Exercise Sheet 6
Introduction to Partial Differential Equations (W. S. 2024 /25)
EPFL, Mathematics section, Dr. Nicola De Nitti

e The exercise series are published every Tuesday morning at 8am on the moodle page of the course. The

exercises can be handed in until the following Tuesday at 8am via email.

Exercise 1. Let T' € D'(R). Prove that 77 = 0 if and only if T is constant.

Hint: If we assume that 7" is constant, then we note that 7% = 0 because ¢ has compact support.
Conversely, suppose that 77 = 0. Then, for all ¢ € C°(R), (T",p) = —(T,¢') = 0, i.e., T vanishes on
all functions of the form ¢’, where ¢ € C2°(R). To prove the result, it is helpful to characterize such

functions. In particular, one should prove that

(v = ¢, with ¢ € CP(R)) = <w € C°(R) and /Rw(x) dz = O) :

Solution: See Proposition 3.4 of the Lecture Notes.

Exercise 2. Let I' : R" \ {0} — R be defined by I'(z) = g-|x|?log |x|.

(i) Show that A%I" := A(AT) is equal to 0 in R?\{0}. Moreover, observe that faBT(O) OvAT (z)dS(x) =
1 for all » > 0.

(Extra point) Show that T is the fundamental solution of the bilaplacian operator AZ.

(ii) Let u € C*(2), with Q C R? an open bounded domain with smooth boundary. Prove that, for

all x € 2, the following Green-type representation formula holds:

u(z) = /QF(x — ) A% — /m (T(z — )0, Au — Aud,T(z — -) + AT(z — -)d,u — ud, AT (z — -)) .

Solution:

(i) Let r = |z|, so that I'(x) = T'(r). Then I''(r) = (2rlogr+r)/8m and I (r) = (2logr+3)/8x.
Then ) ) )
AT(x) =T"(r)+ -T"(r) = 5 (2logr +3+2logr+1) = 5 (logr +1)
r

s s




and

o r r2

1 1 1 1
A’T(z) = (AD)"(r) + ~(AD)(r) <—2 + ) =0
It remains to verify that the normalization constant is such that

/ 0, AT'(z)dS(z) =1 for all » > 0
9Br(0)

But 9,AT'(z) = (AT") () = 1/(2x|z|) =1/ faBT(O) 1 for z € 0B,(0), and the result follows.

Given € > 0, we employ the second Green’s identity in . = Q\ B:(z)
| @to-1a9)= [ (@0us - fo.0)
Qe 50

with (f,g9) = (AT'(z — -),u) and (f,g) = (I'(z — -), Au), respectively (both w and I'(z — )
are in C* (Q,)) :

Jo (AT (z — ) u— AT (z — )Au) = [y, (ud,AT(z —-) — AT (z — -)d,u)
0
st (AT (z — )Au—T(z — )A%u) = faﬂs (Aud,I'(z — ) — ['(x — -)0pAu)

Adding up the two equations yields

/ [z — A% = / Iz —-)0,Au— Aud,T'(x — )
< Qe 00
=1y =1 =15

+ [ AT'(z —-)0yu —/ ud, AT (z — )
Qe €

3

N~

A4
Since we have u € C*(Q), and I'(x — ), 8,'(x — ) € L} (Q), we have that Iy, I;, and I

converge to the respective integrals over {2 as € — 0. We only need to deal with I3 and Iy4.

In what follows, v will always represent the outwards pointing normal; in particular, a change
of sign may be required for some terms, since the normal v appearing in the integrals I; Iy

is v = (x — y)/e (pointing towards x ) on 0B (x). Consider I :

Is = / Al (z — )0,u — i(loge + 1)/ dyu
09 2m 9B.(x)

= ATl(x — -)0,u — i(loge + 1)/ Au
09 27 Be ()

=1

and

1 2
|I§}§|logs+1|maxAu|/ 1:6—|10g5+1|maX|Au|—>0 (as e — 0).
27 Be(x) Be(z) 2 Be(x)

Now consider I : we employ a first order Taylor expansion (u(y) = u(x)+ Vu(n(y))- (y—x),




with 7 : 0B:(z) — B:(z)) to obtain

Iy = / ud, Al'(z —-) — / ud, Al (z — )
09 9B (z)

_ / ud, AT (z — ) — / (ulx) + Vu(n(y)) - (y — )0, AT (z — y)dS(y)
o0 9B.(z)

= /m ud, AT (z — ) — u(x)/ oAl (z — )

8B, (z)

=1

_ / Vu(n(y)) - (y — 2)9,AT( — y)dS(y)
OB ()

=1}

and

|| < max \Vu]e/ |0, Al (x — -)| = e max |[Vu| — 0 (as e — 0).
Be(x) dB:(x) Be(z)

g

The claim follows.

Exercise 3. Let 2 C R” be a bounded domain with a smooth boundary and G be the Green function

for the domain 2.

