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1 Definition and first examples

Definition 1.1. A group is a set G with a binary operation (multiplication) · : G×G→ G satisfying the axioms:

1. the group operation is associative: (a · b) · c = a · (b · c)

2. there exists an identity element e ∈ G such that a · e = e · a = a for any a ∈ G

3. for each a ∈ G there exists the inverse element a−1 ∈ G such that a · a−1 = a−1 · a = e.

Definition 1.2. A group G is finite if the set G is finite.

Definition 1.3. A group G is abelian (commutative) if a · b = b · a for all a, b ∈ G.

Example 1.4. The integers form a group with respect to addition: (Z,+). This is an infinite abelian group with
e = 0.

Definition 1.5. If G is finite as a set, then the order of the group G is the number of elements in G. Notation: |G|.

Example 1.6. The (counterclockwise) rotations in R2 around a point by multiples of 2π/n form a group with respect
to compositions with e being the rotation by 0 angle. This is the cyclic group of order n, denoted Cn. This is an
abelian group of order n.

Example 1.7. Consider the congruence classes of integers modulo n: {[0]n, [1]n, . . . [n−1]n}. These are all the possible
remainders of the division by n. They form a group with respect to addition and the identity element given by [0]n.
This is an abelian group of order n.

Notation 1.8. We will often write 1 (or 0 for groups written additively) instead of e for the identity element of the
group, if there is no risk of confusion. We will often omit · and assume that ab = a · b means the product of a and b
in the group.

Definition 1.9. Generators of a group G form a subset S ⊂ G such that any element of G can be written as a product
of the elements in S.

Definition 1.10. Any equation satisfied by the generators is a relation in G.

Definition 1.11. A presentation of G in terms of generators and relations is the expression

〈S | R1, R2, . . . Rk〉

where S is a set of generators of G and R1, R2, . . . Rk are the relations satisfied by the elements in S such that any
other relation follows from these.

Example 1.12. Presentation in terms of generators and relations of the cyclic group Cn:

Cn = 〈q | qn = 1〉

Definition 1.13. Let g be an element in the group G. The smallest positive integer n such that gn = 1, if it exists,
is called the order of the element g in G and denoted o(g). If there is no such integer, then we say that g is of infinite
order (this implies that the group G is infinite).

Example 1.14. Consider the cyclic group C12 = 〈q | q12 = 1〉 (You can think of q as the rotation in R2 around the
origin by 2π/12). Then o(q) = 12. We also have o(q2) = 6 and o(q4) = 3.



2 Group homomorphisms. Subgroups and normal subgroups.

Definition 2.1. A map φ : G→ H between two groups is a group homomorphism if

φ(x ·G y) = φ(x) ·H φ(y)

for any x, y ∈ G.

Remark 2.2. If φ : G→ H is a group homomorphism, then φ(1G) = 1H and φ(x−1) = φ(x)−1 for any x ∈ G.

Definition 2.3. A group isomorphism is a homomorphism φ : G→ H that is a bijection between the sets G and H.

Definition 2.4. A group endomorphism is a homomorphism φ : G → G. A group automorphism is an isomorphism
φ : G→ G.

Example 2.5. The map
φ : Cn → Z/nZ, φ(q) = [1]n

is an isomorphism between the cyclic group of rotations by multiples of 2π/n and the group of integers modulo n with
respect to addition. Here q is a generator of Cn, and [1]n is the congruence class of 1 modulo n.

Definition 2.6. The kernel of a homomorphism φ : G → H is the set of all elements g ∈ G such that φ(g) = 1H :
Kerφ = {g ∈ G : φ(g) = 1}. The image of a homomorphism φ : G→ H is the set Imφ = {h ∈ H |∃g ∈ G : φ(g) = h}.

Remark 2.7. An endomorphism φ : G→ G is an automorphism if and only if Kerφ = {1}.

Remark 2.8. If G is presented in terms of generators and relations, to check if a given map φ : G → H is a group
homomorphism, it suffices to check that the images of the generators of G in H satisfy the relations for the generators
in G.

Example 2.9. Let C6 = 〈q | q6 = 1〉 and C4 = 〈t | t4 = 1〉. The map

φ : C6 → C4, φ(q) = t2

is a group homomorphism. We have Imφ = {1, t2}, and Kerφ = {1, q2, q4}.

Definition 2.10. A subgroup H ⊂ G is a nonempty subset of G that forms a group with respect to the group operation
in G. In particular, 1 ∈ H and for any a, b,∈ H, we have a · b ∈ H.

Example 2.11. Consider the cyclic group C12. The elements {1, q3, q6, q9} form a subgroup in C12.

Definition 2.12. A subgroup H ⊂ G is normal if ghg−1 ∈ H for any g ∈ G, h ∈ H. Notation: H CG.

Proposition 2.13. If G is abelian, any subgroup is normal in G: H ⊂ G =⇒ H CG.

Proposition 2.14. Let φ : G→ H be a group homomorphism. Then

1. The image of φ is a subgroup in H: φ(G) ⊂ H.

2. The kernel of φ is a normal subgroup in G: KerφCG.

Proof: Practice Problem Set.

3 The dihedral group Dn.

Definition 3.1. The dihedral group Dn, n ≥ 3 is the group of rigid symmetries of a flat regular n-gon. The group
operation is composition.

Proposition 3.2. The dihedral group Dn is a non-abelian group of order 2n. It has the following presentation in
generators and relations:

Dn = 〈r, s | rn = 1, s2 = 1, srs = r−1〉.

You can think of r as a rotation of the regular n-gon around its center by the angle 2π/n and of s as the reflection
about the straight line passing through one of the vertices of the regular n-gon.

Proposition 3.3. A complete list of elements of Dn in terms of generators and relations is given by the list

Dn = {1, r, r2, . . . rn−1, s, sr, . . . srn−1}.



For proofs of these statements, and discussion of further properties of dihedral groups see the resource “Dihedral
groups” available on the Moodle page of the course.

Exercise 3.4. The subset R = {1, r, . . . rn−1} forms a subgroup in the dihedral group Dn for any n ≥ 3. Use the
relations in Dn to check that this subgroup is normal: RCDn.

Example 3.5. The subset H = {1, s} ⊂ Dn forms a subgroup in the dihedral group Dn (for any n ≥ 3). But H is not
normal in Dn, because we have rsr−1 = sr−2 /∈ H. (Here we used the relations srs = r−1, s2 = 1 =⇒ rs = sr−1.

