Final exam

February 1, 2022	$\mathbf{N^o}$	
Last name:		
First name:		

- Please leave a margin of at least 1.5cm inside the booklet.
- Below $\mathbb Z$ denotes the ring of integers, $\mathbb R$ the field of real numbers, $\mathbb Q$ the field of rational numbers, $\mathbb N$ the natural numbers and $\mathbb N^+$ the set of positive natural numbers.
- No document is allowed.
- \bullet Calculators, smartphones and laptops are not allowed.
- Please provide clear, concise and easily readable arguments.
- You can answer in English or in French, but please do not mix the two languages.
- Scrap paper will not be read by the graders.

Leave this space blank

Question	1	2	3	4	5	6	7	8	T/F	Exam	Total
max	6	14	10	9	14	6	12	10	4	85	100
score											

First part, questions 1 to 8

1. (a) Let \mathbb{F}_7 be the field of 7 elements. Find a greatest common divisor d(X) of the polynomials

$$f(X) = X^4 - 2X^3 + 2X^2 - 3X - 1$$
 and $g(X) = X^3 - 2X^2 - 2$

in the ring $\mathbb{F}_7[X]$. (Provide the details of your computation.)

- (b) If d(X) is not monic, find the unique monic greatest common divisor t(X) of f(X) and g(X).
- (c) Find $r(X), s(X) \in \mathbb{F}_7[X]$ such that f(X)r(X) + g(X)s(X) = t(X).
- [6 points]

1

2. Let G be a group of order 12.

- (a) List all possible orders of elements in G.
- (b) How many different abelian groups are there of order 12? Find the elementary divisors of these groups.
- (c) Let S_4 be the symmetric group of permutations of 4 elements. Recall that the alternating group $A_4 \subset S_4$ is the subgroup of all **even** permutations in S_4 . List all elements of $A_4 \subset S_4$ in terms of products of disjoint cycles. In particular, show that $|A_4| = 12$.
- (d) Show that any subgroup $H \subset A_4$ of order 3 is **not normal** in A_4 .
- (e) There is a unique subgroup $K \subset A_4$ of order 4. List all elements in K and prove that it is **normal**.
- (f) Is there a subgroup of order 6 in A_4 ? Justify your answer.
- (g) Give an example (in terms of generators and relations) of a group G of order 12 that is **not abelian** and **not isomorphic to** A_4 .

[14 points]

- 3. Let φ denote the Euler totient function.
 - (a) Compute $\varphi(7)$, $\varphi(49)$, $\varphi(6)$ and $\varphi(36)$.
 - (b) Let p be a prime. Which is bigger, $\varphi(p^2)$ or $(\varphi(p))^2$? Prove your answer.
 - (c) Let n > 1 be a natural number. Which is bigger, $\varphi(n^2)$ or $(\varphi(n))^2$? Prove your answer.

[10 points]

- 4. Let C_k denote the cyclic group of order $k \in \mathbb{N}^+$.
 - (a) How many different (non-isomorphic) abelian groups of order 162 are there? List the elementary divisors and invariant factors for each of the groups above.
 - (b) Among the groups listed above, find all that contain a subgroup of order 27 that is **not cyclic.** Justify your answer.
 - (c) Among the groups listed above, find all that contain no element of order 9. Justify your answer.
 - [9 points]

5. Let \mathbb{F}_3 be the field of 3 elements. Define the ideals in $\mathbb{F}_3[X]$

$$I = \langle X^3 + X^2 + X - 1 \rangle, \quad J = \langle X^3 + X^2 + X + 1 \rangle, \quad K = \langle X^3 - X^2 + X + 1 \rangle$$

Let

$$A = \mathbb{F}_3[X]/I, \qquad B = \mathbb{F}_3[X]/J, \qquad C = \mathbb{F}_3[X]/K.$$

- (a) Which of the rings A, B, C are fields? (justify your answer, cite theorems from the course).
- (b) Find the number of elements in A.
- (c) Find the inverses of the elements $[X]_I$ in A, $[X]_J$ in B and $[X]_K$ in C, if they exist.
- (d) Which of the ring(s) are not integral domain(s)? In this case give an example of a nontrivial zero divisor.
- (e) Which of the rings A, B, C are isomorphic to each other? Justify your answer.
- (f) What is the structure of the abelian group of units of A? (justify your answer, cite a theorem from the course).

[14 points]

6. (a) Show that the system of congruences

$$\begin{cases} x \equiv 0 \pmod{2} \\ x \equiv 1 \pmod{7} \\ x \equiv 3 \pmod{15}. \end{cases}$$

has infinitely many solutions in \mathbb{Z} .

- (b) Find all integer solutions of the system.
- (c) Find the smallest positive integer that solves the system in (a).
- [6 points]

- 7. Let S_n denote the symmetric group of permutations of $n \in \mathbb{N}^+$ elements.
 - (a) Consider the elements $a = (2143)(234) \in S_6$ and $b = (2143)(235) \in S_6$. Write a and b as products of disjoint cycles and find their orders.
 - (b) Recall that for any $g \in S_n$ and any cycle $(x_1...x_k) \in S_n$, we have $g(x_1...x_k)g^{-1} = (g(x_1)...g(x_k))$ in S_n . Use this identity to find the number of elements in the conjugacy class $\{gag^{-1}\}_{g \in S_6}$.
 - (c) Find the number of elements in the conjugacy class $\{gbg^{-1}\}_{g\in S_6}$.
 - (d) What is the maximal order of an element in S_6 ? Justify your answer.
 - (e) What is the maximal order of an element in S_7 ? Justify your answer.

[12 points]

- 8. (a) State the definition of the characteristic of a ring.
 - (b) State the definition of a homomorphism of rings.
 - (c) Let A and B be two rings and suppose that $f:A\to B$ is a ring homomorphism. Prove that $\operatorname{char}(B)$ divides $\operatorname{char}(A)$.
 - (d) Let $A_1 = \mathbb{Z}$, $A_2 = \mathbb{Z}/5\mathbb{Z}$, $A_3 = \mathbb{Z}/15\mathbb{Z}$. Use (c) to determine which of the ring homomorphisms

$$f_{ij}: A_i \to A_j, \qquad i \neq j \in \{1, 2, 3\}$$

can exist. Describe all possible ring homomorphisms between these rings.

[10 points]

Second part, questions 9 to 12.

The following questions do not require any justification. Only your answer will be evaluated: +1 point for a correct answer, -1 for a wrong answer and 0 for no answer.

- 9. (True/False) If G is a non-abelian group, then the direct product group $G \times H$ is non-abelian for any group H.
- 10. (True/False) If gcd(n, m) > 1, then the equation nx + my = 6 can never have integer solutions x, y.
- 11. (True/False) The polynomial $5X^5 + 4X^4 + 8X^3 + 10X^2 + 2$ is irreducible in $\mathbb{Q}[X]$.
- 12. (True/False) The dihedral group D_n is isomorphic to a direct product of cyclic groups of orders n and 2.

[4 points]