
Exercise Sheet 6

Introduction to Partial Differential Equations (W. S. 2024/25)

EPFL, Mathematics section, Dr. Nicola De Nitti

• The exercise series are published every Tuesday morning at 8am on the moodle page of the course. The

exercises can be handed in until the following Tuesday at 8am via email.

Exercise 1. Let T ∈ D′(R). Prove that T ′ = 0 if and only if T is constant.

Hint: If we assume that T is constant, then we note that T ′ = 0 because φ has compact support.

Conversely, suppose that T ′ = 0. Then, for all φ ∈ C∞
c (R), ⟨T ′, φ⟩ = −⟨T, φ′⟩ = 0, i.e., T vanishes on

all functions of the form φ′, where φ ∈ C∞
c (R). To prove the result, it is helpful to characterize such

functions. In particular, one should prove that

(
ψ = φ′, with φ ∈ C∞

c (R)
)

⇐⇒
(
ψ ∈ C∞

c (R) and
∫
R
ψ(x) dx = 0

)
.

Solution: See Proposition 3.4 of the Lecture Notes.

Exercise 2. Let Γ : Rn \ {0} → R be defined by Γ(x) = 1
8π |x|

2 log |x|.

(i) Show that ∆2Γ := ∆(∆Γ) is equal to 0 in R2\{0}. Moreover, observe that
∫
∂Br(0)

∂ν∆Γ(x) dS(x) =

1 for all r > 0.

(Extra point) Show that Γ is the fundamental solution of the bilaplacian operator ∆2.

(ii) Let u ∈ C4(Ω̄), with Ω ⊂ R2 an open bounded domain with smooth boundary. Prove that, for

all x ∈ Ω, the following Green-type representation formula holds:

u(x) =

∫
Ω
Γ(x− ·)∆2u−

∫
∂Ω

(Γ(x− ·)∂ν∆u−∆u∂νΓ(x− ·) + ∆Γ(x− ·)∂νu− u∂ν∆Γ(x− ·)) .

Solution:

(i) Let r = |x|, so that Γ(x) = Γ(r). Then Γ′(r) = (2r log r+r)/8π and Γ′′(r) = (2 log r+3)/8π.

Then

∆Γ(x) = Γ′′(r) +
1

r
Γ′(r) =

1

8π
(2 log r + 3 + 2 log r + 1) =

1

2π
(log r + 1)

1



and

∆2Γ(x) = (∆Γ)′′(r) +
1

r
(∆Γ)′(r) =

1

2π

(
− 1

r2
+

1

r2

)
= 0

It remains to verify that the normalization constant is such that∫
∂Br(0)

∂ν∆Γ(x) dS(x) = 1 for all r > 0

But ∂ν∆Γ(x) = (∆Γ)′(x) = 1/(2π|x|) = 1/
∫
∂Br(0)

1 for x ∈ ∂Br(0), and the result follows.

(ii) Given ε > 0, we employ the second Green’s identity in Ωc = Ω \Bε(x)∫
Ωε

(∆fg − f∆g) =

∫
δΩε

(g∂νf − f∂νg)

with (f, g) = (∆Γ(x − ·), u) and (f, g) = (Γ(x − ·),∆u), respectively (both u and Γ(x − ·)
are in C4 (Ωκ)

)
:

∫
Ωε
(∆2Γ(x− ·)︸ ︷︷ ︸

0

u−∆Γ(x− ·)∆u) =
∫
∂Ωε

(u∂ν∆Γ(x− ·)−∆Γ(x− ·)∂νu)∫
Ωε

(
∆Γ(x− ·)∆u− Γ(x− ·)∆2u

)
=
∫
∂Ωε

(∆u∂νΓ(x− ·)− Γ(x− ·)∂v∆u)

Adding up the two equations yields∫
Ωε

Γ(x− ·)∆2u︸ ︷︷ ︸
=:I0

=

∫
∂Ωε

Γ(x− ·)∂ν∆u︸ ︷︷ ︸
=:I1

−
∫
∂Ωε

∆u∂νΓ(x− ·)︸ ︷︷ ︸
=:I2

+

∫
Ωε

∆Γ(x− ·)∂νu︸ ︷︷ ︸
=:I3

−
∫
Ωε

u∂ν∆Γ(x− ·)︸ ︷︷ ︸
=:I4

Since we have u ∈ C4(Ω̄), and Γ(x − ·), ∂νΓ(x − ·) ∈ L1
loc (Ω), we have that I0, I1, and I2

converge to the respective integrals over Ω as ε→ 0. We only need to deal with I3 and I4.

