Algebra MATH-310

Lecture 3

Anna Lachowska

September 39, 2024

Plan of the course

- Integers: 1 lecture
- @ Groups: 6 lectures
- Rings and fields: 5 lectures
- Review: 1 lecture

Today: Groups: lecture 2

- (a) Basic examples of groups
- (b) Group homomorphisms and isomorphisms
- (c) Presentation of a group in generators and relations
- (d) Examples of group homomorphisms
- (e) Kernel and image of group homomorphisms

Recall: two groups modulo n

Additive group modulo *n*

For any $n \in \mathbb{N}$, $n \geq 2$, the equivalence classes of integers modulo n: $(\mathbb{Z}/n\mathbb{Z},+,0)=\{[0],[1],\dots[n-1]\}$ form an abelian group with respect to addition. $|(\mathbb{Z}/n\mathbb{Z},+,0)|=n$.

Multiplicative group modulo *n*

For any $n \in \mathbb{N}$, $n \geq 2$, define the group $((\mathbb{Z}/n\mathbb{Z})^*,\cdot,1) = \{x \in \mathbb{N}: 1 \leq x \leq n, \gcd(x,n) = 1\}$. Then $((\mathbb{Z}/n\mathbb{Z},)^*\cdot,1)$ is an abelian group with respect to multiplication and $|((\mathbb{Z}/n\mathbb{Z})^*,\cdot,1)| = \varphi(n)$.

Recall: every element of $((\mathbb{Z}/n\mathbb{Z})^*,\cdot,1)$ has a multiplicative inverse.

$$gcd(a,n)=1 \iff \exists x,y \in \mathbb{Z} : ax+ny=1$$

$$[a].[x]=[1] \mod n \implies [a]^{-1}=[x]$$

A. Lachowska Algebra Lecture 3 September 29, 2024 3 / 21

Group of the roots of unity

Let $n \in \mathbb{N}$, $n \ge 2$ and consider the group $C_n = \{1, q, q^2, \dots q^{n-1}\}$ where $q = e^{\frac{2\pi i}{n}}$.

$$\frac{E_{x}}{1}$$
 C_{6} $\frac{1}{1}$ $\frac{$

Intuition: the groups $(\mathbb{Z}/n\mathbb{Z},+,0)$ and C_n are "the same"

For any $n \in \mathbb{N}$, $n \ge 2$,

 $(\mathbb{Z}/n\mathbb{Z},+,0)=\{[0],[1],\dots[n-1]\}$ is an abelian group of order n with respect to addition.

 $C_n = \{1, q, q^2, \dots q^{n-1}\}$ where $q = e^{\frac{2\pi i}{n}}$ is an abelian group of order n with respect to multiplication.

$$|(\mathbb{Z}_{h\mathbb{Z}}, t_{i} 0)| = h ; |C_{h}| = h$$

$$0 \longrightarrow 1$$

$$1 \longrightarrow q = e^{\frac{2\pi i}{h}}$$

A. Lachowska

How can we tell when the two groups are "the same"?

Example:
$$|G_1| = |G_2|$$

$$G_{1} = \{1, a, b, ab = ba \mid a^{2} = b^{2} = 1\}.$$

$$(ab)(ba) = (ab)(ab) = 1 \implies (ab)^{-1} = (ab)$$

$$a \cdot ab = a \cdot ba = b ;$$

$$G_{2} = \{1, q, q^{2}, q^{3} | q^{4} = 1\}. = C_{4} = \{1, i, -1, -i\} \qquad |G_{2}| = 4$$

$$q \in G_{2} : q^{4} = 1 \text{ and } q^{2} \neq 1$$

$$B_{4} + ih G_{1} : a^{2} = 1, b_{=1}^{2}, (ab)^{2} = 1 \Rightarrow (any element)^{2} = 1.$$

$$Groups G_{1} \text{ and } G_{2} \text{ have different structure.}$$

Conclusion:

|G1 = |G2 | does not imply that the groups have the same structure.

