
Exercise Sheet 8

Introduction to Partial Differential Equations (W. S. 2024/25)

EPFL, Mathematics section, Dr. Nicola De Nitti

• The exercise series are published every Tuesday morning at 8am on the moodle page of the course. The

exercises can be handed in until the following Tuesday at 8am via email.

Exercise 1. Let Ω = B1(0) ⊂ Rn, n ≥ 1.

(i) For which combinations (α, p) ∈ (R\{0})× [1,∞] does the function |x|α belong to Lp(Ω) and/or

to W 1,p(Ω)?

(ii) For which values 1 ≤ p ≤ ∞ does log |x| belong to Lp(Ω) and/or to W 1,P (Ω)?

(iii) Comment on the local (Ω is bounded) Lp and W 1,p regularity of the fundamental solution of the

Laplacian Φ in Rn, n ≥ 2.

Solution:

(i) Since uα := |x|α ∈ C∞(Ω̄\{0}), the weak derivative, if it exists, must coincide with the

classical one:

Duα(x) = α
x

|x|
|x|α−1 = α

x

|x|
uα−1(x)

Let us consider p = ∞ first. We have uα ∈ L∞(Ω) iff α > 0, and uα ∈ W 1,∞(Ω) iff α ≥ 1.

Now, let 1 ≤ p < ∞. We compute explicitly

∥uα∥pLp(Ω) =

∫ 1

0

(∫
∂Br

1

)
rpα dr = ωn

∫ 1

0
rpα+n−1 dr

(for n = 1 the computation becomes formal, but is still correct, with ω1 := 2 ), which is

bounded iff pα+n− 1 > −1. This implies that uα ∈ Lp(Ω) iff pα+n > 0. Replacing α with

α− 1, we conclude that uα ∈ W 1,p(Ω) iff p(α− 1) + n > 0.

(ii) We proceed similarly for v, whose weak derivative, if it exists, is equal to

Dv(x) =
x

|x|2
=

x

|x|
u−1(x),

with uα defined as in (i).
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First, we note that v is not bounded, so it does not belong to L∞(Ω). We can compute

∥v∥pLp(Ω) =

∫ 1

0

(∫
∂Br

1

)
(− log r)p dr = ωn

∫ 1

0
rn−1(− log r)p dr < ∞

for all n ≥ 1 and 1 ≤ p < ∞. From the results on u−1, we know that Dv ∈ Lp(Ω) iff

−p+ n > 0. In conclusion, v ∈ Lp(Ω) iff 1 ≤ p < ∞ and v ∈ W 1,p(Ω) iff 1 ≤ p < n.

(iii) Now, consider the fundamental solution of the Laplacian in Rn :

Φ(x) =

− 1
2π log |x| if n = 2,

1
(n−2)ωn

|x|2n if n ≥ 3.

For n = 2,Φ ∈ Lp(Ω) iff 1 ≤ p < ∞ and Φ ∈ W 1,p(Ω) iff 1 ≤ p < 2.

For n ≥ 3,Φ ∈ Lp(Ω) iff 1 ≤ p < n
n−2 and Φ ∈ W 1,p(Ω) iff 1 ≤ p < n

n−1 .

In particular, we remark that Φ ∈ L2(Ω), yet Φ /∈ H1(Ω) for n = 2, 3, and Φ /∈ L2(Ω) for

n ≥ 4.

Exercise 2. Let Ω ⊂ Rn be a domain, and u ∈ W 1,p(Ω) for some 1 ≤ p < ∞. Consider an arbitrary

f ∈ C1(R), with f ′ bounded.

(i) Let Ω be bounded. Show that f ◦ u := f(u(·)) ∈ W 1,p(Ω) and that D(f ◦ u) = f ′(u)Du.

(ii) Assuming f(0) = 0, extend the chain rule above to the case where Ω is unbounded.

(iii) Show that u+ = max{u, 0}, u− = min{u, 0}, and |u| belong to W 1,p(Ω) as well.

Hint: use appropriately mollified versions of the functions max{·, 0}, etc.

Solution:

(i) We first show that f ◦ u ∈ Lp(Ω) since,

∥f(u)∥pLp(Ω) =

∫
Ω

∣∣∣∣f(0) + u

∫ 1

0
f ′(0 + s(u− 0)) ds

∣∣∣∣p
≤ 2p−1

∫
Ω
|f(0)|p + 2p−1

∫
Ω
|u|p

(∫ 1

0

∣∣f ′(su)
∣∣ ds)p

≤ 2p−1|Ω||f(0)|p + 2p−1∥u∥pLp(Ω)

∥∥f ′∥∥p
L∞(R) < ∞.

We now aim to show that the weak derivative of f◦u is in Lp(Ω) and thatD(f◦u) = f ′(u)Du.

