
Exercise Sheet 7

Introduction to Partial Differential Equations (W. S. 2024/25)

EPFL, Mathematics section, Dr. Nicola De Nitti

• The exercise series are published every Tuesday morning at 8am on the moodle page of the course. The

exercises can be handed in until the following Tuesday at 8am via email.

Exercise 1. Let us start by recalling the classic Ascoli–Arzelà theorem.1

Let X be a compact metric space. If a sequence {fn}∞n=1 in the space2 C(X) is bounded3

and equi-continuous4, then it has a uniformly convergent subsequence. Moreover, if every

subsequence of {fn}∞n=1 itself has a uniformly convergent subsequence, then {fn}∞n=1 is

uniformly bounded and equi-continuous.

Keeping Ascoli–Arzelà’s theorem in mind, prove the following result.

Ascoli–Arzelà-type theorem for harmonic functions. If {um}∞m=1 is a sequence of harmonic

functions on Ω that is uniformly bounded on each compact subset of Ω, then some subse-

quence of {um}∞m=1 converges uniformly on each compact subset of Ω.

Solution: The key to the proof is the following observation: there exists a constant C <∞ such

that for all u harmonic and bounded by M on any ball B2r(a),

|u(x)− u(a)| ≤

(
sup
Br(a)

|∇u|

)
|x− a| ≤ CM

r
|x− a|

1 Proven first by Giulio Ascoli [Asc84] (who established the sufficient condition for compactness) and then by Cesare
Arzelà [Arz95] (who established also the necessary condition). The generalization to real-valued continuous functions
with domain a compact metric space is due to Maurice Fréchet [Fré06].

2 Our setting is a compact metric space X which you can, if you wish, take to be a compact subset of Rn. Let C(X)
denote the space of all continuous functions on X with values in R. In C(X) we always regard the distance between
functions f and g in C(X) to be

dist(f, g) := max{|f(x)− g(x)| : x ∈ X}.
It is easy to check that dist, so defined, is a metric (the max-metric) on C(X), in which a sequence is convergent iff
it converges uniformly on X. Similarly, a sequence in C(X) is Cauchy iff it is Cauchy uniformly on X. Thus the
max-metric, which from now on we always assume to be part of the definition of C(X), makes that space complete

3 A family F ⊂ C(X) being bounded means that there exists a positive constant M < ∞ such that |f(x)| ≤ M for
each x ∈ X and each f ∈ F

4 The family F ⊂ C(X) being equi-continuous means that for every ε > 0 there exists δ > 0 (which depends only on
ε) such that, for x, y ∈ X,

d(x, y) < δ ⇒ |f(x)− f(y)| < ε for all f ∈ F
where d is the metric on X.
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for all x ∈ Br(a). The first inequality is standard from advanced calculus; the second inequality

follows from the estimate on the derivatives of harmonic functions proved in the Lecture Notes.

Now supposeK ⊂ Ω is compact, and let r = d(K, ∂Ω)/3. Because the setK2r = {x ∈ Rn : d(x,K) ≤ 2r}
is a compact subset of Ω, the sequence {um} is uniformly bounded by some M <∞ on K2r. Let

a, x ∈ K and assume |x− a| < r. Then x ∈ Br(a) and |um| ≤ M on B2r(a) ⊂ K2r for all m, and

so we conclude from the first paragraph that

|um(x)− um(a)| ≤ CM

r
|x− a|

for all m. It follows that the sequence {um} is equicontinuous on K. To finish, choose compact

sets

K1 ⊂ K2 ⊂ · · · ⊂ Ω

whose interiors cover Ω. Because {um} is equicontinuous onK1, the Ascoli–Arzelà theorem recalled

above implies {um} contains a subsequence that converges uniformly on K1. Applying Ascoli–

Arzelà again, there is a subsequence of this subsequence converging uniformly on K2, and so on. If

we list these subsequences one after another in rows, then the subsequence obtained by traveling

down the diagonal converges uniformly on each Kj , and hence on each compact subset of Ω.

Exercise 2. Consider the Neumann problem for the Laplace equation on the half space Ω := {x =

(x1, . . . , xn) ∈ Rn : xn > 0}: −∆u = 0, x ∈ Ω,

∂νu = h, x ∈ ∂Ω,

with h ∈ C2
0 (∂Ω). Let N(x, y) := Φ(x− y) + Φ (x− y⋆), where y⋆ := (y1, . . . , yn−1,−yn).

(i) Prove that u(y) =
∫
∂ΩN(x, y)h(x) dx is well-defined for all y ∈ Ω, and satisfies −∆u = 0 in Ω

and ∂νu = h on ∂Ω.

(ii) Prove that for n ≥ 3 we have lim|y|→∞ u(y) = 0.

