
Exercise Sheet 10

Introduction to Partial Differential Equations (W. S. 2024/25)

EPFL, Mathematics section, Dr. Nicola De Nitti

• The exercise series are published every Tuesday morning at 8am on the moodle page of the course. The

exercises can be handed in until the following Tuesday at 8am via email.

Exercise 1. Let {xk}k∈N be a sequence in a Banach space X. Show

(i) xk → x in X implies xk ⇀ x in X.

(ii) Prove that there exist sequences that converge weakly to the zero function even though all their

terms belong to the unit sphere. Conclude that xk ⇀ x in X does not imply xk → x in X.

Hint: Consider the space X = L2(0, 2π) and as a sequence a well-known complete basis.

Solution:

(i) A direct calculation shows that, for all f ∈ X ′,

|⟨f, x⟩ − ⟨f, xk⟩| ≤ ∥f∥X′ ∥x− xk∥X ,

thus xk → x implies ⟨f, xk⟩ → ⟨f, x⟩ for every f , that is xk → x.

(ii) Consider the sequence of functions un(x) =
1√
π
sin(nx), for x ∈ (0, 2π) and n ∈ N. On the

one hand,

∥un∥2 =
1

π

∫ 2π

0
sin2(nx) dx = 1,

hence the sequence {un}nCN belongs to the unit sphere. On the other hand, take any f ∈(
L2(0, 2π)

)′ ≡ L2(0, 2π). Bessel’s inequality implies that, for n→ ∞,

(f, un)L·(0,2π) =
1√
π

∫ 2π

0
f(x) sin(nx) dx→ 0.

Observing that (0, f)L2(0,2π) = 0 for every f ∈ L2(0, 2π), we conclude that un ⇀ 0.

Exercise 2. Let Ω be a bounded open subset of Rn with smooth boundary. Let (um)m∈N be a bounded

sequence in H1(Ω). Show that there exists a subsequence (umk
)k∈N and an element u ∈ H1(Ω) such

that, as k → ∞,

umk
→ u in L2(Ω),

umk
⇀ u in H1(Ω).
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Hint: Recall (without proof) the following result: Let X be a Hilbert space. Suppose that the

sequence (um)m∈N ⊂ X is bounded. Then, there exists a subsequence (umk
)k∈N of (um)m∈N and u ∈ X

such that

umk
⇀ u in X.

Solution: From Rellich–Kondrachov’s compactness theorem, the embedding H1(Ω) ↪→ L2(Ω) is

compact, and thus there exists a subsequence (umk
)k and u ∈ L2(Ω) such that

umk
→ u in L2(Ω) as k → ∞.

In particular, we also have weak convergence

umk
⇀ u in L2(Ω) as k → ∞

Noting that this subsequence (umk
)k is also bounded in the Hilbert space H1(Ω), by the hint,

there exists a subsequence (umkℓ
)ℓ and ũ ∈ H1(Ω) such that

umkℓ
⇀ ū in H1(Ω) as ℓ→ ∞.

It remains to show u = ũ. We will show that the weak L2-limit of (umk
)ℓ is ũ. Let f ∈ L2(Ω)

be arbitrary. Then, ⟨f, ⟩L2(Ω) defines a linear continuous functional on I1(Ω), and thus, owing to

Riesz representation theorem, there exists φf ∈ H1(Ω) such that

⟨f, v⟩L2(Ω) = ⟨φf , v⟩H1(Ω) , for any v ∈ H1.

Hence, umkℓ
⇀ ū in H1(Ω) implies that as ℓ→ ∞ we have

〈
f, umkk

〉
L2(Ω)

=
〈
φf , umkk

〉′

H1(Ω)
→ ⟨φf , ũ⟩H1(Ω) = ⟨f, ũ⟩L2(Ω)

Therefore, limℓ→∞⟨f, umkℓ
⟩L2(Ω) = ⟨f, ū⟩L2(Ω) for any f ∈ L2(Ω). Therefore, by Riesz’ repre-

sentation theorem, the same convergence holds for any continuous linear functional on L2(Ω), and

thus we have umkℓ
⇀ ū as ℓ→ ∞. But, since umk

→ u in L2(Ω) as k → ∞, we have umkℓ
→ u in

L2(Ω) as ℓ→ ∞, and thus we conclude u = ū, which completes the proof.