Group homomorphisms

Definition

A map $\phi: G \to H$ between two groups is a group homomorphism if

$$\phi(x_{\dot{G}}, y) = \phi(x)_{\dot{H}} \phi(y) \quad \forall x, y \in G.$$

Proposition

If $\phi: G \to H$ is a group homomorphism, then $\phi(1_G) = 1_H$ and $\phi(x^{-1}) = (\phi(x))^{-1}$ for any $x \in G$.

$$\frac{\text{Proof:}}{\text{Let } x, y \in G} \Rightarrow \mathcal{Y}(x \cdot y^{-1}, y) = \mathcal{Y}(x \cdot y^{-1}), \mathcal{Y}(y) = \mathcal{Y}(x) \qquad \forall x, y \in G$$

$$\Rightarrow \mathcal{Y}(x \cdot y^{-1}) = \mathcal{Y}(x) \cdot (\mathcal{Y}(y))^{-1}$$

=> Take
$$y = x \Rightarrow \frac{\varphi(x \cdot x')}{\varphi(1_G)} = \frac{1}{H} \Rightarrow \varphi(1_G) = 1_H$$
.

Group homomorphisms

Definition

A group homomorphism that is invertible is called an isomorphism:

$$\phi: G \to H, \quad \psi: H \to G: \qquad \phi \circ \psi = \mathrm{Id}_H, \quad \psi \circ \phi = \mathrm{Id}_G.$$

Then $G \simeq H$ are isomorphic groups.

A group automorphism is an isomorphism of a group to itself $\phi: G \to G$.

4 □ > 4 □ > 4 □ >

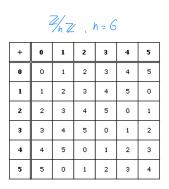
Example of a group isomorphism: $(\mathbb{Z}/n\mathbb{Z},+,0)\simeq C_n$

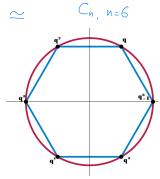
Cn =
$$\{1, q, q^2 \dots q^{n-1}\}$$

 $\forall: 1 \quad q \quad q^2 \quad q^{n-1} \quad \text{is a bijechon}$
 $\forall \{q^i, q^j\} = \{(q^i + j) = [i + j]\}$
 $\forall \{q^i\} = \{(q^i) + \{(q^j) +$

Conclusions

- A group homomorphism is a map between two groups that respects the multiplication.
- 2 Two isomorphic groups can have a different description but they admit a bijective map (an isomorphism) that sends product to product and inverse to inverse.





Presentation of a group in generators and relations

Definition

Generators of a group is a minimal set of elements of G such that any element of G can be written as a product of the generators and their inverses.

Example

$$C_n = \{1, q, q^2, \dots q^{n-1}\}$$
 has a generator q .

Can it have any other generators?

Yes!
$$q^{n-1} = q^{-1}$$

In general, q^k is a generator of $C_n \iff \gcd(k,n)=1$.

If $\gcd(k,n)=d \implies q^k=q^{dt}=)(q^k)^s=1 \implies q^k$ generates a g_i of $s=\frac{n}{d}$ elts.

If $\gcd(k,n)=1 \implies \exists a,b \in \mathbb{Z}: ak+bn=1 \implies (q^k)^a=q \implies it$ generates C_n .

 4 □ ▶ ⟨ ∃ ▶ ⟨ ∃ ▶ ⟨ ∃ ▶ ⟨ ∃ ▶ ⟩ ∃
 ♥ ○ ○ ○

 A. Lachowska
 Algebra Lecture 3
 September 29, 2024
 11 / 21

Generators: example

Let \mathbb{Q}_+^* denote the set of positive rational numbers. Then \mathbb{Q}_+^* is a group with respect to multiplication.

Poll: What are the generators of the group \mathbb{Q}_+^* ?

A: All elements of \mathbb{Q}_+^*

B: All positive natural numbers \mathbb{N}_+

C: All prime numbers

D: All odd positive integers and 2

E: All numbers of the form $\frac{1}{n}$ where $n \in \mathbb{N}_+$

 $h = p_1^{n_1} p_1^{n_2} \dots p_r^{n_r} =$ get all natural positive numbers $\frac{1}{p_1^{n_1}} \frac{1}{p_2^{n_2}} \dots \frac{1}{p_r^{n_r}} \Rightarrow \text{get all positive rational numbers.}$

Bonus question: what are the generators of the multiplicative group of nonzero rational numbers \mathbb{Q}^* ?

