Algebra MATH-310

Lecture 12

Anna Lachowska

December 9, 2024

Plan of the course

- Integers: 1 lecture
- @ Groups: 6 lectures
- Rings and fields: 5 lectures
- Review: 1 lecture

Today: Rings: lecture 5

- (a) When is A/I a field?
- (b) Irreducible elements in polynomial rings
- (c) Finite fields

Recall: Maximal ideals and irreducible elements

- **1** Maximal ideal: $I \subset A$ is maximal if there is no ideal $J \subset A$ such that $I \subseteq J \subseteq A$.
- ② Let A be a PID. Then $p \in A$ is irreducible if and only if $p \neq 0$ and $(p) \subset A$ is maximal.

When is A/I a field?

Theorem

Let A be a Euclidean domain. Then $I \subset A$ is maximal $\iff A/I$ is a field $\iff I = (d), \ d \in A$ is irreducible.

Proof:
$$\langle = \rangle$$
 If $I = (0) \Rightarrow A/I = A$ is a field \Rightarrow any $b \neq 0$ is a unif $\Rightarrow (b) = A \Rightarrow (0) \in A$ is maximal.

If $I = (a)$, $a \neq 0$. If (a) is not maximal $\Rightarrow (a) \nsubseteq (b) \nsubseteq A \Rightarrow a = bt$, b and t are non-unify

If $b \in A$ a unif $A = A$ is a unif $A = A$ if $A = A$ is a unif $A = A$ if $A = A$ is not a field $A = A$ i

When is A/I a field?

(=>) Suppose
$$[b]_{(a)}$$
 is not invertible in $A/(a)$ => $[b]$ generates an ideal in A/I , which is proper , $[b] \neq 0$ => $b \notin (a)$ => $(a) \neq (b) \neq A$ => (a) is not maximal in A .

Corollary

Let F be a field. Then

F[x]/(f(x)) is a field \iff $f(x) \in F[x]$ is irreducible.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

A. Lachowska

Conclusions: Properties of polynomial rings over a field F

- **1** F[x] is a Euclidean domain \Longrightarrow it is a PID \Longrightarrow any ideal $I \subset F[x]$ is generated by a single element, I = (f(x)).
- **②** F[x]/(f(x)) is a field $\iff f(x) \in F[x]$ is irreducible $\iff f(x)$ is not a product of two polynomials of degrees ≥ 1 .
- **②** CRT for F[x]: can solve systems of congruences modulo pairwise coprime polynomials.
- $(f(x)) + (g(x)) = (\gcd(f(x), g(x));$ $(f(x)) \cap (g(x)) = (\operatorname{lcm}(f(x), g(x)).$ The gcd and lcm of two polynomials are defined up to a multiplication by a unit. There exists a unique monic $\gcd(f(x), g(x)).$

When is a polynomial $f(x) \in F[x]$ irreducible?

Theorem

- Any polynomial of degree 1 is irreducible in F[x].
- **2** A polynomial of degree **2** \mathfrak{Z} s irreducible \iff it has no roots in F.
- **③** Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \in \mathbb{Z}[x]$ considered over $\mathbb{Q}[x]$. Suppose that $\alpha = \frac{r}{s} \in \mathbb{Q}$ is a root of f(x). Then s divides a_n and r divides a_0 .

(3)
$$f\left(\frac{r}{s}\right) \cdot S^{n} = \alpha_{n} \Gamma^{n} + \alpha_{n-1} \Gamma^{n-1} S + \ldots + \alpha_{r} \Gamma S^{n-r} + \alpha_{o} S^{n} = 0 \Rightarrow r \text{ divides } \alpha_{o}$$

$$S \text{ divides } \alpha_{n}$$

In particular, roots of monic polynomials with integer coeff are integers

When is a polynomial $f(x) \in F[x]$ irreducible?