Solution: For x ∈ ∂Ω and y ∈ Ω we have

N(x, y) = Φ

√√√√n−1∑
j=1

(xj − yj)
2 + (−yn)2

+Φ

√√√√n−1∑
j=1

(xj − yj)
2 + (yn)

2


= 2Φ(x− y)

and thus

|u(y)| =
∣∣∣∣∫

∂Ω
2Φ(· − y)h

∣∣∣∣ ≤ 2 sup
∂Ω

|h|
∫
BR(0)

∣∣∣∣∣∣Φ
√√√√n−1∑

j=1

(x̃j − yj)
2 + y2n

∣∣∣∣∣∣ dx̃
=

c2 sup∂Ω |h| |BR(0)|max|x1|≤R

∣∣∣∣ln(√(x1 − y1)
2 + y22

)∣∣∣∣ n = 2

cn sup∂Ω |h| |BR(0)| r2−n
y n ≥ 3
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where R is large enough so that supp(h) ⊂ BR(0) ⊂ Rn−1, and

ry := min
x̃∈∈

√√√√n−1∑
j=1

(x̃j − yj)
2 + y2n > 0.

Thus, u(y) is well defined. For n ≥ 3, noting that as |y| → ∞, ry → ∞, so we have u(y) → 0 as

|y| → ∞, which establishes the statement (ii).

For each fixed x ∈ Rn, the mapping y 7→ N(x, y) is harmonic, except for x = y. In particular,

for x ∈ ∂Ω, N(x, ·) is harmonic in Ω. Together with the compactness of supp(h), using the

dominated convergence theorem we have ∆u(y) =
∫
∂Ω h∆yN(·, y) = 0 for any y ∈ Ω. Moreover,

for y ∈ Ω we have

∂νu(y) = −∂ynu(y) = −∂yn
∫
∂Ω
N(·, y)h = −2

∫
∂Ω
h∂ynΦ(· − y) =

2

ωn

∫
∂Ω

hyn
| · −y|n

which is nothing but the Poisson integral formula in the half plane. Arguing as in Problem 4 of

Exercise Sheet 6, we conclude

lim
y→y0

y∈Rn
+

−∂ynu(y) = h
(
y0
)

for each y0 ∈ ∂Rn
+.

Exercise 3. Let n ≥ 2 and f ∈ C2
0 (Rn). Given Φ the fundamental solution of the Laplace equation

in Rn, consider

w(x) =

∫
Rn

Φ(x− y)f(y) dy.

(i) Use the change of variable y = x + z to rewrite this quantity as w(x) =
∫
Rn Φ(z)f(x + z) dz.

Show that w ∈ C2 (Rn) and ∂2xixj
w(x) =

∫
Rn Φ(z)∂xixjf(x+ z) dz.

(ii) Prove that −∆w = f in Rn.

(iii) Show that lim|x|→∞w(x) = 0 if n ≥ 3.

Solution:

(i) We need a few ingredients:

(a) (dominated convergence theorem) given a sequence of measurable functions ϕm : Ω → R
converging pointwise to ϕ : Ω → R as m→ ∞, if there exists a measurable function ψ :

Ω → R such that |ϕm| ≤ ψ in Ω and
∫
Ω |ψ| <∞, then

∫
Ω |ϕ| <∞, and

∫
Ω |ϕm − ϕ| → 0;

(b) (dominated convergence theorem for derivatives) given a measurable function ϕ : Rn×
Rn ⊃ Ω′×Ω → R, ϕ : (x, y) 7→ ϕ(x, y), such that - ϕ(x, ·) : Ω → R is integrable for every

x ∈ Ω′; - ∂xiϕ(x, y) exists for every (x, y) ∈ Ω′ ×Ω; - there exists a Lebesgue integrable
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function ψ : Ω → R such that |∂xiϕ(x, ·)| ≤ ψ in Ω for every x ∈ Ω′; then ∂xi

∫
Ω ϕ(x, ·) =∫

Ω ∂xiϕ(x, ·) for all x ∈ Ω′. To prove this, it suffices to fix x ∈ Ω′ arbitrarily and apply

the dominated convergence theorem to the quotient ratio qm(y) = ϕ(x+hmei,y)−ϕ(x,y)
hm

for

R\{0} ∈ hm → 0. Note that qm can be bounded by ψ independently of m :

|qm| = |∂xiϕ (x+ θx,m,yei, ·)| ≤ ψ

where θx,m,y is the constant from the mean value theorem.

