
Exercise Sheet 5

Introduction to Partial Differential Equations (W. S. 2024/25)

EPFL, Mathematics section, Dr. Nicola De Nitti

• The exercise series are published every Tuesday morning at 8am on the moodle page of the course. The

exercises can be handed in until the following Tuesday at 8am via email.

Exercise 1. Prove the following result, in which the fundamental solution Φ of the Laplace equation

is used to derive a representation formula for the point value of a C2(Ω) function in terms of its

Laplacian and boundary values.

Green’s representation formula: Let Ω ⊂ Rn be a bounded domain with C1 boundary. For

any u ∈ C2(Ω̄) and y ∈ Ω, we have

u(y) =

∫
Ω
Φ(x− y)(−∆u(x)) dx−

∫
∂Ω
∂νΦ(x− y)u(x) dS(x) +

∫
∂Ω

Φ(x− y)∂νu(x) dS(x).

(GRF)

Context and hints for the proof: The starting point of the proof is Green’s integration by parts identity,∫
Ω
(v∆u− u∆v) dx =

∫
∂Ω

(v∂νu− u∂νv) dS. (GI)

which holds for every u, v ∈ C2(Ω̄) and a bounded domain with C1 boundary. Now fix y ∈ Ω. To

prove the (GRF), the idea is to take v = Φ(· − y) in (GI). However, x 7→ Φ(x− y) is not C2(Ω̄), and

in particular, its Laplacian is not defined in y. So we need to be more careful: to circumvent this

problem, we write the identity on the domain Ωϵ = Ω \Bϵ(y), with ϵ small enough so that Bϵ(y) ⊂ Ω,

and let ϵ→ 0.

Solution: Exploiting the fact that Φ(x− y) ∈ C2(Ω̄ϵ) and ∆xΦ(x− y) = 0 in Ωϵ, we have∫
Ωϵ

∆u(x)Φ(x− y) dx︸ ︷︷ ︸
C

−
∫
∂Ω

(∂νu(x)Φ(x− y)− u(x)∂νΦ(x− y)) dS(x)

=

∫
∂Bϵ(y)

∂νu(x)Φ(x− y) dS(x)︸ ︷︷ ︸
A

−
∫
∂Bϵ(y)

u(x)∂νΦ(x− y) dS(x)︸ ︷︷ ︸
B

.

We show now that A→ 0, B → u(y), and C →
∫
Ω∆u(x)Φ(x− y) dx as ϵ→ 0.
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For A, we estimate

|A| = |Φ̃(ϵ)|

∣∣∣∣∣
∫
∂Bϵ(y)

∂νudS

∣∣∣∣∣ ≤ |Φ̃(ϵ)|ϵn−1ωn sup
Bϵ(y)

|∇u| −→ 0 as ϵ→ 0.

For B, we estimate the difference |B − u(y)|:

|B − u(y)| =

∣∣∣∣∣
∫
∂Bϵ(y)

(u(y) +∇u(y) + θx(x− y) · (x− y)) ∂νΦ(x− y) dS(x)− u(y)

∣∣∣∣∣
≤

∣∣∣∣∣u(y)
(∫

∂Bϵ(y)
∂νΦ(x− y) dS(x)− 1

)∣∣∣∣∣︸ ︷︷ ︸
=0

+

∣∣∣∣∣
∫
∂Bϵ(y)

∇u(y + θx(x− y)) · (x− y)∂νΦ(x− y) dS(x)

∣∣∣∣∣
≤ sup

Bϵ(y)
|∇u|ϵ

∫
∂Bϵ(y)

|∂νΦ(x− y)|dS(x) −→ 0 as ϵ→ 0..

Notice that, in the second line, the fact that
∫
∂Bϵ(y)

∂νΦ(x − y) dS(x) = 1 is due to ν being

the normal outgoing vector to the domain Ω \ Bϵ(y), hence the normal ingoing vector to Bϵ(y).

Finally, for the term C, since Φ(x− y) is integrable in Ω for any y ∈ Ω, we have∣∣∣∣C −
∫
Ω
∆u(x)Φ(x− y) dx

∣∣∣∣ =
∣∣∣∣∣
∫
Bϵ(y)

∆u(x)Φ(x− y) dx

∣∣∣∣∣ ≤ sup
Bϵ(y)

|∆u|
∫
Bϵ(y)

|Φ(x− y)|dx

≤ sup
Bϵ(y)

|∆u|
∫ ϵ

0
sn−1ωn|Φ(s)|ds −→ 0 as ϵ→ 0.

