Final exam

January 20, 2020

N°

Last name:

First name:

- Below $\mathbb Z$ denotes the ring of integers, $\mathbb R$ the field of real numbers, $\mathbb Q$ the field of rational numbers, and $\mathbb F_q$ the finite field of q elements.
- No document is allowed.
- Calculators and smartphones are not allowed.
- Please provide clear, concise and easily readable arguments.
- You can answer in English or in French, but please do not mix the two languages.
- Scratch paper will not be read by the graders.

Leave this space blank

Question	1	2	3	4	5	6	7	8	second part
acomo									
score									

Total /85

First part, questions 1 to 8

1. (a) Let \mathbb{Q} be the field of rational numbers. Find a greatest common divisor d(X) of the polynomials

$$f(X) = \frac{1}{2}X^3 - X^2 - X - \frac{3}{2}$$
 and $g(X) = X^3 - 3X^2 + X - 3$

in the ring $\mathbb{Q}[X]$. (Provide the details of your computation.)

- (b) Find $r(X), s(X) \in \mathbb{Q}[X]$ such that f(X)r(X) + g(X)s(X) = d(X).
- (c) If d(X) is not monic, find the unique monic greatest common divisor t(X) of f(X) and g(X), and two polynomials $p(X), q(X) \in \mathbb{Q}[X]$ such that f(X)p(X) + g(X)q(X) = t(X).

[7 points]

•

- 2. Let S_4 be the symmetric group of permutations of 4 elements. Let $A_4 \subset S_4$ be the alternating subgroup, the subgroup of all even permutations in S_4 (even permutations are products of an even number of transpositions, not necessarily disjoint).
 - (a) List all elements in A_4 .
 - (b) Let G be a group of order 4. Show that G is abelian.
 - (c) Find an abelian subgroup K of order 4 in A_4 and show that it is normal in A_4 . Hint: Let $\rho, \pi \in S_n$ be two permutations. The disjoint cycle decomposition of $\pi \rho \pi^{-1}$ is obtained from that of ρ by replacing each integer i in the disjoint cycle decomposition of ρ by the integer $\pi(i)$.
 - (d) Is the subgroup K found in (c) normal in S_4 ?
 - (e) Show that there is no subgroup of order 6 in A_4 . *Hint:* What can be the order of an element in a group of order 6?

[14 points]

.

- 3. Let φ denote the Euler totient function.
 - (a) Compute $\varphi(16)$ and $\varphi(128)$.
 - (b) Describe all units (invertible elements) in the rings $\mathbb{Z}/16\mathbb{Z}$ and $\mathbb{Z}/128\mathbb{Z}$.
 - (c) Let p be a prime and $n \ge 1$. Derive a formula for $\sum_{k=0}^{n} \varphi(p^k)$ and prove it by induction (recall that by definition $\varphi(1) = 1$). The answer should depend on p and on n.
 - (d) Find all positive integers m such that $\varphi(m)$ is odd.
 - [11 points]

•		

- 4. (a) How many different (non-isomorphic) abelian groups of order 32 are there?
 - (b) Let p be a prime. How many different (non-isomorphic) abelian groups of order p^5 are there? List these groups without repetition. (You can use the notation C_m to denote the cyclic group of order m.)
 - (c) List all abelian groups of order p^5 that contain an element of order p^3 . Justify your answer.
 - (d) Let $p_1, p_2, \dots p_r$ be r distinct primes. How many different abelian groups of order $n = p_1 p_2 \dots p_r$ are there? Justify your answer.
 - [10 points]

.

5. Let \mathbb{F}_2 be the field of 2 elements. Let $I = \langle X^3 \rangle$ be the ideal in the ring $\mathbb{F}_2[X]$, generated by the polynomial X^3 , and let

$$A = \mathbb{F}_2[X]/I.$$

- (a) Show that the ring A is not a field (cite a theorem). How many elements does it have? List all elements in A as classes modulo I.
- (b) Which of the elements in A are zero divisors?
- (c) Find the inverse of the element $[X^2 + 1]_I$ and the inverse of the element $[X^2 + X + 1]_I$ in A.
- (d) Show that A is not isomorphic to either of the rings $B = \mathbb{Z}/8\mathbb{Z}$, $C = \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Hint: compute the characteristic of each ring.
- (e) Let $D = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Are the rings A and D isomorphic? *Hint:* consider the number of invertible elements in A and D.

[13 points]

•

6. (a) Show that the system of congruences

$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv -6 \pmod{22} \\ x \equiv 0 \pmod{7}. \end{cases}$$

has infinitely many solutions in \mathbb{Z} .

(b) Find the smallest positive integer that solves the system in (a).

[6 points]

- 7. Let S_6 denote the symmetric group of permutations of 6 elements.
 - (a) Let $a = (12) \in S_6$, and $b = (234) \in S_6$. Write the element bab^{-1} in terms of disjoint cycles.
 - (b) Write the elements b^2 and b^2ab^{-2} in terms of disjoint cycles.
 - (c) Express every transposition of the form (ij) for $1 \le i < j \le 4$ as a product of elements a, b and their inverses. What can you conclude about the subgroup $H \subset S_6$ generated by a and b?
 - (d) Find the orbit of 1 under the action of the group H. Find the stabilizer subgroup of 1 in H, $\operatorname{Stab}_{H}(1) \subset H$ and check explicitly that the orbit-stabilizer theorem holds for this action.

[12 points]

- 8. Let A be a commutative ring. Recall that an element $c \in A$ is irreducible if $c \neq 0$, c is not a unit, and if c = ab for $a, b \in A$, then either a or b is a unit.
 - (a) Find all irreducible elements in the ring of integers \mathbb{Z} .
 - (b) Are there any irreducible elements in the ring $\mathbb{Z}/4\mathbb{Z}$? Find them or prove that they don't exist.
 - (c) Is there an irreducible polynomial of degree 10 in $\mathbb{Q}[X]$? If so, provide an example and an explanation.

[8 points]

Second part, questions 9 to 12.

The following questions do not require any justification. Only your answer will be evaluated: +1 point for a correct answer, -1 for a wrong answer and 0 for no answer.

- 9. (True/False) The dihedral group $D_4 = \langle r, s \mid r^4 = 1, s^2 = 1, srs = r^{-1} \rangle$ is isomorphic to the direct product of cyclic groups $C_4 \times C_2$.
- 10. (True/False) The ring $\mathbb{F}_5[X]/\langle X^3-X^2+2\rangle$ is a field.
- 11. (True/False) The number $13^{33} 13$ is divisible by 20.
- 12. (True/False) Let p,q be two distinct primes. Then $\mathbb{Z}/(pq)\mathbb{Z} \simeq \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$ is a ring isomorphism.

[4 points]

.

•