Algebra MATH-310

Lecture 7

Anna Lachowska

November **4**, 2024

Written assignment: 18 nov -> 25 nov

Plan of the course

- Integers: 1 lecture
- ② Groups: 6 lectures
- Rings and fields: 5 lectures
- Review: 1 lecture

Today: Groups: lecture 6 -> the last on groups

- (a) Groups: general picture
- (b) If a prime p divides |G|, then there exists an element of order p in G
- (c) Classification of simple finite abelian groups
- (d) Direct product of groups
- (e) Classification of finite abelian groups
- (f) Elementary divisors and invariant factors: examples

Finite groups

1	Abelian	Non-abelian
Definition	$ab = ba \ orall a, b \in G$	$\exists a,b \in G: \ ab \neq ba$
Normal subgroups	All subgroups	$H \subseteq G: gHg^{-1} \in H \ \forall g \in G$
Conjugacy classes	$ C_i = 1 \ \forall C_i$	$\exists C_i: C_i > 1$
Class equation	G = Z(G)	$ G = Z(G) + \sum_{i=1}^r C_i ,$ center $ C_i > 1$
Examples		Symmetric group Su
	Cyclic group Ch Any others?	Dihedral group Dn

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Cauchy's theorem

Theorem

Let G be a finite abelian group, and p a prime dividing |G|. Then G contains an element of order p.

Proof: Let G be the smallest counter-example:
$$|G|$$
 is minimal s.f. $\#$ elf of order p in G , where p is a prime, p divides $|G|$. Let $g \in G$ => order $|G|$ is not divisible by p (if $g^kP = 1 \Rightarrow (g^k)^p = 1$) $|G| \subseteq G$ subgrows $|G| = |G| =$

4 D > 4 B > 4 B > 4 B > B

Cauchy's theorem

Non-abelian case

Cauchy's theorem holds for non-abelian finite groups as well.

p dividus
$$|G| \Rightarrow \exists$$
 an elt $g \in G$ s.f. the order of g is equal to p .

Easier: use the class equation and the abelian case $[PS7]$.

Classification of finite abelian simple groups

Definition

A group G is simple if G has no proper nontrivial normal subgroups.

Proposition

If G is a simple finite abelian group, then G is isomorphic to a cyclic group C_p of prime order.

Proof:
$$|G| = p_1^{n_1} ... p_K^{n_K}$$
 prime factorization => by Cauchy's than

I an elt of order p_1 in G . $: g \in G$: $\langle g \rangle \subset G$, normal

(G is abelian)

 $\langle g \rangle \subset G$ not proper $\langle = \rangle |G| = |p_1| \langle = \rangle G$ is simple.

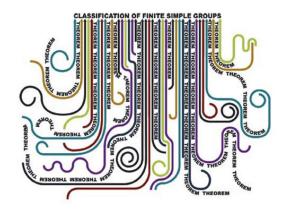
For G to be imple if has to be of order = p , =>

 $G = \langle g \rangle = Cp$,

Classification of finite non-abelian simple groups (20/2)

180 years of work by more than 30 mathematicians.

Answer: 18 infinite series and 27 exceptional groups. The order of the biggest exceptional simple group, The Monster, is about $8 \cdot 10^{53}$.



Our goal today: classification of all finite abelian groups

A. Lachowska Algebra Lecture 7 November 3, 2024 7 / 22

Direct product of groups

(AICC II)

Definition

Let G, H be groups. The direct product $G \times H$ is the set of pairs $G \times H = \{(g,h), g \in G, h \in H\}$ with multiplication $(G_1,h_1)(g_2,h_2) = (g_1g_2,h_1h_2)$, the neutral element $(1_G,1_H)$ and the inverse $(g^{-1},h^{-1})(g,h) = (1_G,1_H)$.

Question: Is $C_n \times C_m \simeq C_{nm}$ always?

Direct product of groups

Example:
$$G = C_2 \times C_2$$
. = $\{(1,1), (1,6), (9,1), (9,6)\}$ \downarrow C_4
 $a^2 = 1$
 $a^2 = 1$

each elt has order 2:

=> $C_1 \times C_2$ does not have an elt of order 4.