In what follows, ν will always represent the outwards pointing normal; in particular, a change

of sign may be required for some terms, since the normal ν appearing in the integrals I1 I4

is ν = (x− y)/ε (pointing towards x ) on ∂Bε(x). Consider Is :

I3 =

∫
∂Ω

∆Γ(x− ·)∂νu− 1

2π
(log ε+ 1)

∫
∂Bε(x)

∂νu

=

∫
∂Ω

∆Γ(x− ·)∂νu− 1

2π
(log ε+ 1)

∫
Bε(x)

∆u︸ ︷︷ ︸
=:I′3

and

∣∣I ′3∣∣ ≤ 1

2π
| log ε+ 1|max

Bε(x)
|∆u|

∫
Bε(x)

1 =
ε2

2
| log ε+ 1|max

Bε(x)
|∆u| → 0 (as ε→ 0).

Now consider I4 : we employ a first order Taylor expansion (u(y) = u(x)+∇u(η(y)) ·(y−x),
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with η : ∂Bε(x) → Bε(x)) to obtain

I4 =

∫
∂Ω
u∂ν∆Γ(x− ·)−

∫
∂Bε(x)

u∂ν∆Γ(x− ·)

=

∫
∂Ω
u∂ν∆Γ(x− ·)−

∫
∂Bε(x)

(u(x) +∇u(η(y)) · (y − x))∂ν∆Γ(x− y)dS(y)

=

∫
∂Ω
u∂ν∆Γ(x− ·)− u(x)

∫
∂Bε(x)

∂ν∆Γ(x− ·)︸ ︷︷ ︸
=1

−
∫
∂Bε(x)

∇u(η(y)) · (y − x)∂ν∆Γ(x− y)dS(y)︸ ︷︷ ︸
=:I′4

and

|I ′4| ≤ max
Bε(x)

|∇u|ε
∫
∂Bε(x)

|∂ν∆Γ(x− ·)| = εmax
Bε(x)

|∇u| → 0 (as ε→ 0).

The claim follows.

Exercise 3. Let Ω ⊂ Rn be a bounded domain with a smooth boundary and G be the Green function

for the domain Ω.

(i) Fix x, y ∈ Ω. Write

v(z) := G(z, x), w(z) := G(z, y), for z ∈ Ω.

For 0 < ε < |x− y|/2, prove∫
∂Bε(x)

(v∂νw − w∂νv) =

∫
∂Bε(y)

(w∂νv − v∂νw)

where ν denotes the inward unit normal vector on ∂Bε(x) ∪ ∂Bε(y).

(ii) Prove

G(y, x) = G(x, y) for all x, y ∈ Ω.

Solution:

(i) We have ∆v(z) = 0 for z ̸= x,∆w(z) = 0 for z ̸= y, and v|∂Ω = 0 = w|∂Ω. For sufficiently

small ε > 0, we apply Green’s second identity on Ωε := Ω \ (Bε(x) ∪Bε(y)) for v and w to

obtain ∫
∂Ωε

(v∂νw − w∂νv) = 0

Since v|∂Ω = 0 = w|∂Ω, this implies that∫
∂Bε(x)

(v∂νw − w∂νv) =

∫
∂Bε(y)

(w∂νv − v∂νw) , (1)
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where ν denotes the inward unit normal vector on ∂Bε(x) ∪ ∂Bε(y).

(ii) We will show v(y) = w(x). We compute the limits of the two terms on both sides of (1)

as ε → 0+. Since w is smooth near x, we have |∇w| ≤ M on Bε(x) (provided ε is small

enough), and thus∣∣∣∣∣
∫
∂Bε(x)

v∂νw

∣∣∣∣∣ ≤Mεn−1 sup
z∈∂Bε(x)

|v(z)|

≤Mεn−1

(
M ′ + sup

z∈∂Bε(x)
|Γ(x− z)|

)
≤Mεn−1

(
M ′ + (| ln ε|+ 1)ε2−n

)
→ 0

(
as ε→ 0+

)
,

where we used the smoothness of the corrector function |h(·, x)| ≤M ′ on Bε(x). Moreover,

since h(·, x) is smooth in Ω, we have

lim
ε→0+

∫
∂Bε(x)

w∂νv = lim
ε→0+

∫
∂Bε(x)

w∂νΓ(x− ·) + 0 = w(x)

where for the last equality we recall the proof of the Green representation formula. Hence,

lim
ε→0+

LHS of (1) = −w(x)

Likewise, limε→0+ RHS of (1) = −v(y), and thus w(x) = v(y). This completes the proof.

Exercise 4. Consider the half-plane R2 ⊃ Ω = R × |0,∞|. Given y = (y1, y2) ∈ Ω, we define by

reflection y⋆ = (y1,−y2).

(i) Given the fundamental solution of the Laplace operator Φ(x − y) = −(2π)−1 log |x − y|, show
that G(x, y) = Φ(x− y)− Φ (x− y∗) is the Green function for Ω.