Exercise 2. Let u ∈ C2(Ω̄) be a solution, provided it exists, of the Neumann boundary value problem−∆u = f, x ∈ Ω,

∂νu = h, x ∈ ∂Ω,

for a smooth domain Ω ⊂ Rn and smooth data f, h which satisfy the compatibility condition∫
Ω
f = −

∫
∂Ω
h

(i) Fix y ∈ Ω. Show that the Neumann problem−∆ψ(·, y) = 0, x ∈ Ω,

∂νψ(·, y) = ∂νΦ(· − y), x ∈ ∂Ω,

has no solution ψ ∈ C2(Ω̄).
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(ii) Suppose further that ψ(·, y) ∈ C2(Ω̄) satisfies−∆ψ(·, y) = 0, x ∈ Ω,

∂νψ(·, y) = ∂νΦ(· − y) + 1
|∂Ω| , x ∈ ∂Ω,

exists, where y ∈ Ω is fixed arbitrarily. Show that we have

u(y)− 1

|∂Ω|

∫
∂Ω
u(x) dS(x) =

∫
Ω
f(x)N(x, y) dx+

∫
∂Ω
h(x)N(x, y) dS(x),

where N(x, y) := Φ(x− y)− ψ(x, y).

Solution:

(i) Using the Green’s representation formula for the constant function 1 yields

1 = −
∫
Ω
Φ(· − y)∆1−

∫
∂Ω
∂νΦ(· − y) +

∫
∂Ω

Φ(· − y)∂ν1 = 0−
∫
∂Ω
∂νΦ(· − y) + 0

Now suppose that ψ̄ ∈ C2(Ω̄) is a solution to the Neumann problem. Integration by parts

yields ∫
∂Ω
∂νψ̃(·, y) = 0,

which contradicts with
∫
∂Ω ∂νψ̃(·, y) =

∫
∂Ω ∂νΦ(· − y) = −1, hence the problem above has

no solution.

(ii) Integrating by parts yields

0 +

∫
Ω
ψ(·, y)f =

∫
Ω
(u∆ψ(·, y)− ψ(·, y)∆u)

=

∫
∂Ω

(u∂νψ(·, y)− ψ(·, y)∂νu)

=

∫
∂Ω

(
u

(
∂νΦ(· − y) +

1

|∂Ω|

)
− ψ(·, y)h

)

Now, from the Green’s representation formula, the solution u of the Neumann problem, if it

exists, admits the representation

u(y) = −
∫
Ω
Φ(· − y)∆u−

∫
∂Ω
u∂νΦ(· − y) +

∫
∂Ω

Φ(· − y)∂νu

=

∫
Ω
Φ(· − y)f −

∫
∂Ω
u∂νΦ(· − y) +

∫
∂Ω

Φ(· − y)h

Adding the above two identities yields

u(y)− 1

|∂Ω|

∫
∂Ω
u =

∫
Ω
N(·, y)f +

∫
∂Ω
N(·, y)h,

which is the desired identity.
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Exercise 3. The aim of this exercise is to define basic operations over distributions in D′(R). As has

been done for the derivative of a distribution, basic mathematical operations can be defined following

the same line of reasoning.

First of all, we introduce the notation used throughout the exercise. Let f : R → R be a real-valued

function, we then define the following:

(a) Translation of f by a ∈ R:

τaf(x) = f(x+ a) for all x ∈ R.

(b) Dilation of f by a > 0:

Daf(x) = f(ax) for all x ∈ R.

(c) Reflection of f :

f̃(x) = f(−x) for all x ∈ R.

(d) Multiplication by a function g ∈ C∞(R):

(fg)(x) = f(x)g(x).

We now extend these definitions to elements of the space D′(R): Given T ∈ D′(R), we can define:

(a) The translation by a ∈ R of T is the distribution τaT ∈ D′(R) such that:

⟨τaT, ϕ⟩ = ⟨T, τ−aϕ⟩ for all ϕ ∈ D(R).

(b) The dilation by a > 0 of T is the distribution DaT ∈ D′(R) such that:

⟨DaT, ϕ⟩ =
〈
T,

1

a
D1/aϕ

〉
for all ϕ ∈ D(R).

(c) The reflection of T is the distribution T̃ ∈ D′(R) such that:〈
T̃ , ϕ

〉
=
〈
T, ϕ̃

〉
for all ϕ ∈ D(R).

(d) The multiplication of T by g ∈ C∞(R) is a distribution gT ∈ D′(R) such that:

⟨gT, ϕ⟩ = ⟨T, gϕ⟩ for all ϕ ∈ D(R).

Given f ∈ L1
loc(R), we can associate to f the distribution Tf ∈ D′(R) such that:

⟨Tf , ϕ⟩ =
∫
R
f(x)ϕ(x) dx for all ϕ ∈ D(R).

Prove that for Tf built in such a way, the previous definitions hold true.

Based on the previous computations, one can extend these definitions to a generic T ∈ D′(R).
Starting from these definitions, prove that:

(a) (τaT )
′ = τa(T

′).

4



(b) (DaT )
′ = aDa(T

′).

(c) (T̃ )′ = −T̃ ′.

(d) Given T ∈ D′(R), g ∈ C∞(R), prove that (gT )′ = g′T + gT ′.

We say that a distribution is even if T̃ = T in D′(R), similarly a distribution is odd if T̃ = −T
in D′(R). Prove that:

(a) δ0 is an even distribution.

(b) δ′0 is an odd distribution.

Prove that the following identities hold in D′(R):

(a) Daτ−2δ0 =
1
3δ3.

(b) (D2 (e
−xδ′0))

′
= 1

2δ
′
0 +

1
4δ

′′
0 .

