Algebra MATH-310

Lecture 11

Anna Lachowska

December 2, 2024

Plan of the course

- Integers: 1 lecture
- ② Groups: 6 lectures
- Rings and fields: 5 lectures
- Review: 1 lecture

Today: Rings: lecture 4

- (a) gcd and lcm in integral domains.
- (b) Properties of a Euclidean domain.
- (c) CRT in Euclidean domains and polynomial rings.
- (d) Congruences in polynomials rings.
- (e) Maximal ideals in PID.

Recall: Euclidean domains

Definition

E is an integral domain such that the Euclidean division works in E: There exist a function $\nu: E\setminus\{0\}\to\mathbb{N}$ such that for any $a,b\in E,\ b\neq 0$, there exist $q,r\in E$ such that a=qb+r and either r=0 or $\nu(r)<\nu(b)$.

$$V: F[x] \setminus \{0\} \rightarrow N$$
 is the degree of the polynomial.

Properties:

- Euclidean domain is a PID.
- ② If F is a field, then F[x] is a Euclidean domain.

Today: The Chinese remainder theorem for Euclidean domains.

Divisibility in commutative rings

Definition

- Let A be a commutative ring. We say that a divides b for $a, b \in A$ if there exist $c \in A$ such that b = ac.
- 2 We say that $d = \gcd(a, b)$ if $d \mid a, d \mid b$, and if $c \mid a, c \mid b$, this implies that $c \mid d$.
- **3** We say that k = lcm(a, b) if $a \mid e, b \mid e$, and if $a \mid f, b \mid f$, this implies that $e \mid f$.

In general gcd(a, b) and lcm(a, b) are not unique.

Proposition

Let A be an integral domain, $a, b \in A$ nonzero elements. If d_1, d_2 are greatest common divisors of a and b, then $d_1 = xd_2$, where $x \in A^*$ is a unit. If e_1, e_2 are least common multiples of a and b, then $e_1 = ye_2$, where $y \in A^*$ is a unit.

Proof:
$$d_1 = gcd(a, B)$$
, $d_2 = gcd(a, B) \Rightarrow d_1 = xd_2$; $d_2 = zd_1 \Rightarrow d_1 = xd_2 = xzd_1 \Rightarrow d_1 = xd_2 = xzd_1 \Rightarrow d_2 = xd_2 \Rightarrow d_1 = xd_2 \Rightarrow d_1 = xd_2 \Rightarrow d_2 = xd_2 \Rightarrow d_2 = xd_2 \Rightarrow d_2 = xd_2 \Rightarrow d_1 = xd_2 \Rightarrow d_2 = xd_2 \Rightarrow d_1 = xd_2 \Rightarrow d_2 = xd_2 \Rightarrow d_2 = xd_2 \Rightarrow d_1 = xd_2 \Rightarrow d_2 = xd_2 \Rightarrow d_1 = xd_2 \Rightarrow d_2 = xd_2 \Rightarrow d_2 = xd_2 \Rightarrow d_1 = xd_2 \Rightarrow d_2 = xd_2 \Rightarrow d_1 = xd_2 \Rightarrow d_2 = xd_2 \Rightarrow d_2 = xd_2 \Rightarrow d_1 = xd_2 \Rightarrow d_2 = xd_2 \Rightarrow d_1 = xd_2 \Rightarrow d_2 = xd_2 \Rightarrow d_2 = xd_2 \Rightarrow d_1 = xd_2 \Rightarrow d_2 = xd_2 \Rightarrow d_2 = xd_2 \Rightarrow d_1 = xd_2 \Rightarrow d_2 \Rightarrow d_2 = xd_2 \Rightarrow d_2 \Rightarrow$

Definition

Let A be an integral domain. Elements $a, b \in A$ are associates if there exists a unit $u \in A^*$ such that b = au (equivalently, there exist a unit $v \in A^*$ such that a = vb).