To do so, we recall that there exists a regularized family of function um such that um

converges to u in Lp(Ω), and for any compact set K ⊂⊂ Ω, um → u in W 1,p(K), that is,

∥um − u∥Lp(K) + ∥Dum −Du∥Lp(K) → 0.
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Up to subsequences, we can also assume that um → u a.e. in Ω. Then we note that

f ◦ um → f ◦ u in Lp(Ω):

∥f (um)− f(u)∥Lp(Ω) =

(∫
Ω

∣∣∣∣(um − u)

∫ 1

0
f ′ (u+ s (um − u)) ds

∣∣∣∣p)1/p

≤
∥∥f ′∥∥

L∞(R) ∥um − u∥Lp(Ω) → 0

We next show that the weak (classical) derivative of f ◦ um tends to f ′(u)Du in Lp(K) for

every compact subset K. Indeed,

∥∥f ′ (um)Dum − f ′(u)Du
∥∥
Lp(K)

≤
∥∥f ′ (um) (Dum −Du)

∥∥
Lp(K)

+
∥∥(f ′ (um)− f ′(u)

)
Du

∥∥
Lp(K)

≤
∥∥f ′∥∥

L∞(K)
∥Dum −Du∥Lp(K)︸ ︷︷ ︸

−→0

+

(∫
K

∣∣f ′ (um)− f ′(u)
∣∣p |Du|p

)1/p

.

Since um → u a.e. in Ω and f ′ is continuous, we have f ′ (um) → f ′(u) a.e. in Ω. We then

invoke the dominated convergence theorem and see that the last integral converges to 0.

Hence, Df (um) → f ′(u)Du in Lp(K). To conclude the proof, we show that D(f ◦ u) =

f ′(u)Du. Now, observe that, for every ϕ ∈ C∞
0 (Ω) such that supp (ϕ) ⊂ K, Lp(K)-

convergence of vm to v implies convergence (in R) of
∫
K vmϕ to

∫
K vϕ :∣∣∣∣∫

K
vmϕ−

∫
K
vϕ

∣∣∣∣ ≤ ∫
K
|vm − v| |ϕ| ≤ ∥vm − v∥Lp(K) ∥ϕ∥Lq(K) → 0,

where p−1 + q−1 = 1 (by Hölder’s inequality). Therefore for every ϕ compactly supported

in K and, due to the arguments above,

−
∫
Ω
f(u)Dϕ = − lim

m→∞

∫
K
f (um)Dϕ = lim

m→∞

∫
K
D (f (um))ϕ = lim

m→∞

∫
K
f ′ (um)Dumϕ

=

∫
Ω
f ′(u)Duϕ

Since f ′ is bounded and f ′(u)Du ∈ Lp(Ω), the proof is completed.

(ii) We can apply the same reasoning as above. The only difference is that, thanks to the

hypothesis f(0) = 0, f ◦ um and f ◦ u belongs to W 1,p(Ω):

∥f (um)∥pLp(Ω) =

∫
Ω

∣∣∣∣f(0) + um

∫ 1

0
f ′ (sum) ds

∣∣∣∣p ≤ ∥um∥pLp(Ω)

∥∥f ′∥∥p
L∞(R) ,

and

∥Df (um)∥pLp(Ω) =

∫
Ω

∣∣f ′ (um)Dum
∣∣p ≤ ∥∥f ′∥∥p

L∞(R) ∥Dum∥pLp(Ω) < ∞.

(iii) Let

fε(t) =
(√

t2 + ε2 − ε
)
1R+(t), f ′

ε(t) = t
(
t2 + ε2

)−1/2
1R+(t).

Then, we have fε(0) = 0, fε ∈ C1(R), fε(t) → max{0, t} as ε → 0 for each t ∈ R, and
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|f ′
ε| < 1 independently of ε. We apply (i) and (ii) to obtain Dfε(u) = f ′

ε(u)Du, i.e., for all

ϕ ∈ C∞
c (Ω),

−
∫
Ω
fε(u)Dϕ =

∫
{u(x)>0}

u(x)

(u(x)2 + ε2)1/2
Du(x)ϕ(x) dx

Now, noting that we have |fε(u)| ≤ |u|, it suffices to apply the dominated/monotone conver-

gence theorem (for ε → 0 ) on both sides to conclude that Du+ = 1{u>0}Du ∈ Lp(Ω) a.e.

in Ω. The second claim follows from u− = −(−u)+, and the third from |u| = u+ − u−.

Exercise 3. The application ∥ · ∥k,p : W k,p(Ω) → R+ (defined in the Lecture Notes) is a norm for any

1 ≤ p ≤ ∞.

Solution: See Lecture Notes.

Exercise 4. The normed vector space
(
W k,p(Ω), ∥ · ∥k,p

)
is a Banach space for every k ∈ N and

1 ≤ p ≤ ∞. In particular, the space Hk(Ω) = W k,2(Ω) is a Hilbert space, for every k ∈ N, with inner

product

(f, g)Hk :=
∑
|α|≤k

∫
Ω
Dαf ·Dαg dx.

Solution: See Lecture Notes.

Exercise 5. Let f ∈ W k,p(Ω), with 1 ≤ p < ∞, and fϵ := ηϵ ∗ f : Ω → R. Then fϵ
ϵ→0−−→ f in Lp(Ω)

and fϵ
ϵ→0−−→ f in W k,p(K), for any K ⊂⊂ Ω.

Solution: See Lecture Notes.
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