Solution: Let f ∈ L1
loc(R), and consider the distribution Tf ∈ D′(R) defined by:

⟨Tf , ϕ⟩ =
∫
R
f(x)ϕ(x) dx for all ϕ ∈ D(R).

We will show that the operations defined for distributions coincide with those for functions when

Tf is associated to f .

(a) Translation of Tf :

⟨τaTf , ϕ⟩ = ⟨Tf , τ−aϕ⟩ =
∫
R
f(x)ϕ(x− a) dx

=

∫
R
f(y + a)ϕ(y) dy =

∫
R
τaf(y)ϕ(y) dy = ⟨Tτaf , ϕ⟩ .

Therefore, τaTf = Tτaf .

(b) Dilation of Tf :

⟨DaTf , ϕ⟩ =
〈
Tf ,

1

a
D1/aϕ

〉
=

1

a

∫
R
f(x)ϕ

(x
a

)
dx

=

∫
R
f(ay)ϕ(y) dy = ⟨TDaf , ϕ⟩ .

Therefore, DaTf = TDaf .

(c) Reflection of Tf : 〈
T̃f , ϕ

〉
=
〈
Tf , ϕ̃

〉
=

∫
R
f(x)ϕ(−x) dx

=

∫
R
f(−y)ϕ(y) dy =

〈
Tf̃ , ϕ

〉
.

Therefore, T̃f = Tf̃ .
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(d) Multiplication by g:

⟨gTf , ϕ⟩ = ⟨Tf , gϕ⟩ =
∫
R
f(x)g(x)ϕ(x) dx = ⟨Tfg, ϕ⟩ .

Therefore, gTf = Tfg.

This shows that for Tf , the operations defined for distributions correspond to those for func-

tions.

Next, we will prove the derivation rules for distributions.

(a) Proof that (τaT )
′ = τa(T

′):

For all ϕ ∈ D(R), 〈
(τaT )

′, ϕ
〉
= −

〈
τaT, ϕ

′〉 = −
〈
T, τ−aϕ

′〉
= −

〈
T, (τ−aϕ)

′〉 since τ−aϕ
′ = (τ−aϕ)

′

=
〈
T ′, τ−aϕ

〉
=
〈
τaT

′, ϕ
〉
.

Therefore, (τaT )
′ = τa(T

′).

(b) Proof that (DaT )
′ = aDa(T

′):

For all ϕ ∈ D(R),

〈
(DaT )

′, ϕ
〉
= −

〈
DaT, ϕ

′〉 = −
〈
T,

1

a
D1/aϕ

′
〉

= −
〈
T,
(
D1/aϕ

)′〉
since

1

a
D1/aϕ

′ =
(
D1/aϕ

)′
=
〈
T ′, D1/aϕ

〉
=
〈
DaT

′, ϕ
〉
a.

Therefore, (DaT )
′ = aDa(T

′).

(c) Proof that (T̃ )′ = −T̃ ′:

For all ϕ ∈ D(R), 〈
(T̃ )′, ϕ

〉
= −

〈
T̃ , ϕ′

〉
= −

〈
T, ϕ̃′

〉
= −

〈
T,
(
ϕ̃
)′〉

since ϕ̃′ =
(
ϕ̃
)′

=
〈
T ′, ϕ̃

〉
=
〈
−T̃ ′, ϕ

〉
.

Therefore, (T̃ )′ = −T̃ ′.

(d) Proof that (gT )′ = g′T + gT ′:

For all ϕ ∈ D(R),〈
(gT )′, ϕ

〉
= −

〈
gT, ϕ′

〉
= −

〈
T, gϕ′

〉
= −

〈
T, (gϕ)′ − g′ϕ

〉
= −

(〈
T, (gϕ)′

〉
−
〈
T, g′ϕ

〉)
= −

(
−
〈
T ′, gϕ

〉
−
〈
T, g′ϕ

〉)
=
〈
T ′, gϕ

〉
+
〈
T, g′ϕ

〉
=
〈
gT ′, ϕ

〉
+
〈
g′T, ϕ

〉
.
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Therefore, (gT )′ = g′T + gT ′.

Now, we will prove that δ0 is even and δ′0 is odd.

(a) Proof that δ0 is even:

For all ϕ ∈ D(R), 〈
δ̃0, ϕ

〉
=
〈
δ0, ϕ̃

〉
= ϕ̃(0) = ϕ(−0) = ϕ(0) = ⟨δ0, ϕ⟩ .

Therefore, δ̃0 = δ0, so δ0 is even.

(b) Proof that δ′0 is odd:

For all ϕ ∈ D(R),〈
δ̃′0, ϕ

〉
=
〈
δ′0, ϕ̃

〉
= −

〈
δ0, (ϕ̃)

′
〉
= −(ϕ̃)′(0)

= −
(
d

dx
ϕ(−x)

∣∣∣∣
x=0

)
= −(−ϕ′(0)) = ϕ′(0) =

〈
−δ′0, ϕ

〉
.

Therefore, δ̃′0 = −δ′0, so δ′0 is odd.

7