◆ロト ◆団 ▶ ◆ 恵 ト ◆ 恵 ・ 釣 へ ○

Associates in an integral domain

Proposition

Associates generate the same ideal in a PID.

If
$$g = uf \Rightarrow g \in (f) \Rightarrow (g) \in (f)$$

and

 $xg = xuf \in (f) \forall x \in A.$
 $f = u^{\dagger}g \Rightarrow f \in (g) \Rightarrow (f) \in (g)$
 $xg = xuf \in (f) \forall x \in A.$
 $xg = xuf \in (f) \forall x \in A.$
 $xg = xuf \in (f) \forall x \in A.$
 $xg = xuf \in (f) \forall x \in A.$
 $xg = xuf \in (f) \forall x \in A.$
 $xg = xuf \in (f) \forall x \in A.$
 $xg = xuf \in (f) \forall x \in A.$
 $xg = xuf \in (f) \forall x \in A.$
 $xg = xuf \in (f) \forall x \in A.$
 $xg = xuf \in (f) \forall x \in A.$
 $xg = xuf \in (f) \forall x \in A.$
 $xg = xuf \in (f) \forall x \in A.$
 $xg = xuf \in (f) \forall x \in A.$
 $xg = xuf \in (f) \forall x \in A.$
 $xg = xuf \in (f) \forall x \in A.$
 $xg = xuf \in (f) \forall x \in A.$
 $xg = xuf \in (f) \forall x \in A.$
 $xg = xuf \in (f) \forall x \in A.$
 $xg = xuf \in (f) \forall x \in A.$
 $xg = xuf \in (f) \forall x \in A.$
 $xg = xuf \in (f) \forall x \in A.$
 $xg = xuf \in (f) \forall x \in A.$
 $xg = xuf \in (f) \forall x \in A.$
 $xg = xuf \in (f) \forall x \in A.$
 $xg = xuf \in (g) \Rightarrow (g) \in (f)$
 $xg = xuf \in (f) \forall x \in A.$

Examples.
$$A = \mathbb{Z} \implies \text{units} \ \{\pm 1\} \quad n, m \text{ are associates} \iff n = \pm m \text{ in } \mathbb{Z}$$

$$(m) = (-m) \in \mathbb{Z}$$

$$A = F[x] \Rightarrow \text{ unifs } F^* = F \cdot \{0\} \Rightarrow f(x), g(x) \text{ are associates } z = x$$

$$f(x) = \alpha g(x), \alpha \in F^*$$

$$(f(x)) = (\alpha f(x)) \in F[x]$$

Properties of a Euclidean domain

Let E be a Euclidean domain and $a, b \in E$ nonzero elements.

- a = 9, b + r, $b = 92, r, + r_2$ \bullet gcd(a, b) can be found by the Euclidean division.
- (a) + (b) = $(\gcd(a,b))$. Bezout's theorem holds.
- **3** (a) \cap (b) = (lcm(a, b)).
- If gcd(a, b) = 1 and gcd(a, c) = 1, then gcd(a, bc) = 1.

Chinese remainder theorem for a Euclidean domain

Theorem

pairwise coprime

8 / 22

Let E be a Euclidean domain, $m_1, \ldots m_r \in E$ such that $\gcd(m_i, m_j) = 1$ for $i \neq j$. Then

$$f: E/(m_1 \dots m_r) \Rightarrow E/(m_1) \times E/(m_2) \times \dots \times E/(m_r)$$

is a ring isomorphism given by

$$[x]_{(m_1...m_r)} \rightarrow ([x]_{(m_1)}, [x]_{(m_2)}, ... [x]_{(m_r)}).$$

Idea: (1) homomorphism of rings by construction

(2) Surjectivity by induction:

