Algebra MATH-310

Lecture 4

Anna Lachowska

October 🗗 2024

Plan of the course

- Integers: 1 lecture
- ② Groups: 6 lectures
- Rings and fields: 5 lectures
- Review: 1 lecture

Today: Groups: lecture 3

- (a) Groups in cryptography: Elliptic curves and Lenstra's factorization algorithm
- (b) Non-abelian groups: the dihedral group
- (c) Normal subgroups and quotients
- (d) Examples of quotient groups

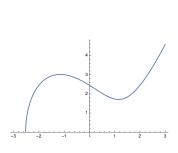
Elliptic curve group

Definition

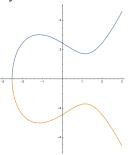
An <u>elliptic curve</u> is a subset of points in a plane \mathbb{K}^2 that satisfy the equation $y^2 = x^3 + ax + b$ where $a, b \in \mathbb{K}$.

$$y = x^3 - 4x + 6$$

$$y = \sqrt{x^3 - 4x + 6}$$



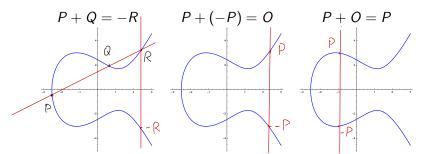
$$y^2 = x^3 - 4x + 6$$



The set of \mathbb{K} -rational points on an elliptic curve has a group structure

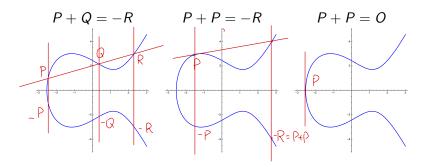
Set P+Q=-R whenever three points P,Q,R are collinear points on the curve. P+Q=-R P+R=-Q, R+Q=-P

- **1** The neutral element is the point O "up at ∞ "
- ② For any P the opposite point is the point symmetric to P with respect to the horizontal axis. Then P + (-P) = O.
- **3** For any P, we have P+O (vertical line through P) intersects the curve in -P, so we have P+O=-(-P)=P.



Elliptic curve group

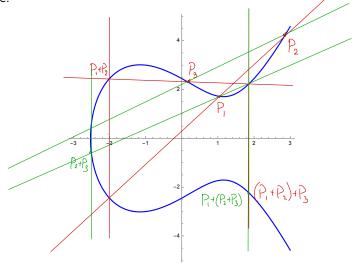
- ① If P, Q, R are three intersection points of a line with the curve, then $P+Q=-R, \ Q+R=-P$ and P+R=-Q.
- **5** To find P + P, draw a <u>tangent</u> to the curve at P which intersects the curve at R. Then P + P = -R, and P + R = -P.
- **1** If P has y-coordinate zero, then P + P = O.



Elliptic curve group $(P_1 + P_2) + P_3 = P_1 + (P_2 + P_3)$

The addition is clearly commutative. It is also associative (harder to show).

Example:



Elliptic curve group: conclusions

- Computing sums and multiples of points involves computing slopes of lines of the form $\frac{u}{v}$.
- ② If we consider the curve over numbers $\mathbb{Z}/n\mathbb{Z}$, then the construction fails if and only if v is not invertible modulo n. This is exactly when $\gcd(v,n)>1$. This is the idea of Lenstra's factorization algorithm (Hendrik Lenstra, 1987).

collaborated with Arjen Lenstva (EPFL)

7 / 18

Lenstra's factorization algorithm

Suppose you want to factorize a number $n \in \mathbb{N}$.

- **1** Pick up an elliptic curve $y^2 = x^3 + ax + b$ over $\mathbb{Z}/n\mathbb{Z}$ and a point P on it.
- Compute 2P, 3!P, 4!P, etc until the computation fails.

$$3!P = 3 \cdot 2P = 2 \cdot 2P + 2P, \dots$$

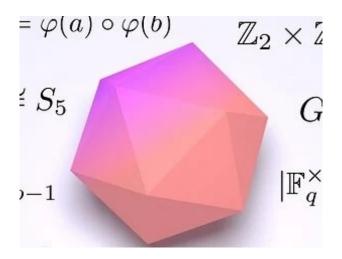
This involves computing slopes of lines $\frac{u}{v}$ modulo n, which makes sense if and only if $\gcd(v,n)=1$ and v is invertible in $\mathbb{Z}/n\mathbb{Z}$.

- 3 If the computation fails, this implies gcd(v, n) > 1 and you have found a nontrivial factor of n.
- Otherwise restart with a different curve and point P.

This method is especially efficient to find small factors of n.

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 - 夕 Q (C)

Back to group theory!



