Algebra MATH-310

Lecture 9

Anna Lachowska

November 18, 2024

Plan of the course

- Integers: 1 lecture
- @ Groups: 6 lectures
- Rings and fields: 5 lectures
- Review: 1 lecture

Today: Rings: lecture 2

- (a) Principal ideals.
- (b) Quotient rings.
- (c) Principal ideal domain.
- (d) Ring homomorphisms.
- (e) Characteristic of a ring.

Recall: commutative rings

Definition

A commutative ring is a set A with two binary operations: + and \cdot such that

- A is an abelian group with respect to addition with the neutral element 0,
- ullet The multiplication is associative, commutative, admits a neutral element $1 \neq 0$ and satisfies the distributivity laws.

Definition

The subset $I \subset A$ is an ideal in A if

- **1** $I \subset A$ is a subgroup with respect to addition.

Principal ideal

Definition

Let $S \subset A$ be a subset of a ring. Let I be the minimal ideal that contains S. Then I = (S) is the ideal generated by the set S.

$$S = \{s_i\} \implies \left\{\sum_i a_i s_i\right\}_{a_i \in A} = (S).$$

Definition

Ideal $I \subset A$ is called principal if I = (x) is generated by a single element.

$$I = \{x \cdot a\}_{a \in A}.$$

Example
$$S = \{0\} = \{0\} \subset A \text{ and } A = \{1\} \subset A \text{ are principal ideals}$$

$$h \mathbb{Z} \subset \mathbb{Z}$$
 is principal: $h \mathbb{Z} = (n)$.

A. Lachowska

Ideals in a field

Proposition

A ring A is a field \iff 0 and A are the only ideals in A.

Proof: \Rightarrow) A is a field. Let $a \in I$, $I \neq \{0\}$, $a \neq 0$ Since A is a field $\Rightarrow a^{-1} \in A: a^{-1}.a = 1 \in I \Rightarrow I = A$ $\leq I$ $\leq I$ O and A the only ideals; Let $a \neq 0$, $a \in A$. Consider $(a) = I = f \times a \}$ Since $a \neq 0 \Rightarrow I = (a) = A \Rightarrow \exists y \in A: y \cdot a = 1 \Rightarrow y = a^{-1}$ $\Rightarrow A \ni a field.$

5 / 23

Equivalence and congruence

Definition

An equivalence relation in a set E is a relation satisfying

- reflexivity: $a \sim a$,
- symmetry: $a \sim b \implies b \sim a$,
- transitivity: $a \sim b, b \sim c \implies a \sim c$.

Definition

A congruence relation in a commutative ring A is an equivalence relation on the underlying set satisfying in addition

- $a \sim b, c \sim d \implies a + c \sim b + d,$
- $a \sim b, c \sim d \implies a \cdot c \sim b \cdot d$,

Ideals and congruence relations

Proposition

- **1** If $I \subset A$ is an ideal, then $a \sim b \iff (b-a) \in I$ is a congruence relation.
- ② If \sim is a congruence relation in A, then $I=\{a\in A: a\sim 0\}$ is an ideal in A.

Proof: (1) Check that
$$a \sim b := \langle b - a \rangle \in I$$
 is an equivalence it is also a congruence: $b - a \in I$, $d - c \in I \Rightarrow b - a + d - c = (b + d) - (a + c) \in I \Rightarrow b + d - a + c$

$$ac \sim bd: \quad a(c - d) + d(a - b) = ac - bd \in I \Rightarrow ac \sim bd.$$
(2) $a \sim 0$, $b \sim 0 \Rightarrow a + b \sim 0$, $0 \sim 0$, $-a \sim 0 \Rightarrow I$: $\{a \in A : a \sim 0\}$ is an additive subgreating $a \sim 0$, $x \in A \Rightarrow x \sim x \Rightarrow ax \sim 0 \cdot x = 0 \Rightarrow ax \in I$

$$\Rightarrow \{a \in A : a \sim 0\} = I \text{ is an ideal}$$

Example: Congruence mod n in \mathbb{Z} : $a \sim b \ll b$ b - a = kn for $k \in \mathbb{Z}$ Then: $I = \{a \in \mathbb{Z} : a \sim 0\} = n \mathbb{Z} = (n)$

Lachowska Algebra Lecture 9 November 17, 2024

7 / 23

Quotient ring

Proposition

Let A be a commutative ring, and \sim a congruence relation in A such that $1\not\sim 0$. Then the set of congruence classes

$$A/\sim = A/\{x \in A : x \sim 0\}$$

is a commutative ring.