=> $C_2 \times C_2 \not\prec C_4$.

Remark

Suppose $(a, b) \in C_n \times C_m$ such that o(a) = n, o(b) = m. then $(a,b)^s = (a^s,b^s) = (1,1)$ implies o(a) divides s and o(b) divides s. Therefore, the order of (a, b) is lcm(o(a), o(b)) = lcm(n, m).

A. Lachowska Algebra Lecture 7 November 3, 2024

9 / 22

Direct product of cyclic groups

Proposition

 $C_n \times C_m \simeq C_{nm}$ if and only if $\gcd(n, m) = 1$.

Proof: PS 7. use the remark above

Corollary

Let C_n be a cyclic group such that $n=p_1^{k_1}p_2^{k_2}\dots p_r^{k_r}$ is the prime factorization of n. Then $C_n\simeq C_{p_1^{k_1}}\times C_{p_2^{k_2}}\times \ldots \times C_{p_r^{k_r}}$.

Proof:

$$C_n \simeq C_{p,k} \times C_m$$
, $m = p_2^{k_2}$. $p_r^{k_r}$ by Proposition, because $gcd(p^k, m) = 1$

Repeat with Cm, and so on > get the decomposition

Properties of the direct product of groups

- **2** $H \subset G \times H$, $G \subset G \times H$ are subgroups. $\{(1, h), h \in H\} \cong H \subseteq G$
- **3** $G \times H$ is abelian if and only if G and H are abelian.
- If $H, K \subset G$ are subgroups such that
 - (a) $H \cap K = \{1\}$
 - (b) $\forall h \in H, \forall k \in K, hk = kh$
 - (c) $HK = \{hk\}_{h \in H, k \in K} = G$

Then $G \simeq H \times K$. The isomorphism is given by $\phi: H \times K \to G$, $\phi(h,k) = hk$. See groups.pdf on Moodle

◆□▶◆圖▶◆臺▶◆臺▶ 臺 め�@

Classification of finite abelian groups

Theorem

Let G be a finite abelian group. Then G is isomorphic to a direct product of cyclic groups of prime power orders

$$G \simeq C_{p_1^{n_1}} \times C_{p_2^{n_2}} \times \ldots \times C_{p_m^{n_m}},$$

where $|G| = p_1^{n_1} p_2^{n_2} \dots p_m^{n_m}$. Here $\{p_1, p_2, \dots p_m\}$ are primes, not necessarily distinct, and $n_1, \dots n_m \ge 1$.

This presentation if unique up to the order of factors. The numbers $(p_1^{n_1}, p_2^{n_2}, \dots, p_m^{n_m})$ are called the elementary divisors of G.

Examples:

$$C_3 \times C_2 \simeq C_6$$
 ; $C_2 \times C_2 \simeq G$, $|G| = 4$ cyclic abelian, not cyclic

- **↓ロト ∢御 ▶ ∢**돌 ▶ ∢돌 ▶ · 돌 · 釣�♡

Proof of the classification theorem

Generators and relations
$$G = \langle g_1, \dots g_k \mid R_1, \dots R_\ell \rangle$$

$$R_1 = g_1^{n_{11}} g_2^{n_{12}} \dots g_k^{n_{1k}} = 1$$

$$R_2 = g_1^{n_{21}} g_2^{n_{22}} \dots g_k^{n_{2k}} = 1$$

$$R_1 = g_1 \quad g_2 \quad \dots \quad g_k = g_1 \quad g_2 \quad \dots \quad g_k = g_1 \quad g_2 \quad \dots \quad g_k = g_1 \quad \dots \quad g_k = g_1$$

 $R_{\ell} = g_1^{n_{11}} g_2^{n_{12}} \dots g_k^{n_{1k}} = 1$

They can be encoded in a rectangular matrix

$$\begin{pmatrix} n_{11} & n_{12} & \dots & n_{1k} \\ n_{21} & n_{22} & \dots & \\ n_{31} & n_{32} & \dots & \end{pmatrix} \qquad \begin{array}{c} \textit{l. rows} \\ \textit{k. columns} \\ \end{pmatrix}$$

13 / 22

Which operations on the matrix do not change the group 6?