CRT for 2 factors:
$$\exists a_{12} \in E$$
: $a_{12} \equiv a_1 \pmod{m_1} \pmod{m_1} + \binom{m_1}{m_2} = E$

$$a_{12} \equiv a_2 \pmod{m_2}$$

$$gcd(m_3, m_1 m_2) = 1 \Rightarrow CRT \text{ for } 2 \text{ factors} \Rightarrow (m_3) + (m_1 m_2) = E$$

 $\Rightarrow \exists a_{123} \in E$:

Chinese remainder theorem for a Euclidean domain

$$\exists a_{123} \in E: \quad a_{123} \equiv a_{12} \pmod{m_1 m_2} \Rightarrow a_{123} \equiv a_1 \pmod{m_1}$$

$$a_{123} \equiv a_3 \pmod{m_3}$$

$$a_{123} \equiv a_2 \pmod{m_2}$$

$$Q_{123} \equiv Q_3 \pmod{m_3}$$

$$=> continue until all congruences are solved.$$
(3) Injectivity: if $\alpha \equiv Q_i \pmod{m_i}$ and $\beta \equiv Q_i \pmod{m_i}$ $\forall i \Rightarrow \alpha - \beta \in \bigcap_{i=1}^{n} (m_i) \Rightarrow \alpha - \beta \in (lcm(m_1, ..., m_r)) = (m_i \cdot m_2 \cdot ... \cdot m_r) \cdot g(cd(m_i, m_i)) = 1$

Corollary FIXT is a Euclidean domain

Let F be a field, $\{f_1(x), \dots f_r(x)\}$ polynomials in F[x] satisfying $\gcd(f_i(x), f_i(x)) = 1$ for all $i \neq j$. Then

$$F[x]/(f_1(x)...f_r(x)) \simeq F[x]/(f_1(x)) \times F[x]/(f_2(x)) \times ... \times F[x]/(f_r(x)).$$

Monic gcd of two polynomials

Remark: $\gcd(f(x),g(x))$ is determined up to a unit in F[x], which is a nonzero constant in F. Therefore there exist a unique $\gcd(f(x),g(x))$ with the leading coefficient equal to 1.

"coefficient of the highest degree in f(x)

Definition

A polynomial $f(x) \in F[x]$ is monic if its leading coefficient is 1.

For any nonzero f(x) and g(x) there exist a unique monic gcd(f(x), g(x)).

Example: monic gcd of two polynomials

Find the monic
$$gcd(f(x), g(x))$$
.

$$f(x) = x^{4} - x^{3} + 3x^{2} + 2x - 5$$

$$g(x) = x^{2} - 2x + 1 in Rl$$

$$\frac{x^{4} - x^{3} + 3x^{2} + 2x - 5}{x^{4} - 2x^{3} + x^{2}}$$

$$\frac{x^{2} - 2x + 1}{x^{2} + x + 4}$$

$$\frac{x^{2} - 2x + 1}{x^{2} - 2x^{2} + x}$$

$$\frac{x^{2} - 2x + 1}{x^{2} - 2x^{2} + x}$$

$$\frac{x^{2} - 2x + 1}{x^{2} - x + 1}$$

$$\frac{yx - 9}{yx - 9}$$

$$\frac{x^{2} - x + 1}{yx - x + 1}$$

$$\frac{-x + 1}{y}$$

$$\frac{-x +$$

$$f(x) = x^{4} - x^{3} + 3x^{2} + 2x - 5$$

$$g(x) = x^{2} - 2x + 1 \quad \text{in } \mathbb{R}[x]$$

$$\frac{1}{x^{2}} + \frac{1}{4} - \frac{x^{2} - 2x + 1}{x^{2} - x} = \frac{9x - 9}{\frac{1}{9}x - \frac{1}{9}}$$

$$\frac{-x + 1}{-x + 1} = \frac{-x + 1}{0}$$

$$T_{he} \text{ monic } \gcd(f(x), g(x)) = x - 1$$

$$\text{leading coefficient}$$

Application of CRT to systems of congruences in F[x]