Theorem

(The Eisenstein criterion). Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \in \mathbb{Z}[x]$ such that $\gcd(a_0, \ldots a_n) = 1$. Suppose that p is a prime such that p divides $a_i \forall 0 \le i \le n-1$, p does not divide a_n and p^2 does not divide a_0 . Then f(x) is irreducible in $\mathbb{Q}[x]$.

Remark: Sometimes it helps to make a change of variables $x \to y = x + a$ in the polynomial and then apply the Eisenstein criterion. If f(x) = g(x)h(x), then $\tilde{f}(y) = \tilde{g}(y)\tilde{h}(y)$. If $\tilde{f}(y)$ is irreducible, so is f(x).

▼□▶ ▼□▶ ▼□▶ ▼□▶ □ ♡ ♡ ♡

Examples of irreducible polynomials

$$g(x) = 2x^3 + 4x^2 + 11x + 1 \in \mathbb{Q}[x].$$

$$If \ \overline{s} \ \text{is a roof} \ \Rightarrow \ r \ \text{dividus} \ 1 = a_0, \quad s \ \text{dividus} \ 2 = a_n \Rightarrow r \in \S^{\pm}1\}, \ s \in \{\pm 1, \pm 2\}$$

$$\Rightarrow \overline{s} \in \{\pm \frac{1}{2}, \pm 1\} \quad \Rightarrow \text{Check} \quad g(\pm 1) \neq 0, \quad g(\pm \frac{1}{2}) \neq 0, \quad \text{dig} \ g = 3$$

$$\Rightarrow \text{if is size ductle}$$

③
$$h(x) = x^k - p \in \mathbb{Q}[x]$$
. , p a prime $p \nmid 1$ $p \mid p, p^k \mid p$ irreducible by Eisenstein $\forall k \ge 1$ Consider $\chi^{2k} - p^k = (\chi^k - p)(\chi^k + p)$ is not irreducible $p^k \mid p^k = \infty$ Eisenstein is not applicable

9 / 21

Quotients of polynomial rings

Proposition

• If $f(x) \in F[x]$, F a field, is irreducible of degree n, then any element of K = F[x]/(f(x)) is of the form

$$a_0 + a_1\overline{x} + \ldots + a_{n-1}\overline{x}^{n-1}$$
,

where $a_i \in F$, $\overline{x}^i = \{x^i + f(x)g(x)\}_{g(x) \in F[x]}$ is a representative of a congruence class modulo f(x).

② If F is a finite field with |F| = q and f(x) is irreducible in F[x] of degree n, then the field K = F[x]/(f(x)) has q^n elements.

Idea:
$$a(x) = f(x)g(x) + r(x)$$

 $f(f(x)) = f(x)g(x) + r(x)$
 $f(f(x)) = f(x)g(x) + r(x)$

Quotients of polynomial rings: examples

(1) Let
$$F = \mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$$
 and $f(x) = x^3 + x^2 + 1 \in \mathbb{F}_2[x]$.

Consider $K = \mathbb{F}_2[x]/(f(x))$. is a field

$$= |K| = 2^3 = 8$$

elements of the form $a \times^2 + b \times + C$, $a, b, c \in \mathbb{F}_2$

$$= |K| = 2^3 = 8$$

vo roots, $dg = 3 = 8$

f(x) is invaduable.

$$\begin{cases} 0, 1, \overline{X}, \overline{X}^2, \overline{X} + 1, \overline{X}^2 + 1, \overline{X}^2 + \overline{X}, \overline{X}^2 + \overline{X} + 1 \end{cases}$$
all nonzero elements are invertible in K .

