Final exam

January 14, 2017

N°

Last name:

First name:

- Below $\mathbb Z$ denotes the ring of integers, $\mathbb R$ the field of real numbers, $\mathbb Q$ the field of rational numbers, and $\mathbb F_q$ the finite field of q elements.
- No document is allowed.
- Calculators and smartphones are not allowed.
- Please provide clear, concise and easily readable arguments.
- You can answer in English or in French, but please do not mix the two languages.
- Color paper serves only for scratch and will not be read by the graders.

Leave this space blank

Question	1	2	3	4	5	6	7	8	second part
score									

Total /80

First part, questions 1 to 8

1. (a) Find the greatest common divisor d(X) of the polynomials

$$f(X) = 2X^6 + 4X^5 - 2X^2 - X - 3$$
 et $g(X) = 2X^5 - X^2 - 1$

- in the ring $\mathbb{Q}[X]$. (Provide the details of your computation.)
- (b) Find $r(X), s(X) \in \mathbb{Q}[X]$ such that f(X)r(X) + g(X)s(X) = d(X).

- 2. Let $D_3 = \langle r, s \mid r^3 = 1, s^2 = 1, srs = r^{-1} \rangle$ be the dihedral group of order 6, and $C_4 = \langle t \mid t^4 = 1 \rangle$ cyclic of order 4. Let $G = D_3 \times C_4$.
 - (a) Show that G is not abelian.
 - (b) Let $H = \langle (r, t^2) \rangle$ be the subgroup in G generated by (r, t^2) . Find the order of H. Is H normal in G?
 - (c) Let $K = \langle (s,t) \rangle$ be the subgroup in G generated by (s,t). Find the order of K. Is K normal in G?

- 3. (a) Let p be a prime number and $a \in \mathbb{Z}$, $a \ge 1$. Give a formula (without a proof) for $\varphi(p^a)$, where φ is the Euler totient function.
 - (b) Compute $\varphi(20)$.
 - (c) List all the units in $\mathbb{Z}/20\mathbb{Z}$.
 - (d) Find the inverse of $[13]_{20}$ in the ring $\mathbb{Z}/20\mathbb{Z}$.
 - (e) Show that for $a \in \mathbb{Z}$ such that (a, 60) = 1 we have $a^{16} \equiv 1 \pmod{20}$.

.

- 4. (a) List all abelian groups of order 200 up to isomorphism.
 - (b) For each group give the set of elementary divisors and invariant factors.
 - (c) Exactly one of the groups is cyclic. Find it and justify your answer.

- 5. Let $(X^2 + 2)$ be an ideal in the ring $\mathbb{R}[X]$.
 - (a) Show that $X^3 + 6X$ is congruent to 4X modulo $(X^2 + 2)$, meaning that $[X^3 + 6X]_{(X^2+2)} = [4X]_{(X^2+2)}$.
 - (b) Show that $K = \mathbb{R}[X]/(X^2 + 2)$ is a field (cite a theorem from the course).
 - (c) Denote $\alpha = [X]_{(X^2+2)} \in K$, the class of X modulo (X^2+2) . Show that $\alpha \neq [0]_{(X^2+2)}$ and find an inverse of α in K.

6. Which of the following rings are integral domains? Which are principal ideal domains? Justify your answer.

- (a) \mathbb{Z}
- (b) $\mathbb{Z}/6\mathbb{Z}$.
- (c) $\mathbb{Z}/6\mathbb{Z}[X]$.
- (d) $\mathbb{Z}[X]$.

- 7. Let S_6 be the group of permutations of 6 elements.
 - (a) Find the order of (23)(156) in S_6 .
 - (b) Show that there exists a cyclic subgroup $C_k \subset S_6$ for k=2,3,4,5,6.
 - (c) Is there $C_7 \subset S_6$? Cite a theorem from the course.
 - (d) Is there $C_8 \subset S_6$?

8. Show that any $a \in \mathbb{Z}$ has the property $a^{17} \equiv a \pmod{30}$.

Second part, questions 9 to 14.

The following questions do not require any justification. Only your answer will be evaluated: +1 point for a correct answer, -1 for a wrong answer and 0 for no answer.

- 9. Which one of the following rings has a zero divisor? $\mathbb{Z}/7\mathbb{Z}$ and $\mathbb{Z} \times \mathbb{Z}$.
- 10. (True/False) The characteristic of the field of 125 elements is 25.
- 11. (True/False) Let D_n be the dihedral group of order 2n, and $H \subset D_n$ the stabilizer subgroup of one of the vertices of the regular n-gon. Then |H| = 2.
- 12. (True/False) There exists a field of 18 elements.
- 13. (True/False) Let $I=(25),\ J=(15)$ and K=(7) be three ideals in the ring \mathbb{Z} . Check which of the following statements are true:
 - $I+J=\mathbb{Z}$.
 - The ring \mathbb{Z}/K Is an integral domain
 - $I \cap J = (375)$.
 - There exists exactly three ideals J_1, J_2, J_3 in \mathbb{Z} such that $J \subset J_i$ and $J \neq J_i$ for i = 1, 2, 3.
- 14. (True/False) Let G be a group of units in the ring $\mathbb{Z}/10\mathbb{Z}$. Then G is cyclic generated by $[3]_{10}$.