4 Cosets. Lagrange’s theorem.

Definition 4.1. Let H ⊂ G be a subgroup. A left coset with respect to H in G is the subset of element of G defined
as follows:

gH = {gh, h ∈ H}.

Similarly, a right coset with respect to H in G is the subset of element of G defined as follows: Hg = {hg, h ∈ H}. In
what follows we will use only left cosets and often omit the word “left”.

Example 4.2. Consider the subgroup H = {1, s} in the dihedral group D4 = 〈r, s | r4 = 1, s2 = 1, srs = r−1〉. There
are 4 distinct left H-cosets in D4:

1H = {1, s}, rH = {r, rs}, r2H = {r2, r2s}, r3H = {r3, r3s}.

Note that the order (number of elements) of each H-coset is equal to the order of H, and that D4 is the union of all
its left H-cosets:

Dr = (1H) ∪ (rH) ∪ (r2H) ∪ (r3H).

Exercise 4.3. Check that any other left coset in D4 coincides with one of the cosets listed above. For example, the
coset srH = {sr, srs} = {r−1s, r−1} = {r3s, r3} = r3H.

Proposition 4.4. Let H be a subgroup of G.

1. Two cosets xH and yH are either equal, or disjoint.

2. Any element g ∈ G belongs to an H-coset.

3. If H is finite, |xH| = |yH| for any x, y ∈ G.

Proof:

1. Suppose xH ∩ yH 6= ∅. Then there exists an element z ∈ xH ∩ yH such that z = xh1 = yh2, which implies
x = yh2h

−1
1 ∈ yH. Suppose t ∈ xH, then t = xh3 = yh2h

−1
1 h3 ∈ yH. Therefore, the coset xH is a subset of the

coset yH. By the same argument the opposite inclusion holds. This proves xH = yH.

2. Let g ∈ G. Then g ∈ gH since the subgroup H contains the neutral element.

3. Let H be a finite subgroup of G, and g ∈ G. The map f : H → gH is a bijection: suppose that gh1 = gh2.
Then (g−1g)h1 = (g−1g)h2 implies h1 = h2. The map is surjective by the definition of the left coset. Therefore
the number of elements in each left H-coset is equal to |H|.

Theorem 4.5. (Lagrange’s Theorem). Let G be a finite group, and H ⊂ G a subgroup. Then the order of H divides
the order of G.

Proof: Lecture 3.

Definition 4.6. In the conditions of Lagrange’s theorem, the number [G : H] = |G|/|H| is called the index of H in
G. It equals to the number of left H-cosets in G.

Corollary 4.7. In a finite group, the order of any element divides the order of the group.

Proof: Let G be a finite group, and g ∈ G. Then the powers of g form a subgroup: {1, g, g2, . . . gn−1} = H ⊂ G,
where n is the order of g. By Lagrange’s theorem, n = |H| divides |G|.

Corollary 4.8. If G is a finite group, and H ⊂ K ⊂ G nested subgroups, then

[G : H] = [G : K][K : H].



Proof: By Lagrange’s theorem we have [G : H] = |G|
|H| for any subgroup H ⊂ G of a finite group G. Then we have

[G : K][K : H] = |G|
|K|
|K|
|H| = |G|

|H| = [G : H].

Corollary 4.9. Let G be a finite group, and g ∈ G an element. Then g|G| = 1.

Proof: Let n be the order of g ∈ G. By Corollary 4.7 n divides |G|. Then we have |G| = nk for an integer k, and
g|G| = gnk = (gn)k = 1k = 1.

Corollary 4.10. Let G be a finite group of prime order, |G| = p. Then G is cyclic (= there exists x ∈ G such that
G = {1, x, x2, . . . xp−1}.)

Proof: PS 3.

Example 4.11. Lagrange’s theorem allows us to classify groups of order 4. Let |G| = 4. If G contains an element
x of order 4, then G is cyclic of order 4. Indeed, it contains then all powers of x from 0 to 3: {1, x, x2, x3}. Since
|G| = 4, this is a complete list of elements of the group. Now suppose G does not contain an element of order 4. Then
it contains the identity element and each of the three remaining elements must have order 2 (dividing the order of the
group). If a, b ∈ G with a2 = b2 = 1, then G also contains ab : (ab)2 = 1. The last equation implies (ab)−1 = ba = ab,
therefore the group is abelian and we have G = 〈a, b | a2 = b2 = 1, ab = ba〉. This group is called the Klein group.

Similarly, Lagrange’s theorem allows to classify all groups of order 6 (see PS4).

5 Applications of Lagrange’s theorem in arithmetic.

Definition 5.1. The group of units in Z/nZ is the group of all invertible elements in Z/nZ with respect to multipli-
cation. It is denoted ((Z/nZ)∗, ·).

Example 5.2. We have: ((Z/6Z)∗, ·) = {[1]6, [5]6}.
((Z/7Z)∗, ·) = {[1]7, [2]7, [3]7, [4]7, [5]7, [6]7}.

Proposition 5.3. Let [a]n ∈ Z/nZ, [a]n 6= [0]n. Then [a]n is a unit in Z/nZ if and only if gcd(a, n) = 1. In
particular, |((Z/nZ)∗, ·)| = ϕ(n), where ϕ(n) is the Euler’s totient function of n.

Proof: Let [b]n ∈ Z/nZ be such that [a]n[b]n = [1]n. This means that there exists k ∈ Z such that ab = kn + 1.
Such b, k ∈ Z exist if and only if gcd(a, n) = 1 by Bezout’s theorem.

Theorem 5.4. (Fermat’s Little Theorem (FLT)). Let p be a prime, and a ∈ Z such that p does not divide a. Then

ap−1 ≡ 1 (mod p).

Proof: Consider the multiplicative group ((Z/pZ)∗, ·). It has ϕ(p) = p − 1 elements. Since p does not divide a,
we have a ≡ t (mod p), where t ∈ {1, 2, . . . p − 1}, so a is an element in the group G = ((Z/pZ)∗, ·). By Lagrange’s

theorem, we have [a]
|G|
p = [1]p in this group, therefore [a]p−1

p = [1]p. This means ap−1 = mp + 1 for some integer m,
or equivalently ap−1 ≡ 1 (mod p).