Inverse of \overline{X} in $K = ?$

$$gcd(x, x^3 + x^2 + 1) = 1 = 3h(x), g(x) : x \cdot g(x) + (x^3 + x^2 + 1) \cdot h(x) = 1$$

$$x \cdot (x^2 + x) + (x^3 + x^2 + 1) = 1 \quad \text{over } \overline{\mathbb{F}_2} = \{0, 1\}$$

$$= x \cdot (\overline{X})^{-1} = (\overline{X}^2 + \overline{X}) \in K$$

(2) Let $F = \mathbb{R}$, $f(x) = x^2 + 1$, consider $\mathbb{R}[x]/(f(x))$.
$$f(x) = \frac{1}{x^2 + x^2} = \frac{1}{x^2$$

A. Lachowska Algebra Lecture 12 December 8, 2024 11 / 21

Finite fields - easy facts

1 If a field K is finite, then char(K) = p, a prime.

$$T: \mathbb{Z} \to K$$
 $T(1) = 1$, $T(m) = m \cdot 1 \neq 0$ $\forall m \in \mathbb{N} \Rightarrow K$ is infinite $\Rightarrow T(p) = 0$ for p a prime

② If K is a finite field of characteristic p, then K contains a subfield isomorphic to $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.

- If K is a finite field of characteristic p, then $|K| = p^n$ for some $n \in \mathbb{N}_+$.

 Since K is a vector space over $\mathbb{Z}_{p\mathbb{Z}}$

Units in a finite field

Proposition

The group of units of a finite field is cyclic.

Proof:
$$|K^*| = n$$
, K^* is a finite abelian $g_{\mathcal{P}} = K^* = C_{d_1} \times C_{d_2} \times ... \times C_{d_S}$
 $g_{\mathcal{P}}$ of units

Then $m = d_S$ is the max order of an elf in K^* invariant factors

order of an elf \leq order of $K^* = > m \leq n$

We have $t^m = 1$ $\forall t \in K^* = > the$ elfs of K^* are solutions

of $t^m - 1 = 0$ of digree m . A polynomial of digree m has at most m roots in a field (Euclidean division: $t^m - 1 = (t - \omega)h^{m-1}(t) + \Gamma$
 ω is a root digree ω digree ω and ω is a root digree ω and ω is a root digree ω .

 $t^m - 1 = 0 = (t - \omega)h^{m-1}(t)$
 $t^m - 1 = 0 = (t - \omega)h^{m-1}(t)$
 $t^m - 1 = 0 = (t - \omega)h^{m-1}(t)$
 $t^m - 1 = 0 = (t - \omega)h^{m-1}(t)$

December 8, 2024

Units in a commutative ring

Remark: The Proposition fails in general for commutative rings. In particular, a polynomial of degree m with coefficients in a commutative ring can have more than m roots.

Ex.
$$\frac{7}{87}$$
: $x^2-1=0$ has $4 \operatorname{rooks}$: $\{1,7,3,5\}$ digree = 2

The gp of units $(\frac{7}{87})^*$ is not cyclic = $\{1,7,3,5\} = (\frac{7}{87})^* = C_1 \times C_2$

$$\{(1,1)(1,t)(9,1),(9,t)\} = C_1 \times C_2$$

$$\{2^2=t^2=1\}$$

Units in a finite field: example

Let
$$f(x) = x^3 + x^2 + 1 \in \mathbb{F}_2[x]$$
 and $K = \mathbb{F}_2[x]/(f(x))$.

 K^* is cyclic , $|K| = 8 \Rightarrow |K^*| = 8 - 1 = 7 \Rightarrow K^* \cong C_7$

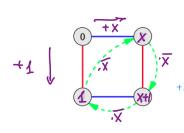
Since 7 is a prime \Rightarrow any nonzero elf of K is a generalor of $C_7 \cong K^*$ as a group.

for example, $\overline{X} \in K^*$ is a generalor

 $\{\overline{X}, \overline{X}^2, \overline{X}^2 + 1, \overline{X}^2 + \overline{X} + 1, \overline{X} + 1, \overline{X}^2 + \overline{X}, 1\} = K^*$
 $\overline{X}^3 = \overline{X}^2 + 1 \mod(X^3 + X^2 + 1)$
 $\overline{X}^3 + \overline{X} = X^2 + \overline{X} + 1 \mod(X^3 + X^2 + 1)$

