjoint cycles of the same lengths. The set of lengths of cycles in a disjoint cycle
decomposition of an element g ∈ Sn is called the cycle type of g. Conjugacy classes in Sn are in bijection with cycles
types.

Definition 9.3. The center Z(G) of the group G is the set of elements that commute with any element in G:

Z(G) = {x ∈ G | xg = gx ∀g ∈ G}.

Theorem 9.4. (The class equation). Let G be a finite group, and let Z(G) be its center, and {xi}mi=1 a set of
representatives the conjugacy classes {Cxi

}mi=1 containing more than one element each. Let Gxi
be the stabilizer

subgroup for xi. Then

|G| = |Z(G)|+
m∑
i=1

|Cxi | = |Z(G)|+
m∑
i=1

[G : Gxi ].

10 Direct product of groups

Definition 10.1. Let G,H be groups. The direct product G × H is the group whose elements are pairs G × H =
{(g, h) | g ∈ G, h ∈ H} with the multiplication (g1, h1) · (g2, h2) = (g1g2, h1h2) for any g1, g2 ∈ G,H1, h2 ∈ H.

It is easy to check that (1G, 1H) ∈ G×H is the identity element, and (g, h)−1 = (g−1, h−1).

Proposition 10.2. Properties of the direct product:

(a) G×H ' H ×G

(b) G×H is abelian if an only if G and H are both abelian

(c) {(1, h}h∈H ⊂ G×H is a subgroup isomorphic to H, and {(g, 1}g∈G ⊂ G×H is a subgroup isomorphic to G

(d) For the cyclic groups, Cn × Cm ' Cmn if and only If gcd(n,m) = 1

(e) Suppose that H,K ⊂ G are two subgroups such that (a) H ∩ K = {1}, (b) ∀h ∈ H, k ∈ K, hk = kh, (c) G is
spanned by the products {hk}h∈H,k∈K . Then G ' H ×K.

11 Classification of finite abelian groups.

Definition 11.1. A group G is simple if it has no nontrivial (6= {1}) proper ( 6= G) normal subgroups.

Theorem 11.2. (Cauchy). If G is a finite abelian group and a prime p divides the order of G, then G contains an
element of order p.

Corollary 11.3. If G is a finite abelian simple group, then G is isomorphic to a cyclic group of prime order.

To classify all finite abelian groups we will use direct products to build more complicated groups out of smaller
groups.



Definition 11.4. Let n be a positive integer. A partition of n is a set of positive integers i1 ≥ i2 ≥ . . . ≥ ik ≥ 1 such
that i1 + i2 + . . .+ ik = n.

Proposition 11.5. Let G be an abelian group of prime power order, |G| = pn. Then G is isomorphic to a direct
product of cyclic groups G = Cpi1 ×Cpi2 × . . .×Cpik , where (i1 ≥ i2 ≥ . . . ik) is a partition of n. Different partitions
of n correspond to non-isomorphic abelian groups.

Proposition 11.6. Let G be a finite abelian group, and |G| = pn1
1 . . . pnr

r is the prime factorization of |G| (here pi are
all distinct primes). Then G is isomorphic to a direct product of abelian groups of orders pn1

1 , pn2
2 , . . . pnr

r :

G ' Gp
n1
1
×Gp

n2
2
× . . . Gpnr

r
.

Theorem 11.7. (Classification of finite abelian groups). Let G be a finite abelian group. Then G is isomorphic to a
direct product of cyclic groups with prime power orders:

G ' Cp
a1
1
× Cp

a2
2
× . . . Cpam

m
,

where {p1, . . . pm} are primes, not necessarily distinct, and |G| = pa1
1 p

a2
2 . . . pam

m .

Definition 11.8. The numbers (pa1
1 , p

a2
2 , . . . , p

am
m ) are called the elementary divisors of G.

Theorem 11.9. Let G be a finite abelian group. Then G is isomorphic to a direct product of cyclic groups with
consecutively dividing orders:

G ' Cd1 × Cd2 × . . . Cdk
,

where dk|dk−1, dk−1|dk−2 and so on, d2|d1, and |G| = d1d2 . . . dk.

Definition 11.10. The numbers (dk, dk−1, . . . d2, d1) are called the invariant factors of G.

Example 11.11. Let G be an abelian group, |G| = 360 = 23 · 32 · 5. The partitions of the power of 2 are
(3), (2, 1), (1, 1, 1). The partitions of the power of 3 are (2), (1, 1). According to Theorem 11.7, we have the following
list of unisomorphic abelian groups of order 360:

C8 × C9 × C5, C8 × C3 × C3 × C5, C4 × C2 × C9 × C5, C4 × C2 × C3 × C3 × C5,

C2 × C2 × C2 × C9 × C5, C2 × C2 × C2 × C3 × C3 × C5.

The elementary divisors are (8, 9, 5), (8, 3, 3, 5), (4, 2, 9, 5), (4, 2, 3, 3, 5), (2, 2, 2, 9, 5), (2, 2, 2, 3, 3, 5). Let us collect the
powers of distinct primes to rewrite the same list of groups according to Theorem 11.9:

C360, C120 × C3, C180 × C2, C60 × C6, C90 × C2 × C2, C30 × C6 × C2.

The invariant factors of G are (360), (120, 3), (180, 2), (60, 6), (90, 2, 2), (30, 6, 2).