9 / 18

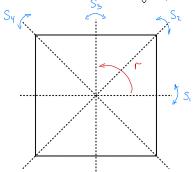
Dihedral group

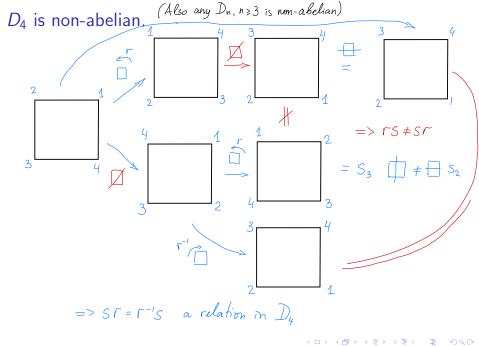
Definition

 D_n , $n \ge 3$, is the group of rigid symmetries of a flat regular n-gon.

$$D_n = \{1, r, \dots r^{n-1}, s_1, s_2, \dots s_n\}.$$

Example: D_4 . = $\{1, \Gamma, \Gamma^2, \Gamma^3, S_1, S_2, S_3, S_4\}$ - a group with respect to compositions





A. Lachowska Algebra Lecture 4 October 6, 2024 11 / 18

Number of elements and relations in D_n :

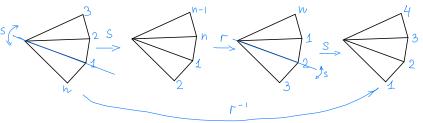
Vertex $1 \longrightarrow n$ possibilities

Vertex 2 -> 2 poss: bilities

2 possibilities

But we have already found
$$2n$$
 elts $\frac{1}{n}D_n \implies |D_n| = 2n$

Relations in D_n Let s be a reflection through a vertex, r a counterclockwise rotation by $\frac{2\pi}{r}$.



Conclusion:
$$srs = r^{-1}$$
.

Conclusion:
$$srs = r^{-1}$$
. \Rightarrow $Sr = r^{-1}S$, $SrSr = 1 \Rightarrow (Sr)^2 = 1$

 $=>|D_n| \leq 2n$

A. Lachowska Algebra Lecture 4 October 6, 2024 12 / 18

Presentation of D_n in generators and relations

Proposition

 D_n admits a presentation in generators and relations:

$$D_n = \langle s, r \mid s^2 = 1, r^n = 1, srs = r^{-1} \rangle.$$

Complete list of elements:
$$\{1, \Gamma, \Gamma^2, \dots, \Gamma^{h-1}, S, S\Gamma, S\Gamma^2, \dots, S\Gamma^{h-1}\}$$

 $Totations$ reflections
 $Tdea: S\Gamma = \Gamma^{-1}S \Rightarrow Any product S\Gamma^3S\Gamma^{-2}S... can be written
in the form $S^a\Gamma^b$, $S^2 = 1 \Rightarrow \Gamma^i, S\Gamma^j\}_{i=0,\dots,n-1} \Rightarrow get 2n$ elements
Any additional relation would reduce # of elements in the group.$

What do we need it for?

Recall: A subgroup $H \subset G$ is normal in G if $ghg^{-1} \in H$ for any $g \in G$, $h \in H$. If G is abelian, then any subgroup $H \subset G$ is normal: $ghg^{-1} = gg^{-1}h = h \in H$.

If G is non-abelian, the situation is more interesting.

4 □ > 4 屆 > 4 ឨ > 4

Examples of subgroups in D_n

$$D_n = \langle s, r \mid s^2 = 1, r^n = 1, srs = r^{-1} \rangle.$$

1 Let $R = \langle r \rangle = \{1, r, \dots r^{n-1}\} \subset D_n$ be the subgroup of rotations. Then $R \leq D_n$ is normal in D_n :

Need to check:
$$g r^k g^{-1} = r^j + g \in D_n$$
 $rr^k r^{-1} = r^k \in \mathbb{R}$
 $Sr^k S^{-1} = Sr^k S = (SrS(SrS(SrS) (SrS) = r^{-1} r^{-1} ... r^{-1} = r^k \in \mathbb{R}$
 $SrS = r^{-1}$

Cosets in D_n with respect to R:

$$1R = \{1, r, r^{2}, r^{n-1}\} = r^{2}R = \{r^{2}, r^{3}, -r^{n-1}, 1, r\}$$

$$SR = \{S, Sr, Sr^{2}, Sr^{n-1}\} \qquad D_{n} = (1R)U(SR)disjoint \quad union$$