(i) Fix z,y € Q. Write
v(z) == G(z,2), w(z):=G(zy), forzel.

For 0 < e < |z —y|/2, prove

/ (v, w — wov) = / (woyv — vo,w)

where v denotes the inward unit normal vector on 0B, (z) U 0B:(y).

(ii) Prove
Gy, x) = G(z,y) for all z,y € Q.

Solution:

(i) We have Av(z) =0 for z # z, Aw(z) = 0 for z # y, and v|yq = 0 = w|y,. For sufficiently
small e > 0, we apply Green’s second identity on Q. := Q \ (B:(x) U B:(y)) for v and w to

obtain

/ (vVO,w — wdyv) =0
0Qe

Since vy = 0 = w|yq, this implies that

/ (vO,w — wWov) = / (wdy,v — vo,w), (1)
OBc(x)

aBs(y)




(ii) We will show v(y) = w(xz). We compute the limits of the two terms on both sides of (1)

where v denotes the inward unit normal vector on 0B:(z) U dB:(y).

as € — 0. Since w is smooth near x, we have |Vw| < M on B.(x) (provided ¢ is small

enough), and thus

/ vd,w| < Me™! sup  |u(2)|
OB (x)

2€0B:(x)

<M M+ sup |T(z—2)|
2€0B:(x)

< Me™ M (M + (JIng| + 1)) = 0 (ase—07),

where we used the smoothness of the corrector function |h(-,z)| < M’ on B.(z). Moreover,

since h(-,z) is smooth in €, we have

lim wd,v = lim wo,I'(x —-) +0=w(x)
e=0t JoB, (2) e=0% JoB, (z)

where for the last equality we recall the proof of the Green representation formula. Hence,

lim LHS of (1) = —w(x)

e—0t

Likewise, lim._,q+ RHS of (1) = —v(y), and thus w(z) = v(y). This completes the proof.

Exercise 4. Consider the half-plane R? D Q = R x [0,00|. Given y = (y1,%2) € 2, we define by

reflection y* = (y1, —y2).

(i)

(iii)

(iv)

Given the fundamental solution of the Laplace operator ®(x — y) = —(27) 1log|x — y|, show
that G(z,y) = ®(x —y) — ® (z — y*) is the Green function for Q.

Hint: You need to show that, for any y € Q, h(z,y) := G(z,y) — ®(x — y) is harmonic in © and
that G(-,y) = 0 on 0f2.

Derive formally the expression of the corresponding Poisson integral

u(y) = (3,,G(l‘, y)g(x) dS(x), (PI—hp)
o0

where 0,G(x,y) is the normal derivative of G(-,y) at = € 9.

Prove that, if g is continuous and compactly supported, (PI-hp) actually represents a bounded

solution of the Dirichlet problem over , that is, —Au = 0 in Q and limya%), u(y) = g (yo) for
ye

each point gy € 0.

Prove that (PI-hp) satisfies the following maximum principle:

sup u = sup u.
Q o0



(v) Show that, if ¢ is continuous and compactly supported, u(y) — 0 as |y| — oo, where u is as in

(PI-hp). Moreover, show that w is the unique solution to the problem

—Au(z) =0, =€,
u(x) =g(x), z€0Q,

such that limj, . u(y) = 0.

Solution:

(i) Lety € Q. We know —A®(-—y) = 0in Q\{y}. Thus, since y* ¢ Q, we have —A® (- — y*) =0
in Q2. Moreover, for z1 € R, y € 2, we have

G ((21,0),y) = —(2m) " log /(w1 — y1)” + (—92)” + 2m) " log /(21 — 1) + (1) = 0
and thus G is the Green function for €.

(ii) The gradient of G(-,y) at = is

—(z1 —y1) + (1 — 1) — (22 — y2) + (w2 +42) T: 0. Y2 !
27|z — y|? ’ 27|z — y|? "z -yl

It follows that the normal derivative (v = [0,—1]") of G(-,y) at z € 9Q is

1 vy
|z —yl?

al/G(xa y) = -

Thus, formally we have

u(y) = — /asz 9()0,G(x,y)dS(z) = 1 /R (y29($1) dz

m 1 —y1)2+y§

2 > (0 for

(iii) We first show the boundedness of (PI-hp) on Q. Let H (x1;y) := %m
T1i— 2

z1 € R, y € Q. We have

. 1 da¢
/RH(xl’y)dxl_ﬂ/RCQ-i-l_l (2)

Now, the boundedness of u defined in (PI-hp) on Q can be checked as
uly) < maxlgl [ H (a139) doy = max]|. g
R R R

Next, we show that u is harmonic in Q. First, observe that H (z1;-) is harmonic in Q for all

r1 €R:

OPH  6(x — y1)*y2 — 2y3 and OPH  —6(z — y1)* yo + 2u3
7 = 3 7 = 3
O ((wl — 1)’ + y%) 3 ((ﬂn — 1) + y%)




