
Exercise Sheet 11

Introduction to Partial Differential Equations (W. S. 2024/25)

EPFL, Mathematics section, Dr. Nicola De Nitti

• The exercise series are published every Tuesday morning at 8am on the moodle page of the course. The

exercises can be handed in until the following Tuesday at 8am via email.

Exercise 1. Let Ω ⊂ Rn be a bounded domain, and consider the uniformly elliptic operator

Lu(x) = −
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
(x).

Given a continuous function ϕ : Ω×R → R, non-decreasing with respect to the second argument (i.e.,

ϕ(x, p) ≤ ϕ(x, q) for all x ∈ Ω, p, q ∈ R, p < q), we define the semilinear operator

[Q(u)](x) = Lu(x) + ϕ(x, u(x)).

(i) Let u, v ∈ C2(Ω) ∩ C(Ω) be such that we have Q(u) ≤ Q(v) in Ω and u ≤ v on ∂Ω. Show that

u ≤ v in Ω.

Hint: Show that Ω′ = {x ∈ Ω : u(x) > v(x)} is empty by applying a maximum principle for L.

(ii) Let f : Ω → R. Show that, if the Dirichlet problemQ(u) = f, x ∈ Ω,

u = 0, x ∈ ∂Ω,

admits a solution u ∈ C2(Ω) ∩ C(Ω), then it is unique.

(iii) Let u ∈ C2(Ω) ∩ C(Ω) be a solution of the Dirichlet problem above. Show an a priori bound of

the form

max
Ω

|u| ≤ C

(
sup
Ω

|f |+max
Ω

|ϕ(·, 0)|
)
.

Hint: Define ψ(x) = C0 − C1|x|2, with C0 and C1 chosen in such a way that ψ ≥ 0 in Ω,

Q(ψ) ≥ Q(u) in Ω, and ψ ≥ u on ∂Ω.

Solution:
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(i) Let w = u − v and Ω+ = {x ∈ Ω : w(x) > 0}, which is open by the continuity of w. If

Ω+ = ∅, the claim follows. Conversely, assume that there exists y ∈ Ω+; then

0 ≥ Q(u)(y)−Q(v)(y) = Lw(y) + ϕ(y, u(y))− ϕ(y, v(y))︸ ︷︷ ︸
≥0, since u(y)>v(y)

.

Hence, Lw ≤ 0 in Ω+, and we can employ the maximum principle to obtain

max
∂Ω+

w = max
Ω+

w = max
Ω

w,

where the last equality follows from w(x) ≤ 0 ≤ max
Ω+ w, for all x ∈ Ω\Ω+. Observe that

∂Ω+is a subset of ∂Ω ∪ Ω0, with Ω0 = {x ∈ Ω : w(x) = 0}. But w ≤ 0 on ∂Ω+, hence

maxΩw ≤ 0, in contradiction with the hypothesis Ω+ ̸= ∅.

(ii) Let u, v ∈ C2(Ω)∩C(Ω) be solutions of the Dirichlet problem. Then Q(u) = Q(v) in Ω, and

u = v on ∂Ω. From the previous point we can conclude u = v in Ω.

(iii) Let R = maxx∈Ω |x|, and define ψ(x) = C
(
R2 − |x|2

)
, which, in particular, satisfies ψ ≥ 0

in Ω, for every C ≥ 0. We will fix C in the following. For all x ∈ Ω,

Q(ψ)(x) = 2C
n∑

i=1

aii(x) + ϕ(x, ψ(x)) ≥ 2Cnλ+ ϕ(x, 0) ≥ 2Cnλ−max
Ω

|ϕ(·, 0)|,

where λ ∈ R is such that 0 < λ|ξ|2 ≤
∑n

i,j−1 aijξiξj in Ω, for all ξ ∈ Rn\{0}. Now, we set

C =
(
supΩ |f |+maxΩ |ϕ(·, 0)|

)
/(2nλ), so that

Q(ψ) ≥ sup
Ω

|f | ≥ f = Q(u) in Ω

Moreover, since u = 0 on ∂Ω, ψ ≥ u on ∂Ω. Then, from Point (i), it must be true that

ψ ≥ u in Ω, and

max
Ω

u ≤ max
Ω

ψ = max
xΩ

supΩ |f |+maxΩ |ϕ(·, 0)|
2nλ

(
R2 − |x|2

)
≤

supΩ |f |+maxΩ |ϕ(·, 0)|
2nλ

R2.