Example: Let $\mathbb{F}_3 = \{0, 1, 2\} = \mathbb{Z}/3\mathbb{Z}$. Find all solutions of the system of congruences in $\mathbb{F}_3[x]$:

$$\begin{cases} f(x) \equiv x + 1 \pmod{x^2 + 1} \\ f(x) \equiv 1 \pmod{x} \\ f(x) \equiv -x \pmod{x^2 - 1} \end{cases}$$

$$\begin{cases} (x^2 + 1) \cdot 1 + x \cdot (-x) = 1 \\ (x^2 + 1) \cdot 2 + (x^2 - 1) \cdot 1 = 1 \\ (x^2 - 1) \cdot 2 + x \cdot x = 1 \end{cases}$$

$$= \begin{cases} (x^2 - 1) \cdot 2 + x \cdot x = 1 \\ (x^2 - 1) \cdot 2 + x \cdot x = 1 \end{cases}$$

Check that (x^2+1) (x) (x^2-1) are paivwise coprime (show that god = 1 for each pair) or find a(x), $B(x) \in IF[x]$ $\alpha(x)g_1(x) + \beta(x)g_2(x) = 1$ $\langle = \rangle gcd(g_1(x), g_2(x)) = 1.$ => the polynomials $g_1(x), g_2(x), g_3(x)$ are pairwise coprime. => by CRT for Euclidean domains I solutions of the form $a(x) + ((x^2+1) \cdot x \cdot (x^2-1))$ How to find a(x)?

Example: How to solve a system of congruences? -I

Start with any 2 congruences:
$$\int f(x) = x+1 \pmod{(x^2+1)}$$

 $\int f(x) = 1 \pmod{(x)}$
 $\int f(x) = x+1 \pmod{(x^2+1)}$
 $\int f(x) = -x \pmod{(x^2+1)}$

$$= \int f(x) = \chi^{4} - \chi^{3} + \chi^{2} + 1 \pmod{(\chi^{5} - \chi)} \equiv \chi^{4} + 2\chi^{3} + \chi^{2} + 1 \pmod{(\chi^{5} - \chi)}.$$

Example: How to solve a system of congruences? -II

Let $g_1(x), g_2(x) \in F[x]$ polynomials such that $gcd(g_1, g_2) = 1$.

$$\begin{cases} f(x) \equiv h_1(x) \pmod{(g_1(x))} \\ f(x) \equiv h_2(x) \pmod{(g_2(x))} \end{cases}$$

Since $gcd(g_1, g_2) = 1$, we have $t_1(x), t_2(x) \in F[x]$ such that

$$t_1(x)g_1(x)+t_2(x)g_2(x)=1.$$
 found by running the Euclidean algorithm backwards.

Therefore a solution can be written in the form

$$f(x) = h_{1}(x)t_{2}(x)g_{2}(x) + h_{2}(x)t_{1}(x)g_{1}(x).$$

$$f(x) = h_{1}(x)(1-t_{1}(x)g_{1}(x)) + h_{2}(x)t_{1}(x)g_{1}(x) \equiv h_{1}(x) \pmod{(g_{1}(x))}.$$

$$f(x) = h_{1}(x)t_{2}(x)g_{2}(x) + h_{2}(x)(1-t_{2}(x)g_{2}(x)) \equiv h_{1}(x) \pmod{(g_{1}(x))}.$$

14 / 22

A. Lachowska December 1, 2024

Solving congruences: general method

Let $g_1(x), g_2(x), \dots g_r(x) \in F[x]$ pairwise coprime polynomials. Consider the system of congruences $g \in \mathcal{A}(g_i(x), g_j(x)) = 1$ $\forall i \neq j$