Hint: You need to show that, for any y ∈ Ω, h(x, y) := G(x, y)−Φ(x− y) is harmonic in Ω and

that G(·, y) = 0 on ∂Ω.

(ii) Derive formally the expression of the corresponding Poisson integral

u(y) = −
∫
∂Ω
∂νG(x, y)g(x) dS(x), (PI-hp)

where ∂νG(x, y) is the normal derivative of G(·, y) at x ∈ ∂Ω.

(iii) Prove that, if g is continuous and compactly supported, (PI-hp) actually represents a bounded

solution of the Dirichlet problem over Ω, that is, −∆u = 0 in Ω and limy→y0,
y∈Ω

u(y) = g (y0) for

each point y0 ∈ ∂Ω.

(iv) Prove that (PI-hp) satisfies the following maximum principle:

sup
Ω̄

u = sup
∂Ω

u.
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(v) Show that, if g is continuous and compactly supported, u(y) → 0 as |y| → ∞, where u is as in

(PI-hp). Moreover, show that u is the unique solution to the problem−∆u(x) = 0, x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω,

such that lim|y|→∞ u(y) = 0.

Solution:

(i) Let y ∈ Ω. We know−∆Φ(·−y) = 0 in Ω\{y}. Thus, since y⋆ /∈ Ω, we have−∆Φ(· − y⋆) = 0

in Ω. Moreover, for x1 ∈ R, y ∈ Ω, we have

G ((x1, 0) , y) = −(2π)−1 log

√
(x1 − y1)

2 + (−y2)2 + (2π)−1 log

√
(x1 − y1)

2 + (y2)
2 = 0

and thus G is the Green function for Ω.

(ii) The gradient of G(·, y) at x is[
− (x1 − y1) + (x1 − y1)

2π|x− y|2
,
− (x2 − y2) + (x2 + y2)

2π|x− y|2

]⊤
=

[
0,

y2
π|x− y|2

]⊤

It follows that the normal derivative
(
ν = [0,−1]⊤

)
of G(·, y) at x ∈ ∂Ω is

∂νG(x, y) = − 1

π

y2
|x− y|2

Thus, formally we have

u(y) = −
∫
∂Ω
g(x)∂νG(x, y) dS(x) =

1

π

∫
R

y2g (x1)

(x1 − y1)
2 + y22

dx1

(iii) We first show the boundedness of (PI-hp) on Ω. Let H (x1; y) := 1
π

y2
(x1−y1)

2+y22
≥ 0 for

x1 ∈ R, y ∈ Ω. We have ∫
R
H (x1; y) dx1 =

1

π

∫
R

dζ

ζ2 + 1
= 1 (2)

Now, the boundedness of u defined in (PI-hp) on Ω can be checked as

u(y) ≤ max
R

|g|
∫
R
H (x1; y) dx1 = max

R
|g|. (3)

Next, we show that u is harmonic in Ω. First, observe that H (x1; ·) is harmonic in Ω for all

x1 ∈ R :

∂2H

∂y21
=

6 (x1 − y1)
2 y2 − 2y32(

(x1 − y1)
2 + y22

)3 and
∂2H

∂y22
=

−6 (x1 − y1)
2 y2 + 2y32(

(x1 − y1)
2 + y22

)3 .
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Since H is smooth in R× Ω, and g is bounded and compactly supported, we can exchange

integral and derivative(s), e.g. by Lebesgue’s dominated convergence theorem, and deduce

∆u(y) =

∫
R
g (x1)∆yH (x1; y) dx1 = 0

More precisely, to apply Lebesgue’s DCT, we consider, for instance, ∂y2u at y ∈ Ω : for all

x1 ∈ R and 0 < h < y2/2,∣∣∣∣g (x1) H (x1; (y1, y2 + h))−H (x1; (y1, y2))

h

∣∣∣∣ ≤ max
η∈[y2/2,3y2/2]

∣∣∣∣g (x1) ∂H∂y2 (x1; (y1, η))
∣∣∣∣

≤ max
R

|g| max
ζ∈supp g

η∈[y2/2,3y2/2]

∣∣∣∣∂H∂y2 (ζ; (y1, η))
∣∣∣∣1supp(g) (x1)

=: φ (x1) .

and note that the function φ is integrable on R independently of h.

Now, we will check the boundary condition. We will show that limΩ∋y→(0,0) u(y) = g(0).

