Exercise Sheet 5
Introduction to Partial Differential Equations (W. S. 2024 /25)
EPFL, Mathematics section, Dr. Nicola De Nitti

e The exercise series are published every Tuesday morning at 8am on the moodle page of the course. The

exercises can be handed in until the following Tuesday at 8am via email.

Exercise 1. Prove the following result, in which the fundamental solution ® of the Laplace equation
is used to derive a representation formula for the point value of a C2?(Q2) function in terms of its

Laplacian and boundary values.

Green’s representation formula: Let Q C R™ be a bounded domain with C'! boundary. For
any u € C%(Q) and y € ), we have

u(y) = /Q O(x —y)(—Au(z))dz — 0,P(z — y)u(x)dS(z) + / O(x — y)o,u(x)dS(z).

o0 o0
(GRF)

Context and hints for the proof: The starting point of the proof is Green’s integration by parts identity,

/ (vAu — uAv)dz = / (vO,u — udyv) dS. (GI)
Q onN

which holds for every u,v € C?(Q) and a bounded domain with C! boundary. Now fix y € Q. To
prove the (GRF), the idea is to take v = ®(- — y) in (GI). However, z — ®(z — y) is not C%(Q), and
in particular, its Laplacian is not defined in y. So we need to be more careful: to circumvent this
problem, we write the identity on the domain Q. = Q\ B(y), with € small enough so that B.(y) C €,
and let € — 0.

Solution: Exploiting the fact that ®(z —y) € C?(€2) and A,®(x —y) = 0 in €, we have

/ Au(z)®(z — y) dz — / (Bu(@)D(@ — y) — (@)D ®(x — 1)) dS()
Qe o0
C

:/ Ayu(z)®(z —y)dS(z) —/ u(z)0,®(r — y) dS(x).
0Bc(y)

0Bc(y)
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We show now that A — 0, B — u(y), and C' — [, Au(z)®(z — y) dz as e — 0.




For A, we estimate

< |®(e)|e" twy, sup |[Vu| — 0 as € — 0.
Be(y)

|A| = |®(e)] / dyudS
OBc(y)

For B, we estimate the difference |B — u(y)|:

|B —u(y)| = /{)B w (u(y) + Vu(y) + bz(r —y) - (z — y)) 0,P(z — y) dS(z) — u(y)
e\y
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‘/ Vuly + 0,(x — ) - (x — )8, B(x — ) dS(z)
OBe (y)

<

_|_

< sup \Vu|e/ |0,®(x —y)|dS(z) — 0 as e = 0..
Be(y) 9Bc(y)

Notice that, in the second line, the fact that fBBe(y) 0, ®(x —y)dS(z) = 1 is due to v being

the normal outgoing vector to the domain Q \ B¢(y), hence the normal ingoing vector to Be(y).

Finally, for the term C|, since ®(x — y) is integrable in Q for any y € €, we have

< sup |Au| @ (2 — y)|dz
Be(y) Be(y)

’c - /QAu(x)@(x ) da

/ Au(z)®(z —y) dz
Be(y)

< sup |Au| [ " tw,|®(s)|ds — 0 as € — 0.
Be(y) 0

Exercise 2. Let u € C%(Q) be a solution, provided it exists, of the Neumann boundary value problem

—Au=f xe€l
du=h, xe€df,

for a smooth domain 2 C R™ and smooth data f, h which satisfy the compatibility condition

J? == bt

(i) Fix y € Q. Show that the Neumann problem

—A¢(7y) = 07 S Qa
azﬂ/J(’?/) = 81/(1)( - y)7 T < an

has no solution 1 € C?(9).



(i) Suppose further that (-, y) € C?(f) satisfies

—A¢(,y) =0, x € €,
81/1/}(73/) = aV(I)( - y) + ﬁ, T e 89,

exists, where y € (Q is fixed arbitrarily. Show that we have

1
U(y)—m mﬂ(w) dS(ﬂ?):/ﬂf(x)N(wvy) dw+/mh($)N($7y) dS(z),

where N(z,y) = ®(z —y) — ¥(x,y).

Solution:

(i)

(i)

Using the Green’s representation formula for the constant function 1 yields

== [at—pai- [ aac-y+ [ s6-pai-o- [ a8c-y+0

o0 o0 o

Now suppose that 1) € C?(€) is a solution to the Neumann problem. Integration by parts

/ al/q/;('a y) = 07
o0
which contradicts with faQ o0(-,y) = faQ 0,P(- — y) = —1, hence the problem above has

no solution.

yields

Integrating by parts yields

04 /Q By f = /Q (WA (-, ) — () M)
- / (W) — V(- 9)Au)
o0

— /BQ (u (aycb(- —y) + If;fl\) - ¢(-,y)h>

Now, from the Green’s representation formula, the solution u of the Neumann problem, if it

exists, admits the representation
uty) = [ 26 —p)du= [ wat—p+ [ By
Q o0 o0

= [at=ui- [ wst-p+ [ oy

Adding the above two identities yields

u(y)—,;m [ - /Q Ne)f+ [ NCah

which is the desired identity.