Operations on the matrix without changing the group

Adding an integer multiple of one row to another row.

$$\frac{E_{X}}{1-2} = \sum_{j=1}^{3} cow 1 + 2 \cdot (row 2) = \sum_{j=1}^{3} \frac{5-3}{1-2}$$
Relations: $\begin{cases} g^{3}h = 1 \\ gh^{-2} = 1 \end{cases} = \sum_{j=1}^{3} \frac{g^{5}h^{-3} - 1}{gh^{-2} - 1} = \sum_{j=1}^{3} \frac{g^{5}h^{-3} - 1}{gh^{-2} -$

Adding integer multiple of one column to another column.

$$g^h h^m = 1$$
. Replace generators $(g_1h) - (g_1h^{-3}, h) = 1$ the relation becomes $(g_1h^{-3})^n \cdot h^m + 3n = g_1h^{-3n} h^m h^{3n} = g_1h^m = 1$
In the new generators $f_1h^m + 3n = 1$ define the same group column $2 + 3$ colomn $1 : (h, m) - (h, m + 3n)$

Swapping two columns or swapping two rows.

A. Lachowska

Algebra Lecture 7

November 3, 2024

14/22

Operations on the matrix without changing the group

Applying these operations, we can get $n_{11} = \gcd(\text{elements of the first column and first row})$. Then by column and row operations we get

$$\begin{pmatrix} n_{11} & 0 & 0 & \dots & 0 \\ 0 & n_{22} & \dots & & & \\ 0 & n_{32} & \dots & & & \\ 0 & & & & & \\ 0 & & & & & \end{pmatrix}$$

Repeating with the smaller matrix, we get the diagonal matrix

$$\begin{pmatrix}
n_{11} & 0 & 0 & \dots & 0 \\
0 & n_{22} & \dots & & & \\
0 & 0 & n_{33} & & & \\
0 & & & & & \\
0 & & & & & \\
\end{pmatrix}$$

This matrix defines the same group:

$$G = \langle g_1, g_2, \dots g_r \mid g_1^{n_{11}} = 1, g_2^{n_{22}} = 1, \dots g_r^{n_{rr}} = 1 \rangle.$$

A. Lachowska Algebra Lecture 7 November 3, 2024 15 / 22

The classification theorem: end of the proof

We have
$$G = \langle g_1, g_2, \dots g_r \mid g_1^{n_{11}} = 1, g_2^{n_{22}} = 1, \dots g_r^{n_{rr}} = 1 \rangle.$$

=>
$$G_i = \langle g_i \rangle$$
 are cyclic subgroups; $\langle g_i \rangle \cap \langle g_j \rangle = 1$
 $g_i g_j = g_j g_i$ G abelian
=> By property (4) of the direct products

$$G \approx C_{n_{11}} \times C_{n_{22}} \times ... \times C_{n_{2K}}$$

By Propoposition above each
$$C_{n_{ij}} = C_{p_i}^{a_i} \times C_{p_i}^{a_2} \times C_{p_i}^{a_i}$$

Finally,
$$G\simeq \bigcup_{p_1^{n_1}} \times C_{p_2^{n_2}} \times \ldots \times C_{p_m^{n_m}},$$

a direct product of cyclic groups of prime power orders (not necessarily distinct primes).