$$\begin{cases} f(x) &\equiv h_{1}(x) \pmod{(g_{1}(x))} & \mathcal{G} = g_{i}(x) \dots g_{r}(x), \ \mathcal{G}_{i}(x) = \mathcal{G}_{i}(x) \\ f(x) &\equiv h_{2}(x) \pmod{(g_{2}(x))} & \Rightarrow \gcd\left(\mathcal{G}_{i}(x), g_{i}(x)\right) = 1 \quad \forall i \\ \dots & \dots & \dots \\ f(x) &\equiv h_{r}(x) \pmod{(g_{r}(x))} & \Rightarrow \exists \ t_{i}(x), \ S_{i}(x) : \ t_{i}(x) G_{i}(x) + S_{i}(x) g_{i}(x) = 1 \\ & = \Rightarrow f(x) = \sum_{i \in \mathcal{I}} h_{i}(x) G_{i}(x) t_{i}(x) \end{cases}$$

Example:
$$r = 3$$
.

ample:
$$r = 3$$
.
$$f(x) = h_1(x) \underbrace{G_1(x) t_1(x) + h_2(x) G_2(x) t_2(x) + h_3(x) G_3(x) h_3(x)}_{(1-g_2(x)S_2(x))} \equiv h_1(x) \underbrace{h_2(x) G_2(x) h_3(x)}_{(1-g_2(x)S_3(x))} \equiv h_2(x) \pmod{g_2(x)}$$

$$\equiv h_3(x) \pmod{g_3(x)}$$

Example: How to solve a system of congruences? - III

$$\begin{cases} f(x) &\equiv x + 1 \pmod(x^{2} + 1) \\ f(x) &\equiv 1 \pmod(x) \\ f(x) &\equiv -x \pmod(x^{2} - 1) \end{cases} \qquad \begin{cases} f(x) &\equiv x + 1 \pmod(x^{2} + 1) \\ f(x) &\equiv -x \pmod(x^{2} - 1) \end{cases} \qquad \begin{cases} f(x) &\equiv x + 1 \pmod(x^{2} + 1) \\ f(x) &\equiv -x \pmod(x^{2} - 1) \end{cases} \qquad \begin{cases} f(x) &\equiv x + 1 \pmod(x^{2} + 1) \\ f(x) &\equiv -x \pmod(x^{2} - 1) \end{cases} \qquad \begin{cases} f(x) &\equiv x + 1 \pmod(x^{2} + 1) \\ f(x) &\equiv -x \pmod(x^{2} - 1) \end{cases} \qquad \begin{cases} f(x) &\equiv x + 1 \pmod(x^{2} + 1) \\ f(x) &\equiv x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &\equiv x + 1 \pmod(x^{2} + 1) \\ f(x) &\equiv x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &\equiv x + 1 \pmod(x^{2} + 1) \\ f(x) &\equiv x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &\equiv x + 1 \pmod(x^{2} + 1) \\ f(x) &\equiv x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &\equiv x + 1 \pmod(x^{2} + 1) \\ f(x) &\equiv x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &\equiv x + 1 \pmod(x^{2} + 1) \\ f(x) &\equiv x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &\equiv x + 1 \pmod(x^{2} + 1) \\ f(x) &\equiv x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &\equiv x + 1 \pmod(x^{2} + 1) \\ f(x) &\equiv x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &\equiv x + 1 \pmod(x^{2} + 1) \\ f(x) &\equiv x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &\equiv x + 1 \pmod(x^{2} + 1) \\ f(x) &\equiv x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &\equiv x + 1 \pmod(x^{2} + 1) \\ f(x) &\equiv x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &\equiv x + 1 \pmod(x^{2} + 1) \\ f(x) &\equiv x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &\equiv x + 1 \pmod(x^{2} + 1) \\ f(x) &\equiv x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &\equiv x + 1 \pmod(x^{2} + 1) \\ f(x) &\equiv x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &\equiv x + 1 \pmod(x^{2} + 1) \\ f(x) &\equiv x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &\equiv x + 1 \pmod(x^{2} + 1) \\ f(x) &\equiv x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &\equiv x + 1 \pmod(x^{2} + 1) \\ f(x) &\equiv x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &\equiv x + 1 \pmod(x^{2} + 1) \\ f(x) &= x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &= x + 1 \pmod(x^{2} + 1) \\ f(x) &= x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &= x + 1 \pmod(x^{2} + 1) \\ f(x) &= x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &= x + 1 \pmod(x^{2} + 1) \\ f(x) &= x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &= x + 1 \pmod(x^{2} + 1) \\ f(x) &= x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &= x + 1 \pmod(x^{2} + 1) \\ f(x) &= x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &= x + 1 \pmod(x^{2} + 1) \\ f(x) &= x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &= x + 1 \pmod(x^{2} + 1) \\ f(x) &= x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &= x + 1 \pmod(x^{2} + 1) \\ f(x) &= x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &= x + 1 \pmod(x^{2} + 1) \\ f(x) &= x + 1 \pmod(x^{2} + 1) \end{cases} \qquad \begin{cases} f(x) &= x + 1 \pmod(x^{2} + 1) \\ f(x) &= x + 1 \pmod(x^{2} + 1)$$