A. Lachowska

Algebra Lecture

September 29, 2024

Relations in a group

Definition

Any equality satisfied by the products of generators is called a relation in a group.

Example

In $C_n=\{1,q,q^2,\dots q^{n-1}\}$ we have a generator q that satisfy the relation $q^n=1$. $q^{n+3}=q^3$ is another relation.

Generators and relations in a group are not unique in general!

Group defined by generators and relations

Definition

A presentation of G in terms of generators and relations is an expression $\langle S \mid R \rangle$, where S is a set of generators and R is a minimal set of relations in G, such that any other relation in G follows from these.

Example

$$C_n = \langle q | q^n = 1 \rangle$$
. This is the cyclic group of order n .

$$q^{n+3} = q^3$$
 if follows from the relation $q^n = 1$
by multiplication by $q^3: q^n = 1 \Rightarrow q^{n+3} = q^3$.

Example: The Klein group:
$$K = \langle a, b \mid a^2 = 1, b^2 = 1, ab = ba \rangle$$

What are they useful for?

Defining group homomorphism in terms of generators and relations

Proposition

Let $G = \langle S | R_1, R_2, \dots R_k \rangle$ be a group defined by generators and relations, and H another group. Define $\phi : G \to H$ as follows

- (a) Define $\phi(s_i)$ for each generator $s_i \in S$
- (b) Set $\phi(x_1 \cdot x_2) = \phi(x_1) \cdot \phi(x_2)$ for any $x_1, x_2 \in G$
- (c) Then $\phi: G \to H$ is a group homomorphism if any only if all the relations $R_1, \ldots R_k$ are satisfied in H for $\phi(S_i)$.

Idea:

A. Lachowska Algebra Lecture 3 September 29, 2024

15 / 21

Defining group homomorphism in terms of generators and relations

If
$$Y(S_1)$$
. $Y(S_n)$ satisfy all the relations $R_1, R_2 ... R_n$
 \Rightarrow Any equation $S_j, S_{j_1} ... S_{j_p} = 1$ in G follows from the relations $R_1, R_2 ... R_n \Rightarrow$
Then $Y(S_j, S_{j_1} ... S_{j_p}) = Y(S_{j_1}) Y(S_{j_2}) ... Y(S_{j_p}) = 1_H$
is satisfied by the images of the generators
 \Rightarrow get a well defined group homomorphism $Y:G \Rightarrow H$.

Examples of group homomorphisms

Let
$$C_8 = \langle q \mid q^8 = 1 \rangle$$
, $C_4 = \langle t \mid t^4 = 1 \rangle$.
Let $\phi: C_8 \to C_4$ be a group homomorphism. Need to define $\forall (q) \in C_4$
 $\Rightarrow \forall (q) = t^k$. Needs to satisfy: $\forall (q^8) = \forall (1) = (\forall (q))^8$
 $\Rightarrow t^{8k} = 1$, true for all possible k since $t^{8k} = (t^4)^{2k} = 1^{2k} = 1$.
 $\Rightarrow Get$ 4 homomorphisms $\forall_1, \forall_2, \forall_3, \forall_4 : C_8 \to C_4$
 $\forall_1 \quad k = 1 \quad 1 \quad t \quad t^2 \quad t^3 \quad 1 \quad t \quad t^2 \quad t^3$
 $\forall_2 \quad k = 2 \quad 1 \quad t^2 \quad 1 \quad t^2 \quad 1 \quad t^2 \quad 1 \quad t^2$
 $\forall_3 \quad k = 3 \quad 1 \quad t^3 \quad t^2 \quad t \quad 1 \quad 1 \quad 1 \quad 1$
 $\forall_o \quad k = 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1$

□ > <□ > <□ > <□ > <□ >

Examples of group homomorphisms

Let $C_8 = \langle q \mid q^8 = 1 \rangle$, $C_4 = \langle t \mid t^4 = 1 \rangle$. Let $f : C_4 \to C_8$ be a group homomorphism.

$$f(t) = q^k$$
, the condition to satisfy is: $f(t^4) = f(t) = (f(t))^4$
=> k has to be even => 4 homomorphisms

Kernel and image of a group homomorphism

Definition

The kernel of a group homomorphism $\phi: G \to H$ is the set of elements $g \in G$ such that $\phi(g) = 1 \in H$.