Proof:
$$\overline{a} = \{x \in A : x \sim a\}$$
. Define $\overline{a} + \overline{b} = \overline{a + b}$, $\overline{a} \cdot \overline{b} = \overline{ab}$ well defined because $a_1 \sim a_2$, $b_1 \sim b_2 => a_1 + b_1 \sim a_2 + b_2$; $a_1b_1 \sim a_2 b_2$. $\overline{1} \in A/$

Example:
$$\mathbb{Z}_{n}$$
 where $a \sim b \iff (b-a) = k n$ for $k \in \mathbb{Z}_{n} = \sqrt[4]{0}$ [1] [n-1] cong. dasses mod n

Ideals in a polynomial ring

Example: Let $A = \mathbb{R}[x]$ and $I = \langle (x^2 - 4) \rangle$ a principal ideal.

Consider $B = \mathbb{R}[x]/I$.

$$\overline{(x+2)} \cdot \overline{(x+1)} = \overline{x^2 + 3x + 2} = \overline{3x+6} = \overline{3(x+2)} \text{ in } B$$

$$\overline{x} \cdot \overline{x} = \overline{x^2} = \overline{4} \text{ in } B$$

Exercise: Any element in B can be written uniquely in the form ax+b, $a,b\in\mathbb{R}$

4□ > 4□ > 4 = > 4 = > = 90

Principal ideal domain

Definition

A commutative ring where every ideal is principal is called a principal ring. An integral domain where every ideal is principal is called a principal ideal domain (PID).

Conclusion: A principal ideal domain is

- A commutative ring
- that has no nontrivial zero divisors
- and where every ideal is generated by a single element.

PID: examples

only 2 ideals: A = (1) and {0} = (0). Example 1. Any field is a PID.

Example 2. \mathbb{Z} is a PID.

Ex. Let
$$J = (a_1, a_2 ... a_n) \in \mathbb{Z}$$
, $a_1 ... a_n \in \mathbb{Z}$.
Then $J = (k)$ is principal, $k = \gcd(a_1 ... a_n)$

By induction on n: use Bezout's thm: $\exists x,y \in \mathbb{Z}$: $xa, +yaz = c \Leftarrow sgcd(a,az) \mid c$.

Ring homomorphisms

Definition

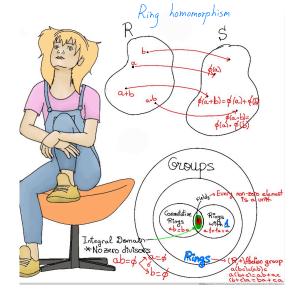
A map $f: A \rightarrow B$ is a ring homomorphism if

- f(a+b) = f(a) + f(b), $(=> f(O_A) = O_B$)
- $f(a \cdot b) = f(a) \cdot f(b)$,
- $f(1_A) = 1_B$.

Definition Very restrictive

A subring $C \subset B$ is a subset that is a ring with the same operations $(+,\cdot)$ and neutral elements (0,1) as in B.

Example: If $C \subset \mathbb{Z}$ is a subring, then $0 \in C$ and $1 \in C$ $\Longrightarrow \underbrace{1+1+1+\ldots+1}_{h-n} \in C$ for any number $n \in \mathbb{N}$. Similarly, $-1 \in C \Longrightarrow {h-n} \in C$. Therefore, $C = \mathbb{Z}$.