Since H is smooth in R x €2, and ¢ is bounded and compactly supported, we can exchange

integral and derivative(s), e.g. by Lebesgue’s dominated convergence theorem, and deduce

Au(y) = /Rg(xl)AyH (z1;y) dzy =0

More precisely, to apply Lebesgue’s DCT, we consider, for instance, 9,,u at y € € : for all
1 € Rand 0 < h < y2/2,

OH

H (z1; (y1,y2 + b)) — H (21; (yl,yz))‘
T < ma 1) — (x1; ,
9 (@) h S ez |9 @) By, (@1 (91 1)
OH
< 2 (¢ 1
<mgxlgl x5 G ()| Dt (1)
n€y2/2,3y2/2]
=: ¢ (x1).

and note that the function ¢ is integrable on R independently of h.

Now, we will check the boundary condition. We will show that limgs, 0,0y u(y) = g(0).
The argument is analogous for y; # 0. Let € > 0 be fixed, and choose 6 = §(g) small enough
that

21 <6 = [g (x1) — 9(0)] <&/2

Thanks to (2),

é
) ~9O) < [ @) lge) —gO)ldes [ H @)l - g0

The first integral is obviously not larger than /2. For the second, we have

/ H (21:9) |g (21) — 9(0)] day < 2max|g] H (213y) day
R\[—4,0] R R\[—5,]

2 1
§y2max|g|/ ———dn
TR TR\ (21— )
Now, assume |y;| < 8/2. Then, for all |z1| > 8, (1 — y1)* > 22/4, and

2 4 2 8

[ H@imlg) - g)]de < P maxlgl [ 2 don = 22 maxgl],

R\[-6,] TR TR\-64) 7Y ™R 70
which is smaller than /2, provided y2 < (7&d)/ (16 maxg |g|). Hence, we have the following

implication:

Ted

. 1)
y eyl < mm{2716maXRM} = |u(y) — g(0)] <e.

Finally, we conclude that the boundary condition u(-,0) = g holds, and, together with (3),
that u is bounded on Q.

(iv) We show the maximum principle for an arbitrary v € C?(Q2)NC°(£2) such that u is harmonic




in Q and supgq |u| < co. For (y1,y2) € Q, let

¢ (y1,y2) ==log \/y} + (12 +1)* > 0
Then, ¢ € C(Q),Ap =0 in Q, and ©(0,0) = 0. Let

Ve i= U — EP

Then, v, is harmonic in Q and continuous on Q. Thus, in view of the maximum principle
for any €, := B(0,7) N Q we have

max Ve = Iax Vg
Qr Q-

Now, 0€). consist of the straight part and curved part: 09, = (B(O,r) N{ys = 0}) U
(0B(0,7)N Q).

We already know that supgq u < supg |u] < M. On the curved part 9B(0,r) N Q, we have
¢ (y1,y2) >logr for  (y1,y2) € 0B(0,r) N

and there exists R = R(e) > 0 such that

ve <M —ep <supu ondB(0,7r)NQ forallr>R
o0

On the other hand, on the straight part we have v. < u < supyq u. In either case we have

max v, = maxve, < supu
Qr 89"” o0

We now take r — oo to find supg v < supyq u. But from u = v. + ¢, this implies

u(y1,y2) < Sup +ep(y,y2) for any (y1,y2) € Q2
Q

Since the left hand side is independent of ¢, we take ¢ — 0 to obtain supg u < supyq u.

Since max {|y1], [y2|} < |y| < v2max{|y1|, |2}, it is equivalent to show |u(y)| — 0 as
max {|y1]|,|y2|} — 0. Let R be such that supp(g) C Br(0). Take M > 0 such that R < M/2.
Suppose max {[y1], [y2[} > M. If max {|y1], [y2]} = [y2], then,

1 1
) <5 [ dn< [
T JR T JBr(0)

If max {[y1], [y2]} = [y1|, from [y1| > M, [y1] > |yo|, and M/2 > R, we have

Y29 (1)

Y3

Y29 (71)

1
—_— dz1 < — |Bg(0)| max|g|.
(1 — y1)° + 3 ™M R

luy)| < 1/ Y29 (9521) dzy < 1/ M’9(9€21)| da
™ JBro) | (21 —1)” + 3 ™ JBr0) (R = [y1])” + 3
1/ Mg ()] dz1 = Br(0)max{gr:
™ /BR(O) (M — R)? s R




Hence, we conclude |u(y)| — 0 as |y| — occ.

To show uniqueness, let © and w be two such solutions. Then, u — w is harmonic in (2,
continuous on , and lim, . (u(y) — w(y)) = 0. Hence, following the same argument
as in the proof of the comparison principle in the lecture notes, we have supg(u — w) =

supgq (v — w), which is zero as we have (u —w)|yq = 0. Similarly, supg(w — u) = 0.