Example:
$$f_{ij}: C_{ij} \rightarrow C_{g} \Rightarrow \ker f_{ij} = \{1, t^{2}\}$$

 $\forall_{A}: C_{g} \rightarrow C_{ij} \Rightarrow \ker f_{ij} = \{1, q^{i}\}$

Definition

Let $\phi: G \to H$ be a group homomorphism. Then $\phi(G) \subset H$ is called the image of ϕ .

Example:
$$f_{4}: C_{4} \rightarrow C_{8} \Rightarrow Im f_{4} = \{1, 9^{4}\}$$

$$Y_{4}: C_{8} \rightarrow C_{4} \Rightarrow Im Y_{1} = \{1, t_{1}, t_{1}^{2}, t_{3}^{3}\} = C_{4}$$

Properties of the kernel and the image

Proposition

Let $\phi: G \to H$ be a group homomorphism.

Then $\ker \phi \subset G$ is a subgroup in G, and $\operatorname{Im} \phi \subset H$ is a subgroup in H.

$$\frac{\text{Proof}}{\text{exp}} (a) \quad \mathcal{V}(1) = 1 \implies 1 \in \text{ker} \, \mathcal{V}; \quad \text{if} \, \mathcal{V}(a) = 1 \text{ and } \, \mathcal{V}(b) = 1 \\ \implies \mathcal{V}(ab) = \mathcal{V}(a) \cdot \mathcal{V}(b) = 1 \cdot 1 = 1 \implies \text{ker} \, \mathcal{V} \text{ is closed orf products} \\ \text{a } \in \text{ker} \, \mathcal{V} \Rightarrow \mathcal{V}(a^{-1}) = (\mathcal{V}(a))^{-1} = 1^{-1} \implies \alpha^{-1} \in \text{ker} \, \mathcal{V} \end{cases}$$

$$(b) \quad \mathcal{V}(1) = 1_{H} \implies 1_{H} \in \text{Im} \, \mathcal{V}; \quad \text{if} \quad a_{1} = \mathcal{V}(g_{1}), \quad a_{2} = \mathcal{V}(g_{2}) \\ \text{a.} \quad a_{2} = \mathcal{V}(g_{1}) \cdot \mathcal{V}(g_{2}) = \mathcal{V}(g_{1}g_{2}) \implies a_{1}a_{2} \in \text{Im} \, \mathcal{V} \end{cases}$$

$$\text{Im} \, \mathcal{V} \in \mathcal{V}$$

$$\text{If} \quad a = \mathcal{V}(g) \Rightarrow \alpha^{-1} = (\mathcal{V}(g))^{-1} = \mathcal{V}(g^{-1}) \implies \alpha^{-1} \in \text{Im} \, \mathcal{V} \end{cases}$$

$$\text{is a subgray}$$

$$\text{If} \quad a = \mathcal{V}(g) \Rightarrow \alpha^{-1} = (\mathcal{V}(g))^{-1} = \mathcal{V}(g^{-1}) \implies \alpha^{-1} \in \text{Im} \, \mathcal{V} \end{cases}$$

20 / 21

A. Lachowska Algebra Lecture 3 September 29, 2024

Normal subgroup

Definition

Let G be a group. A subgroup $H \subset G$ is a normal subgroup if for any $h \in H$, $g \in G$ we have

$$ghg^{-1} \in H$$
.

Notation: $H \subseteq G$. normal subgroup in G.

Proposition

Let $\phi: G \to H$ be a group homomorphism. Then $\ker \phi \unlhd G$ is a normal subgroup in G.

Proof: let
$$h \in \ker \Upsilon$$
, $g \in G$. Need to Show: $g h g^{-1} \in \ker \Upsilon$

$$\Psi(g h g^{-1}) = \Psi(g) \Psi(h) \Psi(g^{-1}) = \Psi(g) \Psi(g^{-1}) = \Psi(g g^{-1}) = \Psi(1) = 1$$

$$hermomorphism$$

$$= > g h g^{-1} \in \ker \Upsilon.$$