Rings and their homomorhpisms

Ring homomorphisms

Proposition

If $f: A \rightarrow B$ is a ring homomorphism, then

- \bullet ker $(f) \subset A$ is an ideal,
- \bigcirc im $(f) \subset B$ is a subring.

Exercise

①
$$x \in \ker f$$
, $y \in \ker f \Rightarrow f(x+y) = f(x) + f(y) = 0 \Rightarrow x + y \in \ker f$

$$f(a \cdot x) = f(a) \cdot f(x) = 0 \Rightarrow a \cdot x \in \ker f \Rightarrow \ker f \in B$$

$$a \in A \Rightarrow 0$$
is an ideal.

Example of a ring homomorphism

Example: Let
$$f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$$
.

(1) Im
$$f$$
 is a subrug in $\mathbb{Z}/m\mathbb{Z}$ Im $f \ni [1]_m \Rightarrow [1]_m + [1]_m + [k]_m = [k]_m$

$$= \sum_{m} f = \mathbb{Z}/m\mathbb{Z}.$$

(2)
$$f(\lceil n \rceil_n) = f(\lceil 0 \rceil_n) = \lceil 0 \rceil_m$$

$$f(\lceil 1 \rceil_n + \lceil 1 \rceil_n + \lceil 1 \rceil_n) = n \cdot \lceil 1 \rceil_m = \lceil n \rceil_m \in \mathbb{Z}/m\mathbb{Z}$$

$$\Rightarrow m \text{ divides } n$$

$$f: \lceil 1 \rceil_n \rightarrow \lceil 1 \rceil_m \Rightarrow f \cdot \lceil k \rceil_n \rightarrow \lceil k \rceil_m \Rightarrow f \text{ is unique}$$

Conclusion: A ring homomorphism

$$f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$$
 exists $\iff m \mid n$.

Then f is unique.

Example of a ring homomorphism

Example 2:
$$f: \mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/12\mathbb{Z}$$

no ring homomorphism: 12 does not divide 6.

Example 3:
$$f: \mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$$
 yes; $f(0) = [0]$ $f(k) = [k]_6$ $\forall k \in \mathbb{Z}$ $\forall k \in \mathbb{Z}$ $\forall k \in \mathbb{Z}$

16 / 23

Characteristic of a ring

Fact:

For any ring A there exists a unique ring homomorphism $\tau: \mathbb{Z} \to A$.

Proof: Since
$$\tau(0) = 0$$
, $\tau(1) = 1 \in A \Rightarrow \tau(n \cdot 1) = \tau(1 + \dots + 1) = \frac{1}{A} + \frac{1}{A} + \dots + \frac{1}{A} = n \cdot 1_A \in A$

$$\Rightarrow \tau(n) = n \cdot 1_A \in A \text{ is uniquely determined}, \tau(n \cdot k) = \tau(n) \cdot \tau(k)$$

Two possibilities for $\ker(\tau)$: $\begin{cases} \ker \tau = (0) \\ \ker \tau = (d) \end{cases} \quad \begin{cases} \ker \tau \neq (1) \text{ because } \\ \tau(1) = 1, \forall 0, . \end{cases}$

Characteristic of a ring

Definition

Let A be a ring and $\tau: \mathbb{Z} \to A$ the unique ring homomorphism. Then the characteristic of A is

- $c_A = 0$ if $\ker(\tau) = (0) \subset \mathbb{Z}$,
- $c_A = d$ if $\ker(\tau) = (d) \subset \mathbb{Z}$, where $d \ge 2$.

Examples.

$$c(R) = 0$$

$$c(\mathbb{Z})=0$$

$$T: \mathbb{Z} \to \mathbb{R} \implies \ker T = \{0\} = \{0\}$$

$$\tau: \mathbb{Z} \to \mathbb{Z}$$
 $h \to h$ $\forall h \in \mathbb{Z}$ identity map $\Rightarrow \ker \tau = (0)$

$$C\left(\frac{\mathbb{Z}_{h}^{\prime}}{\mathbb{Z}_{h}^{\prime}}\right)=h$$

$$T: \mathbb{Z} \to \mathbb{Z}_n$$
 ker $T = (n) \subset \mathbb{Z}_n$
 $k \to \lceil k \rceil_n$

Properties of the characteristic

Proposition

If A is an integral domain, then $c_A = 0$ or $c_A = p$, where p is a prime.