Remark 5.5. For any a ∈ Z, p a prime, we have ap ≡ a (mod p). Proof: exercise.

Theorem 5.6. (Euler’s Theorem). Let a, n ∈ Z+, such that gcd(a, n) = 1. Then

aϕ(n) ≡ 1 (mod n),

where ϕ(n) is Euler’s totient function of n.

Proof: The group G = ((Z/nZ)∗, ·) has ϕ(n) elements. We have [a]n ∈ G if and only if gcd(a, n) = 1. Then by

Lagrange’s theorem, [a]
|G|
n = [1]n, which is equivalent to aϕ(n) ≡ 1 (mod n).

Example 5.7. Find 1 ≤ x ≤ 6 such that 5601 ≡ x (mod 7). By FLT we have 56 ≡ 1 (mod 7), therefore 5600 ≡
1 (mod 7), and 5601 ≡ 5 (mod 7), so x = 5.

Remark 5.8. For a prime p, the group ((Z/pZ)∗, ·) is cyclic of order p− 1. For a proof see the file “units-mod-p.pdf”
in the Resources.



6 Quotient group.

Proposition 6.1. Let G be a group, and N CG a normal subgroup. The set of left N -cosets in G is a group under
the operation

(xN)(yN) = (xyN).

Proof: (xN)(yN) = (x(yy−1)N)(yN) = xy(y−1Ny)N = xyN . The last equality follows because N is normal: for
any n ∈ N we have y−1ny = n′ ∈ N . We need to check that the product is well-defined (does not depend on the
choice of a representative of the left coset). Suppose xN = uN and yN = vN . Then we have xyN = uvN if and only
if (uv)−1xy ∈ N . We compute:

(uv)−1xy = v−1(u−1x)y = v−1n1y = v−1y(y−1n1y) = v−1yn2 = n3n2 ∈ N.

Here we used that u−1x ∈ N , v−1y ∈ N and y−1n1y ∈ N . Therefore the product is well defined.
It is easy to see that 1N is the neutral element and x−1N is the inverse element for xN for any x ∈ G.

Definition 6.2. Let N CG. Then the group of left N -cosets in G is called the quotient group and denoted G/N .

Example 6.3. The dihedral group Dn has a normal subgroup of all rotations {1, r, . . . rn−1}, isomorphic to the cyclic
group Cn. The quotient group Dn/Cn is the cyclic group of order 2: Dn/Cn = {1Cn, sCn}.
Note that the subgroup H = {1, s} ∈ Dn is not normal (see Example 3.5), so that we cannot define a product on the
set of left H-cosets in Dn.

Recall that if φ : G→ H is a group homomorphism, then KerφCG is a normal subgroup and Imφ ⊂ H is a subgroup
(Proposition 2.14). You can check directly that Imφ is a subgroup of H (it contains the neutral element, and is closed
with respect to multiplication and taking inverses, which follows from the definition of a group homomorphism).
Similarly you can check that Kerφ is a subgroup in G. Let us check that Kerφ is a normal subgroup in G. Let
k ∈ Kerφ and g ∈ G. Then by definition φ(k) = 1H . By definition of a group homomorphism we have

φ(gkg−1) = φ(g)φ(k)φ(g)−1 = φ(g)1Hφ(g)−1 = 1H .

Therefore, gkg−1 ∈ Kerφ as well, and KerφCG.

Proposition 6.4. Let φ : G→ H be a group homomorphism. Then G/Kerφ ' Imφ.

Proof: Let K = KerφCG. We define ϑ : G/K → H by setting ϑ(gK) = φ(g) for any g ∈ G. Then we can check
that (1) ϑ is well defined (does not depend on the choice of the representative), (2) ϑ is a group homomorphism, (3)
the image of ϑ is φ(G) ⊂ H, and (4) ϑ : G/K → H is injective.

Example 6.5. Fix n ∈ N∗ and let φ : Z→ Z/nZ by φ(x) = x (mod n). Then φ is a homomorphism with respect to
addition: φ(x+ y) = x(mod n) + y(mod n) = φ(x) + φ(y).
We have Kerφ = {nZ}, and Imφ = Z/Kerφ = Z/nZ = {[0]n, [1]n, . . . [n− 1]n}.

7 The symmetric group Sn

Definition 7.1. Let G be a finite group and E a finite set. We say that G acts on E (by permutations) if for all
x ∈ E and g ∈ G the element g · x ∈ E is defined, such that

1. 1 · x = x ∀x ∈ E,

2. (g1g2) · x = g1 · (g2 · x) ∀g1, g2 ∈ G, ∀x ∈ E.

Definition 7.2. Let G act on the set E. The orbit of x ∈ E is the set

Orbx = {g · x, g ∈ G}.

The orbits of size 1 are called the fixed points of the action.

Definition 7.3. The symmetric group of order n is the group of all permutations (bijective maps) of n ≥ 1 ordered
elements:

ρ : {1, 2, . . . n} → {1, 2, . . . n},

where ρ(i) = k ∈ {1, 2, . . . n} and i 6= j =⇒ ρ(i) 6= ρ(j). The product in Sn is the composition of permutations.
The neutral element is the trivial permutation. The inverse element for such that ρ(i) = k is ρ−1(k) = i for all
i, k ∈ {1, . . . n}. The group is denoted Sn. We have |Sn| = n!, the number of all permutations of n elements.



Definition 7.4. Let σ ∈ Sn be a permutation and consider the subgroup 〈σ〉 ⊂ Sn generated by σ. If the action of
〈σ〉 by permutations of the set of n elements contains exactly one nontrivial orbit with k > 1 elements (and possibly
some fixed points), then σ ∈ Sn is called a k-cycle.

Example 7.5. Let σ be the permutation in Sn≥6 that sends 1→ 6, 6→ 3 and 3→ 1. Then the subgroup generated
by σ is cyclic of order 3: 〈σ〉 = {1, σ, σ2}, where 1 is the trivial permutation, σ sends 1 → 6 → 3 → 1, and σ2 sends
1→ 3→ 6→ 1, and leaves the other elements fixed. Note that σ3 sends 1→ 1, 3→ 3, and 6→ 6, so it is the trivial
permutation. Then 〈σ〉 has one orbit with 3 elements and a few 1-element orbits. Therefore, σ is a 3-cylce.