The argument is analogous for y1 ̸= 0. Let ε > 0 be fixed, and choose δ = δ(ε) small enough

that

|x1| < δ =⇒ |g (x1)− g(0)| < ε/2

Thanks to (2),

|u(y)− g(0)| ≤
∫ δ

−δ
H (x1; y) |g (x1)− g(0)| dx1 +

∫
R\[−δ,δ]

H (x1; y) |g (x1)− g(0)|dx1

The first integral is obviously not larger than ε/2. For the second, we have∫
R\[−δ,δ]

H (x1; y) |g (x1)− g(0)| dx1 ≤ 2max
R

|g|
∫
R\[−δ,δ]

H (x1; y) dx1

≤ 2y2
π

max
R

|g|
∫
R\[−δ,δ]

1

(x1 − y1)
2 dx1

Now, assume |y1| < δ/2. Then, for all |x1| > δ, (x1 − y1)
2 ≥ x21/4, and∫

R\[−δ,δ]
H (x1; y) |g (x1)− g(0)| dx1 ≤

2y2
π

max
R

|g|
∫
R\[−δ,δ]

4

x21
dx1 =

2y2
π

max
R

|g|8
δ
,

which is smaller than ε/2, provided y2 < (πεδ)/ (16maxR |g|). Hence, we have the following

implication:

y ∈ Ω, |y| < min

{
δ

2
,

πεδ

16maxR |g|

}
=⇒ |u(y)− g(0)| < ε.

Finally, we conclude that the boundary condition u(·, 0) = g holds, and, together with (3),

that u is bounded on Ω̄.

(iv) We show the maximum principle for an arbitrary u ∈ C2(Ω)∩C0(Ω̄) such that u is harmonic
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in Ω and supΩ̄ |u| <∞. For (y1, y2) ∈ Ω̄, let

φ (y1, y2) := log

√
y21 + (y2 + 1)2 ≥ 0

Then, φ ∈ C(Ω̄),∆φ = 0 in Ω, and φ(0, 0) = 0. Let

vε := u− εφ

Then, vε is harmonic in Ω and continuous on Ω̄. Thus, in view of the maximum principle

for any Ωr := B(0, r) ∩ Ω we have

max
Ωr

vε = max
∂Ωr

vε

Now, ∂Ωr consist of the straight part and curved part: ∂Ωr =
(
B(0, r) ∩ {y2 = 0}

)
∪

(∂B(0, r)∩ Ω ).

We already know that sup∂Ω u ≤ supΩ̄ |u| ≤M . On the curved part ∂B(0, r) ∩ Ω, we have

φ (y1, y2) ≥ log r for (y1, y2) ∈ ∂B(0, r) ∩ Ω

and there exists R = R(ε) > 0 such that

vε ≤M − εφ ≤ sup
∂Ω

u on ∂B(0, r) ∩ Ω for all r > R

On the other hand, on the straight part we have vε ≤ u ≤ sup∂Ω u. In either case we have

max
Ωr

vε = max
∂Ωr

vε ≤ sup
∂Ω

u

We now take r → ∞ to find supΩ̄ vε ≤ sup∂Ω u. But from u = vε + εφ, this implies

u (y1, y2) ≤ sup
∂Ω

u+ εφ (y1, y2) for any (y1, y2) ∈ Ω̄

Since the left hand side is independent of ε, we take ε→ 0 to obtain supΩ̄ u ≤ sup∂Ω u.

(v) Since max {|y1| , |y2|} ≤ |y| ≤
√
2max {|y1| , |y2|}, it is equivalent to show |u(y)| → 0 as

max {|y1| , |y2|} → 0. Let R be such that supp(g) ⊂ BR(0). TakeM > 0 such that R ≤M/2.

Suppose max {|y1| , |y2|} > M . If max {|y1| , |y2|} = |y2|, then,

|u(y)| ≤ 1

π

∫
R

∣∣∣∣∣ y2g (x1)

(x1 − y1)
2 + y22

∣∣∣∣∣ dx1 ≤ 1

π

∫
BR(0)

∣∣∣∣y2g (x1)y22

∣∣∣∣ dx1 ≤ 1

πM
|BR(0)|max

R
|g|.

If max {|y1| , |y2|} = |y1|, from |y1| > M, |y1| ≥ |y2|, and M/2 ≥ R, we have

|u(y)| ≤ 1

π

∫
BR(0)

∣∣∣∣∣ y2g (x1)

(x1 − y1)
2 + y22

∣∣∣∣∣ dx1 ≤ 1

π

∫
BR(0)

M |g (x1)|
(R− |y1|)2 + y22

dx1

<
1

π

∫
BR(0)

M |g (x1)|
(M −R)2

dx1 ≤
4

πM
|BR(0)|max

R
|g|.
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Hence, we conclude |u(y)| → 0 as |y| → ∞.

To show uniqueness, let u and w be two such solutions. Then, u − w is harmonic in Ω,

continuous on Ω̄, and lim|y|→∞(u(y) − w(y)) = 0. Hence, following the same argument

as in the proof of the comparison principle in the lecture notes, we have supΩ̄(u − w) =

sup∂Ω(u− w), which is zero as we have (u− w)|∂Ω = 0. Similarly, supΩ̄(w − u) = 0.
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