Exercise 3. The aim of this exercise is to define basic operations over distributions in D’(R). As has
been done for the derivative of a distribution, basic mathematical operations can be defined following
the same line of reasoning.

First of all, we introduce the notation used throughout the exercise. Let f : R — R be a real-valued

function, we then define the following:

(a) Translation of f by a € R:

Tof () = f(x +a) for all x € R.

(b) Dilation of f by a > 0:
D,f(z) = f(ax) for all x € R.

(c) Reflection of f:
f(z) = f(—z) forallxz €R.

(d) Multiplication by a function g € C*°(R):

(f9)(z) = f(z)g().

We now extend these definitions to elements of the space D'(R): Given T' € D'(R), we can define:

(a) The translation by a € R of T is the distribution 7,7 € D'(R) such that:

(1.1, ¢) = (T, 7—q¢) for all p € D(R).
(b) The dilation by a > 0 of T is the distribution D,T € D'(R) such that:

(DT, 6) = <T, 201 /a¢> for all ¢ € D(R).

(¢) The reflection of T is the distribution 7' € D’(R) such that:
<T, ¢> - <T, ¢3> for all ¢ € D(R).

(d) The multiplication of T' by g € C*°(R) is a distribution g7" € D'(R) such that:
(9T, ¢) = (T, g¢) for all $ € D(R).

Given f € LL _(R), we can associate to f the distribution Ty € D'(R) such that:

loc

(Ty,¢) = /Rf(:c)qb(x) dx for all ¢ € D(R).

Prove that for T built in such a way, the previous definitions hold true.
Based on the previous computations, one can extend these definitions to a generic T' € D/(R).

Starting from these definitions, prove that:

(a) (1) = 7a(T").



(b) (DaT)" = aDa(T").
(©) () = 7.
(d) Given T € D'(R), g € C*°(R), prove that (¢7) = ¢'T + ¢T".

We say that a distribution is even if T = T in D'(R), similarly a distribution is odd if T = —T
in D'(R). Prove that:

(a) dp is an even distribution.

(b) 4 is an odd distribution.
Prove that the following identities hold in D'(R):
(a) Da71250 = %53

(b) (D2 (e®8p)) = 36 + Loy

Solution: Let f € L{ (R), and consider the distribution 7y € D’'(R) defined by:

(Ty, ¢) / f(@)p(x)dx for all ¢ € D(R).

We will show that the operations defined for distributions coincide with those for functions when

T} is associated to f.

(a) Translation of T}:

7Ty, 8) = Ty -a) = [ f@)ola — ) da
— [t +aswdy = [ mfwot) dy = L0,
R
Therefore, 7,1 = T, .
(b) Dilation of T:
D, T =(T 1D 1
(Dits.0) = (71, 1/a¢>—a/Rf<m>¢ ‘
/ flay)o(y) dy = (T, 5. ¢) -

Therefore, D, 7y = Tp, .

(c) Reflection of T¥:

(Tr.6) = (17.6) = [ r@)o(-a)da
= [ oty v = (Ty.0).

Therefore, Tf = Tf-




(d) Multiplication by g:

Ty, 8) = (T, g6) = /R F(@)g(@)$(x) d = Ty, )

Therefore, g1y = T},.

This shows that for Ty, the operations defined for distributions correspond to those for func-
tions.

Next, we will prove the derivation rules for distributions.
(a) Proof that (7,7) = 7,(T"):
For all ¢ € D(R),

((1aT),0) = = (1T, ¢') = — (T, 7—ad’)
= —(T,(1-a®)") since 7_q¢' = (T-q9)’
= (T",7—00) = (11", 9).

Therefore, (1,1) = 7,(T").

(b) Proof that (D,T) = a Dy(T"):
For all ¢ € D(R),

1
<(DaT)/7 ¢> = - <DOLT7 ¢/> = - <T7 aDl/a¢/>
- _ <T, (D, /a¢)’> since éDl Ja® = (D1/a0)’
= (T",D1/0¢) = (DT, ) a.
Therefore, (D,T) = a Dy (T").

(¢) Proof that (T) = —T":
For all ¢ € D(R),

Therefore, (T) = —T".

(d) Proof that (¢7) = ¢'T + gT":
For all ¢ € D(R),

((gT),¢) = — (9T, ¢') = — (T, g¢)
=—(T,(90) —g'¢) = — (T, (99)") — (T, 4'9))
=—(=(T".96) —(T.g'¢))
=(T",9¢) +(T.g'¢) = (gT",¢) + (J'T.¢) .




Therefore, (¢T) = ¢'T + gT".
Now, we will prove that dy is even and dj is odd.

(a) Proof that Jp is even:

For all ¢ € D(R),
(80:0) = (30.6) = 6(0) = $(~0) = 6(0) = (30,4

Therefore, dy = &g, so dg is even.

(b) Proof that ¢, is odd:
For all ¢ € D(R),

(%.0) = (8:6) = = (80.()') = =3/ ©)
—— (o=

Therefore, 0 = —d), so 8} is odd.




