Exercise Sheet 11
Introduction to Partial Differential Equations (W. S. 2024 /25)
EPFL, Mathematics section, Dr. Nicola De Nitti

e The exercise series are published every Tuesday morning at 8am on the moodle page of the course. The

exercises can be handed in until the following Tuesday at 8am via email.

Exercise 1. Let {2 C R" be a bounded domain, and consider the uniformly elliptic operator

- 0u
Lu(z) = — Z aij(x)m(l‘)-

3,j=1

Given a continuous function ¢ :  x R — R, non-decreasing with respect to the second argument (i.e.,

é(x,p) < ¢(x,q) for all x € Q, p,q € R, p < q), we define the semilinear operator

[Qw)(z) = Lu(z) + ¢(z, u(x)).

(i) Let u,v € C?(2) N C(Q) be such that we have Q(u) < Q(v) in Q and u < v on 9. Show that
u < wvin Q.

Hint: Show that Q' = {x € Q: u(x) > v(z)} is empty by applying a maximum principle for L.
(ii) Let f:Q — R. Show that, if the Dirichlet problem
Q(U) = fa x €,
u =0, x € 09,
admits a solution u € C%(Q) N C(Q), then it is unique.

(iii) Let u € C?(2) N C(Q) be a solution of the Dirichlet problem above. Show an a priori bound of

the form

max o] < € (sup 7]+ max (. 0] )
Q Q Q

Hint: Define ¢(z) = Cy — Cy|z|?, with Cy and C; chosen in such a way that ¢ > 0 in Q,
Q) > Q(u) in 2, and ¢ > u on 1.

Solution:




(i) Let w =u—wv and Q" = {z € Q: w(z) > 0}, which is open by the continuity of w. If

Q" = 0, the claim follows. Conversely, assume that there exists y € Q7; then

0> Qu)(y) — Q(v)(y) = Lw(y) + é(y, u(y)) — ¢(y,v(y)) -

>0, since u(y)>v(y)

Hence, Lw < 0 in 27, and we can employ the maximum principle to obtain

maxw = maxw = maxuw,
ont o+ Q

where the last equality follows from w(x) < 0 < maxgrw, for all x € OQ\QF. Observe that
007Tis a subset of QU N, with Q¥ = {x € Q : w(x ) = 0}. But w < 0 on 90T, hence
maxg w < 0, in contradiction with the hypothesis QF 2 (.

(ii) Let u,v € C?(2)NC(Q) be solutions of the Dirichlet problem. Then Q(u) = Q(v) in £, and

u = v on 0f). From the previous point we can conclude u = v in Q.

(iii) Let R = max,q |z|, and define ¢(z) = C' (R? — |#|?), which, in particular, satisfies 1) > 0
in Q, for every C' > 0. We will fix C in the following. For all z € ,

—202«1” ) + o, 9(x)) > 2CnA + ¢(x,0) > 2CnA — max|4(-,0),
Q

where A € R is such that 0 < \¢|? < Z” 1 6365 in Q, for all £ € R"\{0}. Now, we set
C = (supq |f| + maxg |4(-,0)]) /(2nA), so that

Q) ngp!f\ >f=Qu) inQ

Moreover, since v = 0 on 99, ¥ > u on J2. Then, from Point (i), it must be true that
¥ > win Q, and

max v < max1) = max R

Q Q Q 2nA

supg | f| + maxg[¢(-, 0)]| (B2 — |of?) < supg | f| + maxg|¢(-, 0)|
- 2nA

A similar derivation involving —1 shows that

_ supg | f| + maxg |4(-, 0)]

R2.
- 2nA

minu
Q

Exercise 2. Let 2 = B1(0) C R™. Consider o € C(92), with o > 0 on 92. Also, consider a vector
field 8 : 992 — R™, such that (z) - v(z) > 0 for all z € 99, with v(z) = x being the usual outward
normal vector. Let u € C%(Q) satisfy Lu = 0 in 2, with

n n

L==2 aig. o axj Z

i,j=1 i=1



a uniformly elliptic operator, with a;; and b; uniformly bounded. Moreover, assume that u satisfies

the oblique Robin condition
au+Ogu:=ou+F-Vu=0 on 9.

Show that u = 0 in Q.
Hint 1: Show that maxgu < 0 < ming u.
Hint 2: it may help to consider a non-negative auxiliary function ¢(z) = el e 7, with v > 0,

on an annulus Q\B,(0), p < 1.

Solution: First, let u attain its maximum (resp. minimum) over Q at xo (resp. o). By the
strong maximum principle, if zg € Q (resp. yo € ), then u is constant over . But then the
boundary condition would imply that u = —9su/a = 0 on 95, and necessarily u = 0 in Q. Next,
let zp € 0 and yo € 02, with u (yo) < u(z) < u(xp) for all x € Q. The statement will follow if we
can show that u (o) = u (yo) = 0, or, equivalently, that u () <0 < u(yp). We show u (z9) <0
(the argument to show u (yp) > 0 is analogous). Assume that u (xg) > 0. Then, by the boundary

condition,
Ogu (xg) = —a(zg) u (x0) < 0. (1)