Definition 7.6. A 2-cycle is called a transposition.

Notation 7.7. Let π ∈ Sn be a k-cycle, and x ∈ {1, 2, . . . n} a number in the nontrivial orbit of π. Then in the cycle
notation we represent π as follows: π = (x, π(x), π2(x), . . . πk−1(x)).

Caution: Note that there are k choices for the starting element x in the cycle notation. In particular, the notations
(123), (312) and (231) represent the same 3-cycle in Sn≥3. It sends 1→ 2, 2→ 3 and 3→ 1.

Example 7.8. In Example 7.5 the cycle σ = (163) in the cycle notation.

Definition 7.9. Two cycles π1, π2 ∈ Sn are disjoint if their nontrivial orbits do not intersect.

Example 7.10. The cycles (145) and (26) in S6 are disjoint. The orbit of the first cycle is {1, 4, 5} and the orbit of
the second is {2, 6}. The cycles (531) and (254) in S5 are not disjoint. Their orbits intersect: {1, 3, 5}∩{2, 4, 5} = {5}.

Proposition 7.11. Disjoint cycles commute in Sn.

Proof: Let O1 and O2 be the nontrivial orbits of the cycles p1, p2 ∈ Sn, respectively. We assume that O1 ∩O2 = ∅.
We will prove that p1p2(x) = p2p1(x) for any x ∈ {1, 2, . . . n}. If x /∈ O1 ∪O2, then p1(x) = x and p2(x) = x, so that
p1p2(x) = x = p2p1(x). Now suppose that x ∈ O1. This implies that x /∈ O2. Then we have:

p1p2(x) = p1(x) = y; p2p1(x) = p2(y) = y,

the last equality holds because y = p1(x) ∈ O1 and therefore y /∈ O2. The proof for x ∈ O2 is similar.

Theorem 7.12. Any permutation in Sn is a product of disjoint cycles, uniquely up to the order of the factors.

Let σ ∈ Sn and consider the cyclic subgroup 〈σ〉 ⊂ Sn generated by σ. Let O1, . . . Ok be the non-trivial orbits
of the action of 〈σ〉 in the set E = {1, 2, . . . n}. Set πi = σ|Xi

, πi = 1|E\Xi
. Then σ = π1π2 . . . πk by construction,

where {π}ki=1 are disjoint cycles by construction. The presentation is unique up to the order of the cycles, because
the disjoint cycles in any other presentation of σ will have to act in the same list of orbits {O1 . . . Ok}, and the action
in each orbit should coincide with that of σ.

Example 7.13. Computations with cycles. By Theorem 7.12 any element can be written as a product of disjoint
cycles. Let us consider the permutation (1352)(256). The cycles are not disjoint, but we can rewrite this element as a
product of disjoint cycles. Start with any number, for example 1: (1..... Consider the factors from right to left. The
right factor does not move 1, and the left factor replaces it with 3: (13.... Go again from right to left, now tracking
the number 3. It is sent to 5: (135.... Next, moving from right to left, track the number 5. It is sent to 6 by the right
factor, and 6 is stabilized by the left factor, so we write (1356.... Next, 6 gets sent to 2 by the right factor and 2 to
1 by the left factor, therefore 6 is sent to 1, and we complete the cycle: (1356). Starting from any of the remaining
numbers, we see that the permutation stabilizes 2 and 4. So we have: (1352)(256) = (1356).

It is easier to compute a conjugation πρπ−1 then a product of permutations in Sn.

Proposition 7.14. Let π, ρ ∈ Sn. The cycle decomposition of πρπ−1 is obtained from that of ρ by replacing each
integer i in the disjoint cycle decomposition of ρ by the integer π(i).

Proof: Let E = {1, 2, . . . n}. Recall that π : E → E is a bijection, and compute the action of πρπ−1 on and element
π(i). We have πρπ−1(π(i)) = π(ρ(i)). So whenever ρ : i → ρ(i), we have πρπ−1 : π(i) → ρ(π(i)). This means that
replacing each i in the cycle notation for ρ by π(i) gives a cycle notation for πρπ−1.

Example 7.15. For a 2-cycle, we have (ij)−1 = (ij). Then (12)(13)(12) = (23) by Proposition 7.14. Also,
(32)(1352)(32) = (1253), and (265)(1352)(265)−1 = (265)(1352)(256) = (1326). (Check that (256)(265) = 1).

Proposition 7.16. Every k-cycle in Sn is a product of (k − 1) transpositions. In particular,

(12 . . . k) = (1k)(1 k − 1) . . . (13)(12).



Proof: Exercise (by induction on k).
Caution: The decomposition of a permutation as a product of disjoint cycles is unique. The transpositions in the

Proposition above are not disjoint.

Corollary 7.17. The group Sn is generated by the transpositions {(ij)}1≤i<j≤n

Proof: Any element σ ∈ Sn is a product of disjoint cycles by Theorem 7.12. By Proposition 7.16 each cycle is a
product of transpositions (not uniquely). Then each element σ ∈ Sn is a product of transpositions.

Proposition 7.18. No permutation in Sn can be written both as a product of an odd number of transpositions and as
a product of an even number of transpositions.

Idea of a proof: Consider the action of Sn by permutation of variables on the polynomial ∆n =
∏

1≤i<j≤n(xi−xj).
Then for any σ ∈ Sn, we have σ(∆n) = ±∆(n). Set sgn(σ) = ±1 accordingly. We have for τ, σ ∈ Sn, that
στ(∆n)

∆n
= σ(∆n)

(∆n) ·
στ(∆n)
σ(∆n) . It follows that the map Sn → ±1 that sends σ → sgn(σ) is a group homomorphism. It is

also clear that sgn(12) = −1, as there is only one change of sign in ∆n: (x1 − x2) → (x2 − x1). Now for any i, k we
can write (1k) = (2k)(12)(2k)−1 and (ik) = (1i)((1k)(1i)−1. Then using the homomorphism property one can show
that sgn(ik) = −1 for any transposition (ik) ∈ Sn.

The previous proposition allows us to define the sign of a permutation as follows.

Definition 7.19. A permutation is odd if it is a product of an odd number of transpositions, and even if it is a product
of an even number of transpositions. A transposition is an odd permutation.

Proposition 7.20. The set An of all even permutations form a normal subgroup in Sn of index 2: [Sn : An] = 2.