16 / 22

Corollary: Structure of abelian groups of prime power order

Corollary

Example:
$$|G| = 8$$
. = 2^3

Park homs of 3: (3), (2,1) (1,1,1)

=> $G_1 \simeq G_2^3$
 $G_2 \simeq G_2 \times G_2$
 $G_3 \simeq G_2 \times G_2 \times G_2$
(3)

Pairwise non-isomorphic because $C_n \times C_m \cong C_{nm} \Longleftrightarrow gcd(n,m) = 1$

- **↓ロト ∢御 ▶ ∢**돌 ▶ ∢돌 ▶ · 돌 · 釣�♡

Another way to encode a finite abelian group

Theorem

A finite abelian group $G \simeq C_{d_1} \times C_{d_2} \times \ldots \times C_{d_n}$, where d_n divides d_{n-1} , d_{n_1} divides d_{n-2} , etc, d_2 divides d_1 , and $|G| = d_1 d_2 \dots d_n$. The numbers $(d_1, d_2, \dots d_n)$ are called the invariant factors of G. They determine G uniquely.

$$\begin{bmatrix}
P_{1}^{a_{11}} \\
P_{2}^{a_{21}} \\
P_{2}^{a_{22}}
\end{bmatrix}
P_{1}^{a_{12}}
P_{2}^{a_{13}}
P_{3}^{a_{22}}
P_{3}^{a_{32}}
P_{3}^{a_{$$

18 / 22

Algorithm to classify all abelian groups of given order

- ① Decompose $|G| = n = p_1^{k_1} p_2^{k_2} \dots p_n^{k_n}$ (prime factorization).
- ② Find partitions for each power $k_1, k_2, \ldots k_n$.
- **3** For each partition of k_i , there is a unique group of order $p_i^{k_i}$:

$$k_i = a_1 + a_2 + \ldots + a_t \implies C_{p_i^{a_1}} \times C_{p_i^{a_2}} \times \ldots \times C_{p_i^{a_t}}.$$

- The possible groups of order n are the direct products of all possible groups of orders p_i^{k_i}. This gives a decomposition of G as a direct product of cyclic groups of prime power orders the elementary divisors of G.
- **3** For each of the distinct primes p_i , write the obtained cyclic groups $C_{p_i^{n_i}}$ in the order of decreasing powers of p_i , different primes in different lines. Then in each column you will have cyclic groups of coprime orders, their direct product is a cyclic group. Thus you obtain cyclic groups of orders $(d_1, d_2, ..., d_n)$ and by construction $d_n |d_{n-1}| ... |d_2| d_1$. These are the invariant factors of G.

Classification of finite abelian groups: example

$$|G| = 72 = 2^{3} \cdot 3^{2} \qquad partitions: \qquad (3) \quad (2, 1), \quad (1, 1, 1)$$

$$p_{1}=2 \quad C_{2}^{3} \times \left[\begin{array}{ccc} C_{2}^{3} \times C_{2} \times C_{$$

There are 6 non-isomorphic abelian groups of order 72. The elementary hirisons: $\{(2^3, 3^1), (2^3, 3, 3), (2^2, 2, 3^2), (2^2, 2, 3, 3), (2^$ $(2,2,2,3^3)$, (2,2,2,3,3) $\frac{1}{2}$.

The invariant factors: {(72), (24, 3), (36, 2), (12, 6), (18, 2, 2), (6,6,2)}

For example: $C_4 \times C_2 \times C_9 \simeq C_{36} \times C_2 \simeq C_4 \times C_{18}$ /8 is not a prime power elementary divisors invariant factors neither: 4 does not divide 18

Poll:

$$225 = 3^{2} \cdot 5^{2}$$
 $36 = 2^{2} \cdot 3^{2}$ $4gps$

Cn xCm = Cnm => (u, in) copmine

Which of the statements below is false?

- A: There is only one abelian group of order 105 = 3.5.7
- B: If p a prime, then $C_{p^3} \times C_{p^5}$ is not isomorphic to C_{p^8}
- C: The number of abelian groups of orders 225 and 36 is the same \mathcal{T}_{nuc}
- D: If m divides n, then any abelian group of order n contains an element false of order m.

 Counter-example: $|C_2 \times C_2| = 4$, $|C_3 \times C_4| = 4$, $|C_4 \times C_4| = 4$, $|C_4 \times C_4| = 4$
- E: If a prime p divides |G|, then $C_p \subset G$

$$\exists g \in G: g^{p} = 1 \Rightarrow \langle g \rangle \simeq C_{p} \subset G$$