
Exercise Sheet 4

Introduction to Partial Differential Equations (W. S. 2024/25)

EPFL, Mathematics section, Dr. Nicola De Nitti

• The exercise series are published every Tuesday morning at 8am on the moodle page of the course. The

exercises can be handed in until the following Tuesday at 8am via email.

Exercise 1. Given a function u ∈ C2(Rn), prove Bochner’s identity:1

∆
1

2
|∇u|2 = ∇u · ∇∆u+ |D2u|2.

(In particular, if u is harmonic, then ∆1
2 |∇u|2 = |D2u|2.) Use it to prove that an harmonic function

u on Rn, with
∫
Rn |∇u|2 dx < ∞, is constant.

Hint: Consider the quantity 1
2

∫
Rn φR∆|∇u|2 dx, where φR(x) := φ(x/R) and φ is a non-negative

smooth function φ such that

φ(x) =

1 in B1(0)

0 in Rn \B2(0)

and |∆φ| ≤ M for some M > 0.

Solution: The first part is a computation.

Let us prove the second part (Liouville-type theorem). Fix a non-negative smooth function φ

such that

φ(x) =

1 in B1(0)

0 in Rn \B2(0)

and |∆φ| ≤ M for some M > 0. Then define the rescaled function φR(x) := φ(x/R). We have

|∆φR(x)| ≤ M/R2.

By the Bochner’s identity,

∆
1

2
|∇u|2 = ∇u · ∇∆u+ |D2u|2 = |D2u|2,

we have ∫
Rn

φR|D2u|2 dx =
1

2

∫
Rn

φR∆|∇u|2 dx.

1Named after Salomon Bochner.
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Using the properties of φ and integration by parts, we then deduce∫
BR

|D2u|2 dx ≤
∫
Rn

φR|D2u|2 dx =
1

2

∫
Rn

φR∆|∇u|2 dx ≤ M

2R2

∫
B2R

|∇u|2 dx ≤ CM

2R2
.

Letting R → ∞, we deduce
∫
Rn |D2u|2 dx = 0, i.e., D2u ≡ 0. This yields that u is affine:

u(x) = a · x+ b. But the condition
∫
Rn |∇u|2 dx < ∞ implies a = 0, thus u is actually constant.

Exercise 2. Consider a sequence of non-negative harmonic functions {ui}i∈N, defined on a domain Ω

in RN . Use Harnack’s inequality to show that, if
∑∞

i=0 ui converges at some x0 ∈ Ω, then it converges

uniformly on any compact set K ⊂ Ω. Deduce that the sum U of the series is non-negative and

harmonic everywhere on Ω.

Solution: We wish to prove uniform convergence on any given compact K ⊂ Ω. Since Ω is

connected, we may assume K is connected and that it contains x0 (if not, just choose another

compact set containing the original one). By Harnack’s inequality

max
K

ui ≤ γimin
K

ui ≤ γiui(x0).

Then
∞∑
i=0

max
K

ui(x) ≤
∞∑
i=0

γiui(x0) < ∞,

and, by the Weierstrass criterion, the series
∑∞

i=0 ui(x) converges uniformly on K. But K ⊂ Ω is

arbitrary, so the series converges at any point in Ω, implying that the sum U is defined on Ω, and

is non-negative as a sum of non-negative terms. Also, the ui are continuous on Ω, hence uniform

convergence on compact subsets of Ω guarantees that U is continuous on Ω.

To show U is harmonic, then, it suffices to show it satisfies the mean-value property. For any

Br(x) ⊂⊂ Ω,

1

|Br(x)|

∫
Br(x)

U(y) dy =
1

|Br(x)|

∫
Br(x)

( ∞∑
i=0

ui(y)

)
dy

=

∞∑
i=0

1

|Br(x)|

∫
Br(x)

ui(y) dy

=
∞∑
i=0

ui(x) = U(x),

and the claim follows (we rely on uniform convergence in order to swap sum and integral).

Exercise 3. Compute the limit in D′(R) of the following sequences of distributions.

(i) Tfn , where fn(x) =
n
2χ[− 1

n
, 1
n
].
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(ii) Tgn , where gn(x) = sin(nx).

(iii) Dn = n
(
δ 1

n
− δ0

)
.

(iv) Tfn , where fn(x) =
1

|x|+ 1
n

.

Solution: Recall that Tn → T in D′(Ω) if ⟨Tn, φ⟩ → ⟨T, φ⟩ for every φ ∈ D(Ω).