Proof: The map Φ : Sn → {±1} sending σ → sgn(σ), is a group homomorphism. Its kernel is a normal subgroup of
Sn that consists exactly of the even permutations in Sn. Since im(Φ) ' Sn/ker(Φ), we have [Sn : ker(Φ)] = |im(Φ)| = 2,
and by definition An = ker(Φ).

Definition 7.21. The group An is called the alternating group of n elements.

Example 7.22. Let us write the elements of the symmetric group S3 in the cycle notation:

S3 = {1, (12), (13), (23), (123), (132)}.

The alternating group An = {1, (123) = (13)(12), (132) = (12)(13)}. In this case the alternating group is isomorphic
to the cyclic group C3.

Definition 7.23. A nontrivial group G is called simple if it does not contain a normal subgroup except {1} and itself.

Theorem 7.24. The alternating group An is simple for n ≥ 5.

For a proof see the file “Symmetric group” in Resources (in French).

8 The orbit-stabilizer theorem.

Let G be a finite group acting on a finite set E. Then the orbit of x ∈ E is the set Orbx = {g ·x ∈ G} (see Definitions
7.1 7.2).

Definition 8.1. Let G act on the set E. The stabilizer of x ∈ E is

Stabx = {g ∈ G |g · x = x}.

Proposition 8.2. Let G act on the set E. The stabilizer Stabx of an element x ∈ E is a subgroup in G.

Proposition 8.3. Let G act on the set E. Two orbits of the G-action Orbx and Orby either coincide, or do not
intersect. In particular, E splits as a disjoint union of orbits of G-action: E = ∪iOrbxi

.

Proofs of Propositions 8.2 and 8.3: exercise. (If g · x = f · y, then f−1g · x = y and y ∈ Orbx, therefore
G · y = Orby ⊂ Orbx. Similarly Orbx ⊂ Orby).



Example 8.4. Consider the action of the group D3 = 〈r, s | r3 = 1, s2 = 1, srs = r−1〉 on itself by conjugations.
In this case G = E = D3, and the action is given by g · x = gxg−1 for any g ∈ D3, x ∈ D3. Then {1} is the fixed
point of the action: g1g−1 = 1 for all g ∈ D3. The elements {r, r2} form another orbit: srs−1 = srs = r−1 = r2, and
all rotations commute. Finally, the remaining elements form a single orbit: {s, sr, sr2} because rsr−1 = sr−2 = sr,
r2sr−2 = r−1sr = sr2. We have: Orb1 = {1}, Orbr = {r, r2}, Orbs = {s, sr, sr2}. The stabilizer of 1 is the whole
group, and the stabilizer of r and r2 is the subgroup of rotations Stabr = Stabr2 = 〈r〉 ⊂ D3. The stabilizer of
s is the subgroup Stabs = 〈s〉 ⊂ D3, since sr or sr2 do not stabilize it: srs(sr)−1 = srsr−1s = sr2, nor do the
rotations. Similarly, the stabilizer of sr is the subgroup Stabsr = 〈sr〉 ⊂ D3, and the stabilizer of sr2 is the subgroup
Stabsr2 = 〈sr2〉 ⊂ D3.

Theorem 8.5. (The Ortbit-Stabilizer theorem). Let a finite group G act on a finite set E. Then for any element
x ∈ E, the number of elements in the orbit of x under the G-action equals to the index of the stabilizer subgroup of x
in G:

|Orbx| = [G : Stabx].

Proof: Let H = Stabx ⊂ G and consider the left H-cosets in G. There is a bijection between the set {gH}g∈G of
left H-cosets in G and the elements of x-orbit Orbx. Namely,

µ : gH → g · x

is a bijection between {gH}g∈G and Orbx. Indeed, µ is surjective because any element of G belongs to a left H-coset.
The map µ is also injective because if µ(gH) = µ(fH) for some g 6= f in G, then g · x = f · x, therefore f−1g · x = x,
then f−1g ∈ Stabx = H, and therefore gH = fH. We conclude that µ is a bijection, which implies that the number
of elements in both sets coincide: |Orbx| = [G : Stabx].

Example 8.6. Let us use the Orbit-Stabilizer theorem to find the order of the group G of rotational symmetries of
a cube. Consider the action of G on the set of all faces of the cube. Let f be one of the faces. Then Stabf ⊂ G
contains the rotations stabilizing f and the opposite face, and is isomorphic to the cyclic group of order 4. The orbit
of f consists of all faces of the cube and has order 6. Therefore,

|Orbf | = [G : Stabf ] = |G|/|Stabf | =⇒ 6 = |G|/4 =⇒ |G| = 24.

The group of rotational symmetries of a cube has order 24.
One can obtain the same result by considering the action of G on the set of vertices or edges of the cube.

9 Conjugacy classes and the class equation

Definition 9.1. Let G be a group acting on itself by conjugations: g · x = gxg−1 ∀x ∈ G, g ∈ G. Then an orbit of
x ∈ G is called the conjugacy class of x in G and denoted Cx, and the stabilizer of x with respect to this action is
called the centralizer of x ∈ G and denoted Gx ⊂ G.

Example 9.2. In the example 8.4 we have Cr = {r, r2}, and Gr = 〈r〉, the subgroup of rotations in D3. Also,
Cs = {s, sr, sr2} and Gs = 〈s〉, a subgroup in D3.

Proposition 9.3. The elements g1 ∈ Sn and g2 ∈ Sn belong to the same conjugacy class in Sn if and only if
they decompose as a product of disjoint cycles of the same lengths. The set of lengths of cycles in a disjoint cycle
decomposition of an element g ∈ Sn is called the cycle type of g. Conjugacy classes in Sn are in bijection with cycles
types.

Proof: PS6, Ex. 2.

Definition 9.4. The center Z(G) of the group G is the set of elements that commute with any element in G:

Z(G) = {x ∈ G | xg = gx ∀g ∈ G}.

Remark 9.5. Let x ∈ G. Then x is in the center if and only if the centralizer of x is the whole group G, and the
conjugacy class of x contains a single element:

x ∈ Z(G) ⇔ Gx = G, Cx = {x}.

Indeed, gx = xg ∀g ∈ G is equivalent to gxg−1 = x for all g ∈ G.