When is E/I a field?

We will consider in detail the rings of the form F[x]/(f(x)) where F is a field and $f(x) \in F[x]$ a polynomial. Since F[x] is a PID, any ideal in F[x] is generated by a single polynomial.

We want to know in which case F[x]/(f(x)) is a field.

Definition

Let A be an integral domain. An element $c \in A$ is irreducible if $c \neq 0$, c is not a unit and if c = ab, then either a or b is a unit.

Example.
$$A = \mathbb{Z}$$
. Irreducible elements?
 $6 = 2 \cdot 3$ is not irreducible since 2,3 are both non-runify
$$C = \pm p \implies p = (-1) \cdot (-p) = 1 \cdot p$$
where p is a prime are the only irreducible elfs in \mathbb{Z}

Maximal ideals and irreducible elements

Definition

We say that an ideal $I \subset A$ is maximal if there is no ideal $J \subset A$ such that $I \subsetneq J \subsetneq A$.

Theorem

Let A be a PID. Then $p \in A$ is irreducible if and only if $p \neq 0$ and $(p) \subset A$ is maximal.

Maximal ideals and irreducible elements

(<=)
$$p \neq 0$$
 and $(p) \in A$ is maximal. Show that p is wedacible
Suppose $p = y \neq z$, y and z are both non-vnit.
=> $p \in (y) \nsubseteq A$ (Since y is not a unit)
Show that $(p) \nsubseteq (y)$. Otherwise $y \in (p) \Rightarrow y = p \cdot t$, $p = y \cdot z = p \cdot t \neq z$
=> $p(1-tz) = 0 = \int_{z=1}^{\infty} p = 0$ impossible, $p \neq 0$
 $tz = 1 \Rightarrow z$ is a unit, contradiction.
=> $(p) \nsubseteq (y) \nsubseteq A$ contradiction $(p) \in A$ is maximal $(p) \notin A$ is invedicable.

A. Lachowska

Poll: Associates in a polynomial ring

Let
$$A = \mathbb{Z}/5\mathbb{Z}$$
 [x]. Then

A: (2x-1) and (4x+2) are associates in A

B: (x-2) and (4x-2) are associates in A

C: (2x-1) and (3x+1) are associates in A

D: (4x + 2) and (3x - 4) are associates in A

E: (2x + 1) and (x - 3) are associates in A

amociatey amociates
$$\frac{x-2}{2x+1} | \frac{x-3}{2x-1}$$

$$3x-1 | 3x-4 = 3x+1$$

$$4x+2 | 4x-2$$

When is E/I a field?

Theorem

Let A be a Euclidean domain. Then $I \subset A$ is maximal $\iff A/I$ is a field $\iff I = (d), d \in A$ is irreducible.

.... proof next time!

When is E/I a field?

Corollary

Let F be a field. Then

F[x]/(f(x)) is a field $\iff f(x) \in F[x]$ is irreducible.