Exercise Sheet 4
Introduction to Partial Differential Equations (W. S. 2024 /25)
EPFL, Mathematics section, Dr. Nicola De Nitti

e The exercise series are published every Tuesday morning at 8am on the moodle page of the course. The

exercises can be handed in until the following Tuesday at 8am via email.

Exercise 1. Given a function u € C?(R"), prove Bochner’s identity:*
1 2 2,12
A§|Vu\ = Vu - VAu+ |D?ul”.

(In particular, if u is harmonic, then A%|Vu|? = [D?u|?.) Use it to prove that an harmonic function
won R, with [, |Vu|? dz < oo, is constant.
Hint: Consider the quantity § [5. ¢rA|Vul?dz, where pp(z) = ¢(z/R) and ¢ is a non-negative
smooth function ¢ such that
1 in B4(0)

p(z) = _
0 in R™\ B»(0)

and |Ap| < M for some M > 0.

Solution: The first part is a computation.
Let us prove the second part (Liouville-type theorem). Fix a non-negative smooth function ¢
such that
1 in B;(0)

p(z) = .
0 in R™\ B»(0)

and |Ap| < M for some M > 0. Then define the rescaled function pr(x) == ¢(z/R). We have
|Apr(z)| < M/R?.
By the Bochner’s identity,

1
A§|Vu|2 = Vu - VAu+ |D?u? = |D?ul?,

we have

1
/ or|D*ul? dz = 2/ ORrA|Vu|* dz.
n Rn

'Named after Salomon Bochner.



Using the properties of ¢ and integration by parts, we then deduce

1 M CM
2 12 2,12 2
/BR’D ul dﬂfﬁ/RngoR\D ul daz—z/]R ©RA|Vul|? da:< 3 |Vu| dz < SR

Letting R — oo, we deduce [p, |D?u?dz = 0, i.e., D>u = 0. This yields that u is affine:

u(x) = a -z +b. But the condition [, |[Vu|?dz < oo implies a = 0, thus u is actually constant.

Exercise 2. Consider a sequence of non-negative harmonic functions {u;};cn, defined on a domain 2
in RV, Use Harnack’s inequality to show that, if Y2, ui converges at some xg € €2, then it converges
uniformly on any compact set K C ). Deduce that the sum U of the series is non-negative and

harmonic everywhere on €.

Solution: We wish to prove uniform convergence on any given compact K C ). Since (Q is
connected, we may assume K is connected and that it contains xy (if not, just choose another

compact set containing the original one). By Harnack’s inequality
maxu; < i minu; < i (2o).

Then

[e.e] o
2111}2{1}( ui(x) < Z;%ui(xo) < 00
= =

and, by the Weierstrass criterion, the series ) >~ u;(x) converges uniformly on K. But K C € is
arbitrary, so the series converges at any point in €2, implying that the sum U is defined on €2, and
is non-negative as a sum of non-negative terms. Also, the u; are continuous on {2, hence uniform
convergence on compact subsets of () guarantees that U is continuous on 2.

To show U is harmonic, then, it suffices to show it satisfies the mean-value property. For any
B,(x) CC Q,

1
TS Uy)dy = u;i(y
| By (z)] By (x) \B ) B, (z) Z

> 1
Sy
2 1B @)] o )

and the claim follows (we rely on uniform convergence in order to swap sum and integral).

Exercise 3. Compute the limit in D’(R) of the following sequences of distributions.

(i) T, where fu(w) = 2x;_11.



(ii) Ty, , where g,(x) = sin(nx).
(ili) Dy =n (51 - 50).

(iv) T, where fu(w) = br-

Solution: Recall that T,, — T in D'(Q) if (T,,, ¢) — (T, ¢) for every ¢ € D().

(i) For every ¢ € D(Q),

D)= [ e in =12 " ew)an + o0

3=

for the mean value theorem, since ¢ € C°(R). Hence, T;, — do.
(i)
o0 1 o0 ,
+— cos(nz)y'(x) dx.

o N

(Ty, @) = /OO sin(nzx)p(z) dr = —% cos(nx)p(z)

—00

The first term is equal to zero as ¢ € D and thus it has compact support. The second term

can be bounded as

1/00 cos(nz)¢'(z) dz < 1/00 (@) de < <.

n J_s nJ_s n
Therefore, we reach the surprising conclusion that T, — 0 in D'.
(iii)

(Dp,p) = —5——= = ¢'(0) = (8, ») = —(0p, ¥)-

1
" = ——o(z)dx

and this integral diverges for n — oo and for every ¢ € D(R) such that ¢(0) # 0 and ¢ > 0
in R. Indeed, for such a ¢ there exists §,¢ > 0 so that

1 o1 o dx 1
/|m|+19"()d >/ |x‘+190( ) dx ZC/6|$+1=20 log ( 8+~ ) +log(n)| — co.

Hence, the sequence does not converge to a distribution in D’(R).

Exercise 4. Compute, using the definition, the distributional derivative of the following distributions
in D'(R).

() T = |-

(ii) T = H(x), where H(z) = X[0,4c) is the Heaviside function.



(iii) 7" = X[—q,q) for some a > 0.

Solution: Recall that the distributional derivative of an element 7' € D'(R) is a distribution
T" € D'(R) such that
(T, @) = —(T, ') for all ¢ € D(R).

(i) T = |z|:

o) 0
(Taps ) = (2], ') = /R 2l (@) dz = — /0 2 (@) de — / 2 (z) da

e~ [ e@ac- [Tt
:—/Ooonp(a?)dx—i—/ /Rs1gn

= <Tsign(m)7 90> for all wE D(

where we used the integration by parts formula and the decay property of ¢ € D(R). We

then obtain (7j,|)" = Tyign(a)-

Hence, the classic derivative and the distributional derivative coincide. Note, however, that
while the classical derivative is not defined at the origin zg = 0, the distributional derivative
is a global object, defined in all the domain. One cannot evaluate a distribution in a point,

one can only evaluate the duality among a distribution and a test function.

(ii) T'= H(x), where H(z) = X[o,4o0) is the Heaviside function.

(The), ) = —(H(@),¢') = - /R H()g/ () dx = — /O " () dr = (0)

= (b0, ¥) for all ¢ € D(R).

We then obtain (T (y))" = do-

(iii) 7' = X|—q,q) for some a > 0.

<TX[—a,a] 5 ¢> = _<X[—a,a]a ¢/>
= —¢'(x)dx = ¢(—a) — ¢(a) = (6_q, d) — (0a, P) for all ¢ € D(R).

—a

So /
(TXH’G]) = g — B,

as can be expected by looking at the graph of the function x|_,,: the presence of the two
discontinuity points is individuated by the presence of two Delta terms in the distributional

derivative centered in the points of the discontinuity.