Theorem 9.6. (The class equation). Let G be a finite group, and let Z(G) be its center, and {xi}mi=1 a set of
representatives the conjugacy classes {Cxi}mi=1 containing more than one element each. Let Gxi be the stabilizer
subgroup for xi. Then

|G| = |Z(G)|+
m∑
i=1

|Cxi | = |Z(G)|+
m∑
i=1

[G : Gxi ].

Proof: The first formula is a direct consequence of Proposition 8.3. Indeed, under the adjoint action of G we
have |G| =

∑r
j=1 |Cj |, where {Cj}rj=1 are all the conjugacy classes in G. By definition, the center of G is the union

of all one-element conjugacy classes, Z(G) = ∪tk=1Ck. Then |G| = |Z(G)| +
∑m
i=1 |Cxi

|, where {Cxi
}mi=1 are all the

nontrivial conjugacy classes. The second formula follows from the Orbit-Stabilizer theorem Theorem 8.5.

Example 9.7. We can use the class equation to show that any group of order pn, where p is a prime and n a positive
integer, has a nontrivial center. First, the class equation |G| = pn = |Z(G)| +

∑
i[G : Gxi

] means that |Z(G)| is a
multiple of p, since the numbers |G| and [G : Gxi

] are multiples of p. Also, Z(G) 3 1 and so |Z(G)| ≥ 1. Therefore,
Z(G) contains at least p elements.

10 Direct product of groups

Definition 10.1. Let G,H be groups. The direct product G × H is the group whose elements are pairs G × H =
{(g, h) | g ∈ G, h ∈ H} with the multiplication (g1, h1) · (g2, h2) = (g1g2, h1h2) for any g1, g2 ∈ G,H1, h2 ∈ H.

It is easy to check that (1G, 1H) ∈ G×H is the identity element, and (g, h)−1 = (g−1, h−1).

Proposition 10.2. Properties of the direct product:

(a) G×H ' H ×G

(b) G×H is abelian if an only if G and H are both abelian

(c) {(1, h}h∈H ⊂ G×H is a subgroup isomorphic to H, and {(g, 1}g∈G ⊂ G×H is a subgroup isomorphic to G

(d) For the cyclic groups, Cn × Cm ' Cmn if and only If gcd(n,m) = 1

(e) Suppose that H,K ⊂ G are two subgroups such that (a) H ∩ K = {1}, (b) ∀h ∈ H, k ∈ K, hk = kh, (c) G is
spanned by the products {hk}h∈H,k∈K . Then G ' H ×K.

Proof:

(a) The map φ : G×H → H ×G exchanging the order of factors is an isomorphism of groups.

(b) If G ×H is abelian, then in particular (1, h1)(1, h2) = (1, h2)(1, h1) for any h1, h2 ∈ H, so that H is necessarily
abelian.

(c) The map ψ1 : G→ G×H defined as ψ1(g) = (g, 1) and the map ψ2 : H → G×H defined as ψ2(h) = (1× h) are
clearly injective group homomorphisms.

(d) Let t and q be elements of Cn and Cm respectively. Then the order of (t, q) in Cn × Cm is ≤ lcm(n,m), with the
equality achieved if t and q are generators of their respective groups. The number lcm(n,m) equals to mn if and
only if gcd(m,n) = 1.

(e) We will check that the map φ : H × K → G, sending (h, k) to hk ∈ G, is a group isomorphism. We have
φ(1, 1) = 1 ∈ G, and φ((h1, k1))φ((h2, k2)) = h1k1h2k2 = h1h2k1k2 = φ((h1, k1), (h2, k2)), where we used the
property (b) of the conditions. Therefore, φ is a group homomorphism. The surjectivity of φ is assured by the
property (c). If φ(h, k) = hk = 1, then k = h−1. Since by property (a) we have H ∩ K = {1}, this implies
k = h−1 = 1, and therefore φ : H ×K → G is injective. This completes the proof.

11 Classification of finite abelian groups.

Definition 11.1. A group G is simple if it has no nontrivial (6= {1}) proper ( 6= G) normal subgroups.

Theorem 11.2. (Cauchy). If G is a finite abelian group and a prime p divides the order of G, then G contains an
element of order p.



Proof: Assume G is the smallest counter-example for a given prime p. Consider 〈g〉 ⊂ G, where g ∈ G is a nontrivial
element. By the assumption the order of g is not divisible by p. Then the quotient group G/〈g〉 has the order divisible
by p. Since G was the smallest counter-example, there exists an element of order p in G/〈g〉, say (h〈g〉)p = 1, then
hp ∈ 〈g〉, and so there exists a power of h with order p.

Remark 11.3. In fact Cauchy’s theorem states the same property for any finite group. See PS7 for a proof.

Corollary 11.4. If G is a finite abelian simple group, then G is isomorphic to a cyclic group of prime order.

Proof: Any subgroup is normal in an abelian group. If the order of G is divisible by p, then it contains a subgroup
generated by an element of order p, which is a cyclic group of order p. Therefore the only abelian simple finite groups
are cyclic groups of prime order.

To classify all finite abelian groups we will use direct products to build more complicated groups out of smaller
groups.

Definition 11.5. Let n be a positive integer. A partition of n is a set of positive integers i1 ≥ i2 ≥ . . . ≥ ik ≥ 1 such
that i1 + i2 + . . .+ ik = n.

Example 11.6. There are 7 partitions of n = 5: (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1).

Proposition 11.7. Let G be an abelian group of prime power order, |G| = pn. Then G is isomorphic to a direct
product of cyclic groups G = Cpi1 ×Cpi2 × . . .×Cpik , where (i1 ≥ i2 ≥ . . . ik) is a partition of n. Different partitions
of n correspond to non-isomorphic abelian groups.

Idea of a proof: This is the hardest part of the classification result. Here are the steps of the proof:
(1) Let g ∈ G be an element of highest order in G. We have o(g) = pk with k ≤ n. Consider the quotient group
G/ < g >= {x1 < g >, x2 < g >, . . . xt < g >}. Show that any conjugacy class x < g > contains an element
y ∈ x < g > such that the order of y in G equals to the order of x < g > in G/ < g >.
(2) Suppose we write G/ < g >'< y1 < g >> ×...× < yt < g >>. Then prove that G '< g > × < y1 > ×...× < yt >.
The isomorphism follows from comparing the orders of the groups using (1).
(3) Finally we derive that for |G| = pn, there exists a subgroup H ⊂ G such that G '< g > ×H, where g is an
element of maximal order pk in G, and |H| = pn−k. By induction, the statement of the proposition follows.