(i) For every φ ∈ D(Ω),

⟨Tfn , φ⟩ =
∫ ∞

−∞
fn(x)φ(x) dx =

n

2

∫ 1
n

− 1
n

φ(x) dx → φ(0)

for the mean value theorem, since φ ∈ C∞
c (R). Hence, Tn → δ0.

(ii)

⟨Tgn , φ⟩ =
∫ ∞

−∞
sin(nx)φ(x) dx = − 1

n
cos(nx)φ(x)

∣∣∣∣∞
−∞

+
1

n

∫ ∞

−∞
cos(nx)φ′(x) dx.

The first term is equal to zero as φ ∈ D and thus it has compact support. The second term

can be bounded as

1

n

∫ ∞

−∞
cos(nx)φ′(x) dx ≤ 1

n

∫ ∞

−∞
|φ′(x)|dx ≤ C

n
.

Therefore, we reach the surprising conclusion that Tgn → 0 in D′.

(iii)

⟨Dn, φ⟩ =
φ
(
1
n

)
− φ(0)
1
n

→ φ′(0) = ⟨δ′0, φ⟩ = −⟨δ′0, φ⟩.

(iv)

⟨Tn, φ⟩ =
∫
R

1

|x|+ 1
n

φ(x) dx

and this integral diverges for n → ∞ and for every φ ∈ D(R) such that φ(0) ̸= 0 and φ ≥ 0

in R. Indeed, for such a φ there exists δ, c > 0 so that∫
R

1

|x|+ 1
n

φ(x) dx ≥
∫ δ

−δ

1

|x|+ 1
n

φ(x) dx ≥ c

∫ δ

−δ

dx

|x|+ 1
n

= 2c

[
log

(
δ +

1

n

)
+ log(n)

]
→ ∞.

Hence, the sequence does not converge to a distribution in D′(R).

Exercise 4. Compute, using the definition, the distributional derivative of the following distributions

in D′(R).

(i) T = |x|.

(ii) T = H(x), where H(x) = χ[0,+∞) is the Heaviside function.
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(iii) T = χ[−a,a] for some a > 0.

Solution: Recall that the distributional derivative of an element T ∈ D′(R) is a distribution

T ′ ∈ D′(R) such that

⟨T ′, φ⟩ = −⟨T, φ′⟩ for all φ ∈ D(R).

(i) T = |x|:

⟨T|x|, φ⟩ = −⟨|x|, φ′⟩ =
∫
R
|x|φ′(x) dx = −

∫ ∞

0
xφ′(x) dx−

∫ 0

−∞
xφ′(x) dx

= − [−xφ(x)]0−∞ −
∫ 0

−∞
φ(x) dx−

∫ ∞

0
φ(x) dx

= −
∫ ∞

0
φ(x) dx+

∫ 0

−∞
φ(x) dx =

∫
R
sign(x)φ(x) dx

= ⟨Tsign(x), φ⟩ for all φ ∈ D(R),

where we used the integration by parts formula and the decay property of φ ∈ D(R). We

then obtain (T|x|)
′ = Tsign(x).

Hence, the classic derivative and the distributional derivative coincide. Note, however, that

while the classical derivative is not defined at the origin x0 = 0, the distributional derivative

is a global object, defined in all the domain. One cannot evaluate a distribution in a point,

one can only evaluate the duality among a distribution and a test function.

(ii) T = H(x), where H(x) = χ[0,+∞) is the Heaviside function.

⟨TH(x), φ⟩ = −⟨H(x), φ′⟩ = −
∫
R
H(x)φ′(x) dx = −

∫ ∞

0
φ′(x) dx = φ(0)

= ⟨δ0, φ⟩ for all φ ∈ D(R).

We then obtain (TH(x))
′ = δ0.

(iii) T = χ[−a,a] for some a > 0.

⟨Tχ[−a,a]
, ϕ⟩ = −⟨χ[−a,a], ϕ

′⟩

=

∫ a

−a
−ϕ′(x) dx = ϕ(−a)− ϕ(a) = ⟨δ−a, ϕ⟩ − ⟨δa, ϕ⟩ for all ϕ ∈ D(R).

So (
Tχ[−a,a]

)′
= δ−a − δa,

as can be expected by looking at the graph of the function χ[−a,a]: the presence of the two

discontinuity points is individuated by the presence of two Delta terms in the distributional

derivative centered in the points of the discontinuity.
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