A similar derivation involving −ψ shows that

min
Ω
u ≥ −

supΩ |f |+maxΩ |ϕ(·, 0)|
2nλ

R2.

Exercise 2. Let Ω = B1(0) ⊂ Rn. Consider α ∈ C(∂Ω), with α > 0 on ∂Ω. Also, consider a vector

field β : ∂Ω → Rn, such that β(x) · ν(x) > 0 for all x ∈ ∂Ω, with ν(x) = x being the usual outward

normal vector. Let u ∈ C2(Ω) satisfy Lu = 0 in Ω, with

L = −
n∑

i,j=1

aij
∂2

∂xi∂xj
+

n∑
i=1

bi
∂

∂xi
,
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a uniformly elliptic operator, with aij and bi uniformly bounded. Moreover, assume that u satisfies

the oblique Robin condition

αu+ ∂βu := αu+ β · ∇u = 0 on ∂Ω.

Show that u = 0 in Ω.

Hint 1: Show that maxΩ u ≤ 0 ≤ minΩ u.

Hint 2: it may help to consider a non-negative auxiliary function ϕ(x) = e−γ|x|2 − e−γ , with γ > 0,

on an annulus Ω\Bρ(0), ρ < 1.

Solution: First, let u attain its maximum (resp. minimum) over Ω at x0 (resp. y0). By the

strong maximum principle, if x0 ∈ Ω (resp. y0 ∈ Ω), then u is constant over Ω. But then the

boundary condition would imply that u = −∂βu/α = 0 on ∂Ω, and necessarily u = 0 in Ω. Next,

let x0 ∈ ∂Ω and y0 ∈ ∂Ω, with u (y0) < u(x) < u (x0) for all x ∈ Ω. The statement will follow if we

can show that u (x0) = u (y0) = 0, or, equivalently, that u (x0) ≤ 0 ≤ u (y0). We show u (x0) ≤ 0

(the argument to show u (y0) ≥ 0 is analogous). Assume that u (x0) > 0. Then, by the boundary

condition,

∂βu (x0) = −α (x0)u (x0) < 0. (1)

We will show ∂βu (x0) ≥ 0, from which u (x0) ≤ 0 will follow. We look for a suitable auxiliary

function so that ∂βu (x0) = limh→0
h>0

u(x0+hβ(x0))−u(x0)
h > 0. Let γ > 0 and ϕ(x) = e−γ|x|2 − e−γ for

x ∈ Ω′ := Ω\B1/2(0)

We observe that ϕ > 0 in Ω′, ϕ = 0 on ∂Ω, and

∂ϕ

∂xi
(x) = −2γe−γ|x|2xi,

∂2ϕ

∂xi∂xj
(x) = 2γ (2γxixj − δij) e

−γ|x|2 for x ∈ Ω′.

Hence, in particular,

(Lϕ)(x) = −
n∑

i,j=1

aij(x)2γ (2γxixj − δij) e
−γ|x|2 +

n∑
i=1

bi(x)(−2γ)e−γ|x|2xi

= −2γeγ|x|
2

2γ
n∑

i,j=1

aij(x)xixj +
n∑

i=1

(bi(x)xi − aii(x))


≤ −2γeγ|x|

2 (
2γλ̄|x|2 − |b(x)||x| − nΛ

)
,

where 0 < λ̄|ξ|2 ≤
∑n

i,j=1 aijξiξj ≤ Λ̄|ξ|2 in Ω, for all ξ ∈ Rn\{0}. We assume that γ is large

enough, so that Lϕ < 0 in B1(0)\B1/2(0) (e.g., γ > 2(supΩ |b| + nΛ̄)/λ̄ suffices). Since, for

x ∈ ∂B1/2(0), u(x) < u (x0) and ϕ(x) > 0, there exists ε > 0 such that

ψ(x) := u(x)− u (x0) + εϕ(x)

satisfies ψ ≤ 0 on ∂B1/2(0). Also, we remark that the inequality ψ ≤ 0 holds true on ∂Ω as
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well, since ϕ = 0 there. Hence, ψ satisfies Lψ ≤ 0 in Ω′, and ψ ≤ 0 on ∂Ω′. But then the weak

maximum principle implies that ψ ≤ 0 in Ω′, i.e., in particular, that

u(x)− u (x0) ≤ −εϕ(x) = −ε (ϕ(x)− ϕ (x0)) for x ∈ Ω ∩Br (x0) ,

provided 0 < r < 1
2 . Now it suffices to take the derivative in the β (x0)-direction at x0 :