See the file “FiniteAbelianGroups” in the Resources for details.

Example 11.8. If G is an abelian group with |G| = 8, then G is isomorphic to one of the following groups:

C8, C4 × C2, C2 × C2 × C2.

These groups are non-isomorphic because the last one contains only elements of order 2, the middle one contains also
an element of order 4, and the first one is the only one that contains an element of order 8.

Proposition 11.9. Let G be a finite abelian group, and |G| = pn1
1 . . . pnr

r is the prime factorization of |G| (here pi are
all distinct primes). Then G is isomorphic to a direct product of abelian groups of orders pn1

1 , pn2
2 , . . . pnr

r :

G ' Gpn1
1
×Gpn2

2
× . . . Gpnr

r
.

Proof: If |G| = mn, with gcd(m,n) = 1, and H = {g ∈ G : o(g)|m}, K = {g ∈ G : o(g)|n}, then H and K
are clearly subgroups of G. Moreover, one can check using Proposition 10.2 (e), that we have G ' H ×K. Indeed,
H ∩K = 1 because if the order of an element divides both n and m, then it is 1 because gcd(n,m) = 1. Let us prove
that G = {hk}hıH,k∈K . Let g ∈ G be such that its order o(g) = st, where s|m and t|n, so that g /∈ H and g /∈ K.
Then gs ∈ G has order t, and gt ∈ G has order s, therefore gs = k ∈ K and gt = h ∈ H. We have gcd(s, t) = 1,
therefore by Bezout’s theorem there exist x, y ∈ Z such that xs+ yt = 1, and therefore kxhy = g, where kx ∈ K and
hy ∈ H. Then by Proposition 10.2 (e) we have G ' H ×K. By induction, the statement follows.

Theorem 11.10. (Classification of finite abelian groups). Let G be a finite abelian group. Then G is isomorphic to
a direct product of cyclic groups with prime power orders:

G ' Cpa1
1
× Cpa2

2
× . . . Cpam

m
,

where {p1, . . . pm} are primes, not necessarily distinct, and |G| = pa11 pa22 . . . pamm .



Proof: The classification theorem follows from Proposition 11.7 Proposition 11.9 .
An alternative proof, independent of the Proposition 11.7, can be given using the generators and relations presentation
of a finite abelian group. Suppose G = 〈g1, g2, . . . gk|R1, R2, . . . Rl〉, where gi are the generators and Rj the relations
that define the group G. The relations are of the form Rj : gni1

1 gni2
2 . . . gnik

k = 1. The system of generators and
relations can be written in the form of a rectangular matrix

n11 n12 . . . n1k

n21 n22 . . .
. . . . . .
nl1 nl2 . . . nlk


We can see that the usual row-column operations with integer coefficients leave the group unchanged:

1. Swapping two rows corresponds to changing the order of relations; swapping two columns corresponds to changing
the order of generators.

2. Adding an integer multiple of one row to another row corresponds to multiplying one relation by an integer power
of another relation, which leads to the same group. Example: G = 〈g, h|g3h = 1, gh−2 = 1〉 is equivalent to
G = 〈g, h|g5h−3 = 1, gh−2 = 1〉, where we have multiplied g3h = 1 by the square of gh−2 = 1. This corresponds
to the matrix transformation (

3 1
1 −2

)
−→

(
5 −3
1 −2

)
.

3. Adding an integer multiple of a column to another column corresponds to redefining the set of generators by
passing from one generator to a product of it with a power of another generator, which leads to the same
group. Example: G = 〈g, h|gnhm = 1〉 is equivalent to G = 〈t, h|tnhm+3n = 1〉, where t = gh−3. Indeed,
(gh−3)nhm+3n = gnh−3nhm+3n = gnhm = 1, so that the group defined in terms of {h, g} with the relation
gnhm = 1 is isomorphic to the group defined by t, h with the relation tnhm+3n = 1 by the isomorphism sending
g → t and h→ h. This operation corresponds to the matrix transformation(

n m
)
−→

(
n m+ 3n

)
.

Applying the row and column operations, we can get n11 to be the smallest possible by absolute value, which is the
gcd of the elements of the first row and the first column. Therefore, the new n11 divides all elements in the first row
and the first column. Applying the row and column operations with integer coefficients further, we can obtain the
matrix of the form 

n11 0 . . . 0
0 n22 . . .
. . . . . .
0 nl2 . . . nlk


We can continue repeating the operation with the smaller matrix starting from the second column and row, and
eventually obtain a diagonal matrix of size r = min(k, l)

n11 0 . . . 0
0 n22 . . . 0
. . . . . .
0 0 . . . nrr

 .

This matrix defines a group isomorphic to the original group G. On the other hand, it is given in generators and
relations as follows: G = 〈g1, . . . gk|gn11

1 = 1, . . . gnrr
r = 1〉. Denote Gi = 〈gi|gnii

i = 1 ' Cnii . This is a cyclic group and
a subgroup in G. We have Gi∩Gj = {1}, and gigj = gjgi since the group G is abelian. The powers of {gi}ri=1 generate
G. Therefore, by the properties of the direct product of groups, G ' Cn11

×Cn22
× . . .×Cnrr

, a direct product of cyclic
groups. Each cyclic group Cnii

is in turn a direct product of cyclic groups of prime power orders according to the prime
factorization of nii, which follows from the property (d) of Proposition 10.2. Finally, G ' Cpa1

1
×Cpa2

2
× . . .×Cpam

m
is

a direct product of cyclic groups of prime power orders. This completes the proof.

Definition 11.11. The numbers (pa11 , pa22 , . . . , pamm ) are called the elementary divisors of G.

Theorem 11.12. Let G be a finite abelian group. Then G is isomorphic to a direct product of cyclic groups with
consecutively dividing orders:

G ' Cd1 × Cd2 × . . . Cdk ,
where dk|dk−1, dk−1|dk−2 and so on, d2|d1, and |G| = d1d2 . . . dk.



