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2 Elliptic curves as abelian groups

In Lecture 1 we defined an elliptic curve as a smooth projective curve of genus 1 with a
distinguished rational point. An equivalent definition is that an elliptic curve is an abelian
variety of dimension one. An abelian variety is a smooth projective variety that is also a
group, where the group operation is defined by rational functions (ratios of polynomials).
Remarkably, these constraints force the group to be commutative, which is why they are
called abelian varieties.

A variety is (roughly speaking) the zero locus of a set of polynomials, subject to an
irreducibility condition. The precise definition won’t concern us here, it is enough for us to
know that a variety of dimension one is a curve, so an abelian variety of dimension one is
a smooth projective curve with a group structure specified by rational functions. We will
prove in this lecture that elliptic curves are abelian varieties. In fact the converse holds,
every abelian variety of dimension one is an elliptic curve, but we won’t prove this.

As mentioned in the first lecture, it is possible to associate an abelian variety to any
smooth projective curve; this abelian variety is called the Jacobian of the curve. The
dimension of the Jacobian is equal to the genus g of the curve, which means that in gen-
eral the Jacobian is a much more complicated object than the curve itself (which always
has dimension one). Writing explicit equations for the Jacobian as a projective variety is
quite complicated, in general, but for elliptic curves, the curve and its Jacobian both have
dimension one, and in fact the Jacobian is isomorphic to the curve itself.

2.1 The group law for Weierstrass curves

Recall from Lecture 1 that the group law for an elliptic curve defined by a Weierstrass
equation y

2 = x
3 +Ax+B is determined by the following rule:

Three points on a line sum to zero, which is the point at infinity.

It is then easy to determine the inverse of a point: negating the y-coordinate of a projective
point P = (x : y : z) yields the point Q = (x : �y : z). The line between P and Q is
vertical, and like all vertical lines it passes through the point O at infinity. We then have
P +Q+O = O, which means that P +Q = O, so Q = �P (this also works when P = O).

We can also check that O acts as the identity: the line between O and any point P

intersects the curve at �P (this is a double intersection at a tangent when P = �P ). We
then have 0 + P + (�P ) = O, and therefore O + P = P .

Associativity is not obvious, and while it can be rigorously proven algebraically, this is
a tedious task that does not yield much insight. So we will give two proofs. The first will
only apply to the generic case but it is short and provides some explanation as to why the
group operation is associative. The second will be algebraic and fully rigorous, but we will
let Sage do all the dirty work for us.

2.1.1 A geometric proof of associativity in the generic case

This is an adaptation of the proof in [2, p. 28]. Let P , Q, R be three points on an elliptic
curve E over a field k that we may assume is algebraically closed. We shall also assume that
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P , Q, R, and the zero point O are all in general position (this means that in the diagram
below there are no relationships among the points other than those that necessarily exist
by construction).

The line `0 through P and Q meets the curve E at a third point, �(P + Q), and the
line m2 through O and �(P +Q) meets E at P +Q. Similarly, the line m0 through P and
R meets E at �(P +R), and the line `2 through O and �(P +R) meets E at P +R. Let S
be the third point where the line `1 through Q+ P and R meets E, and let T be the third
point where the line m1 through Q and P +R meets E. See the diagram below.

m0 m1 m2

`0

`1

`2

S

T

P Q �(P +Q)

R P +Q

�(P +R) P +R

O

We have S = �((Q + P ) + R) and T = �(Q + (P + R)). It su�ces to show S = T .
Suppose not. Let g(x, y, z) be the cubic polynomial formed by the product of the lines
`0, `1, `2 in homogeneous coordinates, and similarly let h(x, y, z) = m0m1m2. We may
assume g(T ) 6= 0 and h(S) 6= 0, since the points are in general position and S 6= T . Thus
g and h are linearly independent elements of the k-vector space V of homogeneous cubic
polynomials in k[x, y, z]. The space V has dimension 10, thus the subspace of homogeneous
cubic polynomials that vanish at the eight points O, P , Q, R, ±(Q+P ), and ±(P +R) has
dimension 2 and is spanned by g and h. The polynomial f(x, y, z) = x

3+Axz
2+Bz

3� zy
2

that defines E is a nonzero element of this subspace, so we may write f = ag + bh as a
linear combination of g and h. Now f(S) = f(T ) = 0, since S and T are both points on E,
but g(S) = h(T ) = 0 and g(T ), h(S) 6= 0, which implies that both a and b are zero. This is
a contradiction because f is not the zero polynomial.

2.1.2 The group law in algebraic terms

Let P = (x1, y1, z1) and Q = (x2, y2, z2) be two points on E. We will compute the sum
P + Q = R = (x3, y3, z3) by expressing the coordinates of R as rational functions of the
coordinates of P and Q. If either P or Q is the point at infinity, then R is simply the other
point, so we assume that P and Q are a�ne points with z1 = z2 = 1. There are two cases:

Case 1. x1 6= x2. The line PQ has slope m = (y2�y1)/(x2�x1), which yields the equation
y�y1 = m(x�x1). The point �R = (x3,�y3, 1) is on this line, thus �y3 = m(x3�x1)+y1.
Substituting for y3 in the Weierstrass equation for E yields

(m(x3 � x1) + y1)
2 = x

3
3 +Ax3 +B.

Simplifying, we obtain 0 = x
3
3 � m

2
x
2
3 + · · · , where the ellipsis hides lower order terms.

The values x1 and x2 satisfy the same cubic equation, thus its roots are x1, x2, and x3,
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