(c) (local integrability of Φ ) it holds that

|Φ(r)| =

{
− 1

2π | log r| for n = 2
r2−n

(n−2)ωn
for n ≥ 3

≤ cn(| log r|+ 1)r2−n

so that, given R > 0,∫
BR

|Φ| =
∫ R

0

(∫
∂Br

1

)
|Φ(r)|dr ≤ cnωn

∫ R

0
rn−1(| log r|+ 1)r2−n dr

= cnωn

∫ R

0
r(| log r|+ 1)dr =: Cn,R <∞

Now we are ready to start. The first step is rewriting w as

w(x) :=

∫
Rn

Φ(y)f(x+ y)dy =

∫
Ωx

Φ(y)f(x+ y)dy

where Ωx = {y−x | y ∈ supp f} is bounded for all x. (We do this to exploit the smoothness

of f . The argument below cannot be applied if x is in the argument of Φ, e.g. because ∆Φ

is not locally integrable around 0 for any n ≥ 2.) Let x be fixed, and define

ϕm(y) = Φ(y)f(x+ y)1Ωx\B 1
m

(y)

The sequence ϕm converges pointwise to Φ(·)f(x+ ·), and its absolute value is bounded from

above by the non-negative function

ψ(y) = cn(| log |y||+ 1)|y|2−nmax
Rn

|f |1Ωx(y)

independently of m. In particular, given Rx := maxy∈Ωx |y|, owing to (c) it holds that∫
Rn

ψ ≤
∫
BRx

ψ ≤ Cn,Rx max
Rn

|f | <∞

Thus, (a) implies that w is well-defined for all x. Now we wish to apply (b) twice to show

the existence of all second order partial derivatives of w. To do this, we need to bound from

above |Φ(y)∂xif(x̃+ y)| and
∣∣Φ(y)∂xixjf(x̃+ y)

∣∣, uniformly in x̃ on Ωx. Here we show the

strategy only for |Φ(y)∂x1f(x+ y)| : thanks to (iii),

|Φ(y)∂x1f(x+ y)| ≤ ψ(y) = cn(| log |y||+ 1)|y|2−nmax
Rn

|∂x1f |1Ωx(y)
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and (b) can be applied. It just remains to show that all second derivatives ∂xixjw(x) =∫
Rn Φ(y)∂xixjf(x + y)dy are continuous in x. We can check this by using the uniform

continuity of ∂xixjf on compact sets and the local integrability of Φ.

(ii) Let R0 = maxy∈supp f |y|, so that supp f ⊂ BR0 . We have shown in the previous point

that ∆w(x) =
∫
Rn Φ(x − y)∆f(y)dy =

∫
BR0

Φ(x − y)∆f(y)dy. But then, the Green’s

representation formula together with supp f ⊂ BR0 implies

−
∫
BR0

Φ(x− y)∆f(y)dy = f(x) +

∫
∂BR0

(∂νΦ(x− y)f(y)− Φ(x− y)∂νf(y)) dS(y)

= f(x) + 0

and thus −∆w = f .

(iii) We use the compactness of the support of f and the monotonicity of |Φ| : for all x ∈ Rn

such that |x| > R0, we have |x− y| > 0 for any y ∈ supp f (i.e. Φ(x− y) is well-behaved in

BR0 ), and

|w(x)| ≤
∫
BR0

|Φ(x− y)f(y)|dy ≤ |BR0 |
max

BR0

|Φ(x− ·)|max
Rn

|f |

= |BR0 | |Φ (rx)|max
Rn

|f | = cn |BR0 |max
Rn

|f |r2−n
x

with rx = miny∈BR0
|x − y| > 0. The claim follows, since, by the triangular inequality,

rx > |x| −R0 → ∞ as |x| → ∞.

Exercise 4. Let Ω be a bounded domain and f ∈ C2
c (Ω). Then, the Newtonian potential

w(y) =

∫
Ω
Φ(x− y)f(x) dx, y ∈ Rn,

of f satisfies w ∈ C2 (Rn) and −∆w = f in Ω.

Solution: Since f has compact support in Ω, its extension by zero outside Ω, which we denote

f̃ , is still a C2 function. We can then rewrite the Newtonian potential as

w(y) =

∫
Ω
Φ(x− y)f(x) dx =

∫
Rn

Φ(x− y)f̃(x) dx =

∫
Rn

Φ(z)f̃(z + y) dz.

Since f̃ ∈ C2
c (Rn) and Φ is locally integrable we have that w ∈ C2 (Rn) and

−∆w(y) = −
∫
Rn

Φ(z)∆f̃(z + y) dz = −
∫
BR(0)

Φ(x− y)∆f̃(x) dx

where BR(0) is any sufficiently large ball that contains Ω. Using now Green’s representation

formula we have

f̃(y) =

∫
BR(0)

Φ(x−y)(−∆f̃(x)) dx−
∫
∂BR(0)

∂νΦ(x−y)f̃(x) dS(x)+
∫
∂BR(0)

Φ(x−y)∂ν f̃(x) dS(x)
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and the fact that f̃ ∈ C2
c (BR(0)), we conclude that −∆w(y) = f̃(y) = f(y) for all y ∈ Ω.
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[Fré06] M. Fréchet. Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo, 22:1–74,

1906.

6