This follows from Theorem 11.10 and the property of direct products of cyclic subgroups of mutually prime orders.
Indeed, Cpt × Cqs = Cptqs , if p and q are distinct primes. Taking the direct product of the highest powers of each
distinct prime in the decomposition of Theorem 11.10, we can form the largest cyclic group Cd1 . Then we take the
highest powers of the remaining distinct primes, and so on.

Definition 11.13. The numbers (dk, dk−1, . . . d2, d1) are called the invariant factors of G.

Example 11.14. Let G be an abelian group, |G| = 360 = 23 · 32 · 5. The partitions of the power of 2 are
(3), (2, 1), (1, 1, 1). The partitions of the power of 3 are (2), (1, 1). According to Theorem 11.10, we have the fol-
lowing list of unisomorphic abelian groups of order 360:

C8 × C9 × C5, C8 × C3 × C3 × C5, C4 × C2 × C9 × C5, C4 × C2 × C3 × C3 × C5,

C2 × C2 × C2 × C9 × C5, C2 × C2 × C2 × C3 × C3 × C5.

The elementary divisors are (8, 9, 5), (8, 3, 3, 5), (4, 2, 9, 5), (4, 2, 3, 3, 5), (2, 2, 2, 9, 5), (2, 2, 2, 3, 3, 5). Let us collect the
powers of distinct primes to rewrite the same list of groups according to Theorem 11.12:

C360, C120 × C3, C180 × C2, C60 × C6, C90 × C2 × C2, C30 × C6 × C2.

The invariant factors of G are (360), (120, 3), (180, 2), (60, 6), (90, 2, 2), (30, 6, 2).



The contents of the Appendices is not included in the exam.

12 Appendix A: Classification of finite simple groups.

Recall that Theorem 11.4 provides a classification of all finite simple abelian groups: these are cyclic groups of prime
order. A much harder question is the classification of all finite simple groups. We will outline the answer below.

Recall that by Theorem 7.24 we have: for n > 5 the alternating group An is simple. The proof is relatively easy
and is based on the elementary properties of the symmetric group. See the file “Symmetric group” in Resources.

So we already know two families of simple groups: {Cp}p prime and {An}n≥5. The rest of the classification is
much harder to prove. The complete argument includes hundreds of theorems proven by mathematicians over the last
hundred and eighty years and contains thousands of pages of text. Here is one specialist’s vision of the complexity of
the classification argument.

Theorem 12.1. (Gorenstein, Aschbacher, Lyons, Smith, and more than 30 other authors, 1832-2012) Let G be a
finite simple group. Then G is one of the following:

1. A cyclic group Cp, p a prime

2. An alternating group An for n ≥ 5

3. A group of Lie type. They form 16 infinite families of groups similar to matrix groups with coefficients taken to
be integers modulo a prime. (For example, the 2 × 2 matrices with entries in Z/5Z and determinant equal to
[1]5 form a simple group. But this group turns out to be isomorphic to the alternating group A5, already listed
above. However, examples of this kind provide infinitely many new simple finite groups).

4. One of the 26 sporadic groups, or the Tits group. These are the remaining 27 exceptional groups. The sporadic
groups often appear as groups of automorphisms of lattices in higher dimensional spaces. For example, the
Conway sporadic group Co1 is the group of automorphisms of a remarkable lattice in R24. The vertices of this
lattice provide the arrangement of 196560 unit balls in R24, all touching the same central unit ball. This is the
largest possible number of unit balls touching the same central unit ball in R24. (For comparison, the maximal
number of unit balls touching the same central unit ball in R2 is 6, and the corresponding arrangement is given,
as you might have guessed, by the hexagonal lattice). The order of the group Co1 is about 4 · 1018. The largest
simple finite sporadic group is the Monster. Its order is about 8 ·1053. It also arises as a group of automorphisms
of a lattice. The image below is a picture, in some sense, of the Monster.



The Monster

13 Appendix B: Examples of groups we didn’t have time to consider.

Example 13.1. The braid group Bn on n strings, n ≥ 2.

• Elements: n strings hanging between two horizontal axes attached at the top and the bottom at equal intervals,
possibly tangled in the middle.

• Multiplication: the tangle ab is obtained by attaching the top of the tangle b to the bottom of the tangle a and
removing the horizontal axes in the middle.

• Identity element: n parallel vertical strings

• The inverse tangle for a tangle a is designed to untangle every crossing in a starting from the bottom up, to
obtain n parallel vertical srtings.

The group Bn is infinite and non-abelian.

Example 13.2. The fundamental group of a topological space π1(M).

• Elements: Directed loops in M starting and ending at a fixed point in M , up to stretching and pulling

• Multiplication: Concatenation of loops

• Identity element: The loop of zero length

• The inverse loop a−1 is the loop a traced in the opposite direction

The properties of the group π1(M) depend on the properties of the topological space M .

Example 13.3. The abelian group of an elliptic curve y2 = x3 + ax+ b.

• Elements: points on the curve in the projective plane (with an additional point at infinity O).

• Multiplication: draw a line through two points P and Q. Then P + Q is the opposite point, symmetric with
respect to the x-axis of the third point of intersection of the line with the curve (see the picture below). The
proof of the associativity of multiplication requires some work.

• Identity element: The point at infinity O.

• The inverse element to P is the opposite point −P , symmetric with respect to the x-axis.

This is an infinite abelian group.



Example 13.4. The Rubik’s cube group GRC

• Elements: Rubik’s cube moves

• Multiplication: Composition of moves

• Identity element: The empty move

• The inverse element: The move that returns the cube to its initial state

The group GRC is a finite non-abelian group of order 227 · 314 · 53 · 72 · 11. For more details on the Rubik’s cube group,
see “Group Theory and the Rubik’s Cube.pdf” in Resources.

Example 13.5. Conway’s group of two-player games

• Elements: Two-player games without an element of chance, where there is always a looser - a player who has no
available moves.

• Multiplication: Placing two games side by side and allowing each player to take a move in any one of the games

• Identity element: Any game where the player who starts second can force a win. For example, an empty game
(the first player has to move first, so he loses).

• The inverse element: The game g−1 is the game g where all the moves of the left player are available to the
right player, and vice versa. Then if g and g−1 are placed side by side, the second player can force a win by
reproducing the moves of the first player. The first player runs out of moves first.

This is an infinite abelian group. The best reference on this group is the book “Winning Ways for Your Mathematical
Plays” by Elwyn R. Berlekamp, John H. Conway and Richard K. Guy.


