The following example is from Trappe & Washington (2006), with some details added.

We want to factor n = 455839. Let's choose the elliptic curve $y^2 = x^3 + 5x - 5$, with the point P = (1, 1) on it, and let's try to compute (10!)P.

The slope of the tangent line at some point A=(x, y) is $s=(3x^2+5)/(2y) \pmod{n}$. Using s we can compute 2A. If the value of s is of the form a/b where b>1 and $\gcd(a,b)=1$, we have to find the modular inverse of b. If it does not exist, $\gcd(n,b)$ is a non-trivial factor of n.

First we compute 2P. We have s(P) = s(1,1) = 4, so the coordinates of 2P = (x', y') are $x' = s^2 - 2x = 14$ and y' = s(x - x') - y = 4(1 - 14) - 1 = -53, all numbers understood (mod n). Just to check that this 2P is indeed on the curve: $(-53)^2 = 2809 = 14^3 + 5 \cdot 14 - 5$.

Then we compute 3(2P). We have $s(2P) = s(14,-53) = -593/106 \pmod{n}$. Using the Euclidean algorithm: $455839 = 4300 \cdot 106 + 39$, then $106 = 2 \cdot 39 + 28$, then 39 = 28 + 11, then $28 = 2 \cdot 11 + 6$, then 11 = 6 + 5, then 6 = 5 + 1. Hence $\gcd(455839, 106) = 1$, and working backwards (a version of the extended Euclidean algorithm): $1 = 6 - 5 = 2 \cdot 6 - 11 = 2 \cdot 28 - 5 \cdot 11 = 7 \cdot 28 - 5 \cdot 39 = 7 \cdot 106 - 19 \cdot 39 = 81707 \cdot 106 - 19 \cdot 455839$. Hence $106^{-1} = 81707 \pmod{455839}$, and $-593/106 = -133317 \pmod{455839}$. Given this s, we can compute the coordinates of 2(2P), just as we did above: 4P = (259851, 116255). Just to check that this is indeed a point on the curve: $y^2 = 54514 = x^3 + 5x - 5 \pmod{455839}$. After this, we can compute $3(2P) = 4P \boxplus 2P$.

We can similarly compute 4!P, and so on, but 8!P requires inverting 599 (mod 455839). The Euclidean algorithm gives that 455839 is divisible by 599, and we have found a factorization 455839 = 599.761.

The reason that this worked is that the curve (mod 599) has $640 = 2^7.5$ points, while (mod 761) it has 777 = 3.7.37 points. Moreover, 640 and 777 are the smallest positive integers k such that $kP = \infty$ on the curve (mod 599) and (mod 761), respectively. Since 8! is a multiple of 640 but not a multiple of 777, we have $8!P = \infty$ on the curve (mod 599), but not on the curve (mod 761), hence the repeated addition broke down here, yielding the factorization.