Proof:

By contradiction:
$$C_A = m \cdot k \quad m > 1, \ k > 1$$
, $T(m) \cdot T(k) = T(mk) = 0$ in A => $T(m)$ and $T(k)$ are nontrivial zero divisors. => A is not an integral domain.

Corollary (A field is an integral domain)

Characteristic of a field is either zero, or a prime.

=> Z/nZ is a field => n=p a prime.

Direct product of rings

Definition

If A and B are rings, then the direct product

 $A \times B = \{(a, b), a \in A, b \in B\}$ is a ring with the ring structure given by the component-wise operations:

$$(a_1, b_1) \pm (a_2, b_2) = (a_1 \pm a_2, b_1 \pm b_2)$$

 $(a_1, b_1) \cdot (a_2, b_2) = (a_1 \cdot a_2, b_1 \cdot b_2).$

The neutral elements are $(0_A, 0_B)$ and $(1_A, 1_B)$.

Example. $A = \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$. Compute c_A .

7: $\mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ $\mathcal{T}(1) = (\lceil 1 \rceil_n, \lceil 1 \rceil_m)$, $\mathcal{T}(k) = (\lceil k \rceil_n, \lceil k \rceil_m) = (\lceil 0 \rceil_n, \lceil 0 \rceil_m)$ $= > k = 0 \pmod{n}$ and $k = 0 \pmod{n}$, k > 0 is the smallest = > k = lcm(m, n).

$$C(\sqrt[n]{x} \times \sqrt[n]{m}) = Ccm(n,m)$$

Characteristic of a direct product

Proposition

If $c_A \neq 0$, $c_B \neq 0$, then $c_{A \times B} = \operatorname{lcm}(c_A, c_B)$. If $c_A = 0$ or $c_B = 0$, then $c_{A \times B} = 0$.

Same proof as above.

Poll:

Let n be an even natural number. For a ring A, let A[x] be the ring of polynomials with coefficients in A. Then the characteristic of the following ring is equal to n:

A:
$$\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$$
 $c_{A} = 0$ $\mathbb{T}: \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ $\mathbb{Z}(k) = (k, \lceil k \rceil_{n}) = (0, \lceil 0 \rceil_{n})$ $= > k = 0$.

B: $(\mathbb{Z}/n\mathbb{Z})[x] \times \mathbb{Z}/(\frac{n}{2})\mathbb{Z}$

C: $(\mathbb{Z}/n\mathbb{Z})[x] \times (\mathbb{Z} \times \mathbb{Z}/n^{2}\mathbb{Z}) = 0$ $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n^{2}\mathbb{Z} \times \mathbb{Z}/n^{3}\mathbb{Z}$ $c_{D} = \ell_{Cm}(n, h^{2}, h^{3}) = h^{3}$ $= > c (\mathbb{Z}/n\mathbb{Z}/n\mathbb{Z}) = h$

E: $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/(2n)\mathbb{Z}$ $C_{E} = \ell_{Cm}(n, 2n) = 2n$

$$C\left(\frac{\mathbb{Z}_{n}}{\mathbb{Z}_{n}}[x]\right) = h \Rightarrow C_{B} = lcm\left(n, \frac{n}{2}\right) = n$$

Computation of the characteristic

Remark

Let A[x] denote the polynomials with coefficients in a commutative ring A. Then the characteristic of A[x] is equal to the characteristic of A.

Let
$$\tau: \mathbb{Z} \to A[x]$$
 $\tau(1) = 1 \in A[x]$,
 $= 1 \in A$
 $= > \tau(k) = k \in A \Rightarrow k = 0 \text{ in } A[x]$
 $\iff C(A[x]) = C_A$.

◆□▶ ◆□▶ ◆豊▶ ◆豊▶ ・豊 める◆