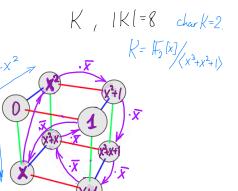
Visualization of finite fields

Addition along straight lines, multiplication along curry lines



Exercise:
$$F_2(x)/(x^2+x+1) \approx L$$

field of 4 elements, char(L)=2
 $L = \{0, 1, \overline{x}, \overline{x}+1\}$



A. Lachowska

Classification of finite fields

Theorem

Let p be a prime, $n \in \mathbb{N}^*$. Then there exists a field K with $|K| = p^n$, and an irreducible polynomial $f(x) \in \mathbb{F}_p[x]$ such that $\mathbb{F}_p[x]/(f(x)) \simeq K$.

If g(x) is another irreducible polynomial of degree n over \mathbb{F}_p , then

$$K \simeq \mathbb{F}_p[x]/(f(x)) \simeq \mathbb{F}_p[x]/(g(x)).$$

Example:
$$f(x) = x^3 + x^2 + 1 \in \mathbb{F}_2[x]$$
 and $g(x) = x^3 + x + 1 \in \mathbb{F}_2[x]$.

$$\implies \mathbb{F}_2[x]/(f(x)) \simeq \mathbb{F}_2[x]/(g(x)).$$

 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 5 □ €
 2 0 0 0

 December 8, 2024
 17 / 21

A. Lachowska Algebra Lecture 12

Irreducible polynomials over \mathbb{F}_p

Corollary

Over \mathbb{F}_p there exist an irreducible polynomial of any degree $n \in \mathbb{N}^*$.

This fails for fields of characteristic 0.

Definition

A field where the only irreducible polynomials are of degree 1 is called algebraically closed.

$$E \times .$$
 C is algebraically closed, but $F_p = \frac{7}{pZ}$ is not.

Poll: Irreducible polynomials

Which of the following polynomials is NOT irreducible? $F_3 = \{0, 1, -1\} = \{0, 1, 2\}$

A:
$$x^3 + x^2 - 1$$
 over \mathbb{F}_3 dy = 3, no rooks in \mathbb{F}_3 => irreducible

B:
$$x^4 - x^2 + 1$$
 over \mathbb{F}_3 not irreduceble: $(x^2 + 1)(x^2 + 1) = x^2 + 2x + 1 = x^2 - x + 1$

C:
$$3x^5 + 4x^4 - 6x^2 + 8x - 10$$
 over \mathbb{Q} irreducible by Eisenstein

D:
$$x^2 + x - 1$$
 over \mathbb{F}_3 dy = 3, no roots in \mathbb{F}_3 \Rightarrow irreducible

E:
$$x^3 + 2x + 7$$
 over \mathbb{Q} dy = 3, if $\angle = \frac{r}{s} \in \mathbb{Q}$ a roof => $s[1, r[7 \Rightarrow \frac{r}{s} \in \{\pm\}, \pm7\}]$
 $f(\pm 1) \neq 0$, $f(\pm 7) \neq 0 \Rightarrow ineducible$

Conclusions: finite fields

• For any prime p, any $n \in \mathbb{N}^*$ there exist a unique finite field \mathbb{F}_{p^n} of p^n elements, with $\operatorname{char}(\mathbb{F}_{p^n}) = p$.

② For n=1, this finite field is isomorphic to $\mathbb{F}_p \simeq \mathbb{Z}/p\mathbb{Z}$.

o For n > 1, this unique field can be constructed as a quotient

$$\mathbb{F}_{p^n} \simeq \mathbb{F}_p[x]/(f(x)),$$

where $f(x) \in \mathbb{F}_p[x]$ is an irreducible polynomial of degree n.

Remark on finite fields