We will show Ogu (xg) > 0, from which u (z9) < 0 will follow. We look for a suitable auxiliary

function so that dgu (x¢) = limy, o “(x0+h5(20))—“(m0) > 0. Let v > 0 and ¢(x) = e 71" — e~ for

h>0

x € Q/ = Q\Bl/Q(O)

We observe that ¢ > 0 in @', ¢ = 0 on 012, and

0%¢
Oxiﬁxj

%

o (r) =2y (2’75E@'$j — 6ij) 677‘:”'2 for x € Q.
X5

(x) = —2ye Py,

Hence, in particular,

n

(Lo)(@) = — 3 ayj(2)2y 2yaiz; — 655) e+ bi(a)(—29)e P e

i,j=1 i=1

= 2yl | 24 Z aij(z)xxy + Z (bi(z)x; — aii(x))
i=1

i,j=1
< 27" (29322 - [b(a) ||| - nk) ,

where 0 < A|¢J? < doijm1 @i < Al in Q, for all ¢ € R™\{0}. We assume that v is large

enough, so that Lo < 0 in B1(0)\B;/2(0) (e.g., v > 2(supgq [b] + nA)/X suffices). Since, for
x € 0B15(0), u(z) < u(wg) and ¢(x) > 0, there exists € > 0 such that

() = u(@) = u(20) + e¢(x)

satisfies 1) < 0 on 0B;/5(0). Also, we remark that the inequality ¢» < 0 holds true on 02 as




well, since ¢ = 0 there. Hence, 1 satisfies L1 < 0 in €/, and ¢ < 0 on 9€Y. But then the weak

maximum principle implies that ¢» < 0 in €/, i.e., in particular, that

u(z) —u(xo) < —ep(x) = —e (¢(x) — ¢ (x0)) for z € QN B, (xp),
provided 0 < r < % Now it suffices to take the derivative in the ( (zg)-direction at g :

u (zo + hB (z0)) — u (w0) ¢ (xo + hB (20)) — ¢ (x0)

08(z0)u (T0) = }}g% . > ]g% —€ - = —£08(20)® (20)
h<0 h<0

(we take h < 0 because we want zo + hf (xg) € €, and S (xg) is pointing outwards). A direct
computation of Jg(,,)¢ (7o) leads to

Dp(eoyt (w0) > —£B (20) - Vo (o) = 267 (B (o) - o) e 70" = 2e7e™ (8 (o) - v (w0)) > 0

in contradiction with (1).

Exercise 3. Let 2 C R™ be an open bounded set with smooth boundary. Let u be a smooth solution
of the uniformly elliptic equation Lu := — 37", | a;j(¥)us,,; = 0 in Q. Assume that the coefficients

have bounded first derivatives.

(i) Set v := |Vul? + Au? and show that

if A\ is large enough.

Hint: Use the fact that VLu = 0.

(ii) Deduce
sup |Vu| < C (max |Vu| + max ]u\) :
Q oN onN

Solution:

(i) We exploit the fact that VLu = 0 in Q (since Lu = 0 in Q) so that

n

VLiu= Z [Vaij] ug,a; + Z aij(Vt)g;z; = 0.

ij=1 ij=1




Multiplying both sides by 2Vw in scalar product yields

n

Z 2Vou - [Vaij] e, = — Z aij2Vu - (V) g,z

t,j=1 'J—l
= — E ajj E 2ug, (Ug,) 2z (2)
i,j=1
n
= - E Qi g [ xle 2umkmiuxkx]-]
i,j=1

Observing that — > F. jai;j > p 4 (u2,) mizy; = — D i1 i ([Vul? ) ( ) yields

n
— Z a;j (|Vu|2) =2 Z Vu - [Vaij] uge; — 22 Z iUy g, Uy

i,j=1 i,j=1 k=114,5=1

We still need to consider A (uQ)x = 2Aug, Uz + 2 Uy, but Lu = 0 implies

et}

n n n
- Z aij (u2)xﬂj = -2\ Z QijUg; Uz + 2(Au)(Lu) = —2A Z QiU U -
ij=1 ij=1 ij=1

Therefore, we have

n
Lv—QE Vu - [Vaij] Uiy — 25 E AjjUgy; Wz — 2)\5 AU Uy -

1,j=1 k=11,5=1 i,j=1

We now exploit the boundedness of derivatives the coefficients, |Va;;| < C, and the uniform
ellipticity of L, that is Eij aij&i€; > 0)¢|? for all € € R™. For the first term we have

2Vu - [Vaglug,e, < 2Vul|[Vaglluee, | < [Vul® + C?lug,, |,

and for the last two terms we use the uniform ellipticity condition to obtain

n n
_22 Z QijUg o, Uz < 2‘92 |vuﬂck’ = _2022 ‘uﬂ?kxl|27

k=114,j5=1 k=11=1

and N
—2) Z QiU U, < —29)\|Vu\2
ij=1

Hence, we have
n

Lo < (C?=20) 3 Juge,|* + (n? = 200) [Vul?,
ij=1

and thus (using the smoothness of u up to the boundary) for large A\ we have Lv < 0.




(ii) From Lv < 0, the weak maximum principle implies
2 2 2 2 2
sup [Vu|* < sup (|Vul? + Au®) < max |Vul* + Amax v,
P Q o9 o0

which is the desired result.