14 / 18

2 Let $K = \langle s \rangle = \{1, s\} \subset D_n$. Then K is not normal in D_n : $SSS^{-1} = S \quad fS = ST^{-1} = ST^{-2} \notin K$ $ST(sT^{-1} \Rightarrow SS^{-1} = ST^{-1})$

Poll: normal subgroups in D_n

Consider the following subgroups in dihedral groups:

(1).
$$\{1, r^3, r^6\} \subset D_9 \quad \lor \quad \Rightarrow S\Gamma^3S = \Gamma^{-3} = \Gamma^6 \in \text{subg} \Rightarrow \text{normal}$$

(2).
$$\{1, sr\} \subset D_6 \times \longrightarrow SSS = \Gamma S \notin subg \longrightarrow hot normal$$

(3).
$$\{1, sr^5\} \subset D_6 \times \longrightarrow SS\Gamma^5S = S\Gamma^{-5} \notin subsp => not normal$$

(4).
$$\{1, r^2, r^4, r^6\} \subset D_8 \lor \longrightarrow \varsigma \Gamma^{2k} \varsigma = \Gamma^{-2k} \in \text{subgr} => \text{normal}$$

(5).
$$\{1, sr^4\} \subset D_8 : \times \longrightarrow SS\Gamma^4S = S\Gamma^4 = S\Gamma^4 \in subgr$$
 but $\Gamma S\Gamma^4\Gamma^4 = \Gamma S\Gamma^3 = S\Gamma^4\Gamma^3 = S\Gamma^4 \notin subgr$

Poll: The following subgroups in the list are normal:

- A: Only (1).
- B: Only (2), (3) and (5).
- C: Only (5).
- D: Only (1) and (4).
- E: Only (1), (4) and (5).

Quotient groups: group of cosets with respect to a normal subgroup

Proposition

If $H \subseteq G$ is a normal subgroup, then the set of left H-cosets in G naturally forms a group. Namely, define $(xH) \cdot (yH) = (xyH)$, then (1H) is the neutral element and $(xH)^{-1} = (x^{-1}H)$. The group law on the set of left H-cosets G/H is well defined and gives rise to a group structure on G/H.

Need to check: the group law does not depend on the choice of representatives of cosets.

Suppose
$$x' \in xH$$
, $y' \in yH$. Need to show: $x'y' \in xyH$
 $x' = xh_1$, $y' = yh_2 \Rightarrow x'y' = xh_1yh_2 = xyh_3h_2 \in xyH$.
 $h_1h_2 \in H$
 $y''h_1y = h_3 \in H$ because H
is normal.
 \Rightarrow in deed $x'y' \in xyH \Rightarrow$ the group law is well defined.

October 6, 2024

Example: Cosets of $R = \{1, r, \dots r^{n-1}\}$ in D_n .

$$1R = \{1, r, \dots r^{n-1}\}\$$

 $sR = \{s, sr, \dots sr^{n-1}\}\$

They form a group, called the quotient group D_n/R with elements the left R-cosets and the group law defined by the proposition above.

Neutral element: coset of 1.

$$(1R)(sR) = (sR)$$

$$(sR)(1R) = (sR)$$

$$(sR)(sR) = (1R)$$

$$(1R)(1R) =$$

$$g_2g_1 = r^j sr^i = skristr^i = sr^j r^i = sr^i j \in sR \Rightarrow (1R)(sR) = (sR).$$

Obtain a group
$$D_n/R \simeq C_2 = \langle t \mid t^2 = 1 \rangle = \{1,t\} \approx f(R),(sR)\}$$

A. Lachowska Algebra Lecture 4 October 6, 2024 17 / 18

Summary of elements of group theory

- **1** A subgroup $H \subseteq G$ is normal if $ghg^{-1} \in H$ for any $g \in G$, $h \in H$.
- ② A quotient group G/H is a group of left cosets with respect to a normal subgroup $H ext{ ≤ } G$. Multiplication: (xH)(yH) = (xyH). $|G| = |G/H| \cdot |H| = [G:H] \cdot |H|$ by Lagrange's theorem.
- **3** If $\phi: G_1 \to G_2$ is a group homomorphism, then $\ker \phi \unlhd G_1$ is normal in G_1 .
- **4** Any subgroup $H \subset G$ is normal in an abelian group G.
- **⑤** $D_n = \langle s, r \mid s^2 = 1, r^n = 1, srs = r^{-1} \rangle$, $n \ge 3$ is an example of a non-abelian group.

Then $R = \langle r \mid r^n = 1 \rangle \subseteq D_n$ and $D_n/R \simeq C_2$ cyclic group of 2 elements.

$$|D_n| = [D_n : R] \cdot |R| = 2 \cdot n = 2n.$$