∂β(x0)u (x0) = lim
h→0,
h<0

u (x0 + hβ (x0))− u (x0)

h
≥ lim

h→0,
h<0

−εϕ (x0 + hβ (x0))− ϕ (x0)

h
= −ε∂β(x0)ϕ (x0)

(we take h < 0 because we want x0 + hβ (x0) ∈ Ω, and β (x0) is pointing outwards). A direct

computation of ∂β(x0)ϕ (x0) leads to

∂β(x0)u (x0) ≥ −εβ (x0) · ∇ϕ (x0) = 2εγ (β (x0) · x0) e−γ|x0|2 = 2εγe−γ (β (x0) · ν (x0)) > 0

in contradiction with (1).

Exercise 3. Let Ω ⊂ Rn be an open bounded set with smooth boundary. Let u be a smooth solution

of the uniformly elliptic equation Lu := −
∑n

i,j−1 aij(x)uzizj = 0 in Ω. Assume that the coefficients

have bounded first derivatives.

(i) Set v := |∇u|2 + λu2 and show that

Lv ≤ 0 in Ω

if λ is large enough.

Hint: Use the fact that ∇Lu = 0.

(ii) Deduce

sup
Ω

|∇u| ≤ C

(
max
∂Ω

|∇u|+max
∂Ω

|u|
)
.

Solution:

(i) We exploit the fact that ∇Lu = 0 in Ω (since Lu = 0 in Ω) so that

∇Lu =
n∑

i,j=1

[∇aij ]uxixj +
n∑

i,j=1

aij(∇u)xixj = 0.
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Multiplying both sides by 2∇u in scalar product yields

n∑
i,j=1

2∇vu · [∇aij ]uxixj = −
n∑

i,j=1

aij2∇u · (∇u)xixj

= −
n∑

i,j=1

aij

n∑
k=1

2uxk
(uxk

)xixj

= −
n∑

i,j=1

aij

n∑
k=1

[(
u2xk

)
xixj

− 2uxkxiuxkxj

]
(2)

Observing that −
∑n

i,j−1 aij
∑n

k−1

(
u2xk

)
xixj = −

∑n
i,j−1 aij

(
|∇u|2

)
xixj

, (2) yields

−
n∑

i,j=1

aij
(
|∇u|2

)
xixj

= 2
n∑

i,j=1

∇u · [∇aij ]uxixj − 2
n∑

k=1

n∑
i,j=1

aijuxkxk
uxkxj .

We still need to consider λ
(
u2

)
xixj

= 2λuxiuxj + 2λuuxixj , but Lu = 0 implies

−λ
n∑

i,j=1

aij
(
u2

)
xixj

= −2λ
n∑

i,j=1

aijuxiuxj + 2(λu)(Lu) = −2λ
n∑

i,j=1

aijuxiuxj .

Therefore, we have

Lv = 2
n∑

i,j=1

∇u · [∇aij ]uxixj − 2

n∑
k=1

n∑
i,j=1

aijuxkxiuxkxj − 2λ

n∑
i,j=1

aijuxiuxj .

We now exploit the boundedness of derivatives the coefficients, |∇aij | ≤ C, and the uniform

ellipticity of L, that is
∑

ij aijξiξj ≥ θ|ξ|2 for all ξ ∈ Rn. For the first term we have

2∇u · [∇aij ]uxixj ≤ 2|∇u||[∇aij ]|uxixj | ≤ |∇u|2 + C2|uxixj
|2,

and for the last two terms we use the uniform ellipticity condition to obtain

−2
n∑

k=1

n∑
i,j=1

aijuxkxk
uxkxj ≤ −2θ

n∑
k=1

|∇uxk
|2 = −2θ

n∑
k=1

n∑
l=1

|uxkxl
|2 ,

and

−2λ
n∑

i,j=1

aijuxiuxj ≤ −2θλ|∇u|2

Hence, we have

Lv ≤
(
C2 − 2θ

) n∑
i,j=1

∣∣uxixj

∣∣2 + (
n2 − 2λθ

)
|∇u|2,

and thus (using the smoothness of u up to the boundary) for large λ we have Lv ≤ 0.
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(ii) From Lv ≤ 0, the weak maximum principle implies

sup
Ω

|∇u|2 ≤ sup
Ω

(
|∇u|2 + λu2

)
≤ max

∂Ω
|∇u|2 + λmax

∂Ω
u2,

which is the desired result.
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