Exercise 3. Let Ω = B1 ⊂ Rn, n ≥ 1, and define ΩL = {x ∈ Ω : x1 < 0} ,ΩR = {x ∈ Ω : x1 > 0},
and Ω0 = {x ∈ Ω : x1 = 0}. Consider uL ∈ C1

(
Ω̄L

)
and uR ∈ C1

(
Ω̄R

)
, such that uL = uR on Ω0.

Show that u = uL1ΩL
+ uR1Ωn ∈W 1,p(Ω) for all 1 ≤ p ≤ ∞.
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Solution: By the regularity of uL and uR, we have that DuL and DuR are well defined and W 1,p

in their respective domains, for all p. Thus, our first step will be to show that Du is well defined,

and equal to Du = DuL1ΩL
+DuR1Ωn . To this end, given ϕ ∈ C∞

0 (Ω), we compute∫
Ω
u∂χiϕ =

∫
ΩL

uL∂xiϕ+

∫
Ωn

uR∂xiϕ

=

∫
Ω0

uL(x)ϕ(x)ν
L
i (x)dS(x)−

∫
Ωk

∂xiuL·ϕ+

∫
Ω0

uuR(x)ϕ(x)ν
R
i (x)dS(x)−

∫
Ωn

∂xiuRϕ

=

∫
Ω0

(
uL(x)ν

L
i (x) + uR(x)ν

R
i (x)

)
ϕ(x)dS(x)−

∫
Ω

(
DxiuL1ΩL−i

+DxiuR1ΩH

)
ϕ.

We remark that the outer normals satisfy νL + νR = 0 on Ω0, so that the first integral is zero.

Now it just remains to verify that u,Du ∈ Lp(Ω) for all p. But this follows from

∥u∥Lp(Ω) = ∥uL∥Lp(ΩL)
+ ∥uR∥LP (Ωn)

and

∥Du∥Lp(Ω) = ∥DuL∥Lp(Ωk)
+ ∥DuR∥Lp(Ωu)

.

Exercise 4. Given W k,p(Ω), with k ≥ 0 and 1 ≤ p <∞, we define the set W k,p
0 (Ω) ⊂ W k,p(Ω) as the

closure of C∞
0 (Ω) in the W k,p(Ω)-topology, i.e. u ∈ W k,p

0 (Ω) iff there exists a sequence (ϕm)m≥1 ⊂
C∞
0 (Ω) such that

lim
m→∞

∥ϕm − u∥Wk,p(Ω) = lim
m→∞

∑
|α|≤k

∥Dα (ϕm − u)∥Lp(Ω) = 0.

Let us define the zero-extension (linear) operator ζ : LP (Ω) → LP (Rn) as

ζ : u 7→ ζu =

u in Ω

0 in Rn\Ω

We have the following property (proof omitted): Given u ∈ Lp(Ω), if ζu ∈ W k,p (Rn), then u ∈
W k,p

0 (Ω).

Let Ω ⊂ Rn be an open domain and 1 ≤ p <∞, and consider the zero-extension operator ζ defined

above.

(i) Show that ζ
(
W k,p

0 (Ω)
)
⊂W k,p (Rn), i.e. that, for all u ∈W k−p

0 (Ω), we have ζu ∈W k,p (Rn).

Hint: show that Dζu = ζ(Du). a.e. in Rn.

(ii) Let Ω be smooth, such that Rn\Ω̄ ̸= 0. For which values of k do we have ζ
(
W k,p(Ω)

)
⊂

W k,p (Rn)?
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Solution:

(i) Following the definition of W k,p
0 (Ω), let (ϕm)m≥1 ⊂ C∞

0 (Ω) be a sequence converging to u

in W k,p(Ω) and also a.e. in Ω (such sequence exists as some subsequence of an arbitrary

W k,p(Ω) converging sequence). Also, let |α| ≤ k and ψ ∈ C∞
0 (Rn) be arbitrary. Then, by

the definition of α-th weak derivative,∫
R−

Dαζ(u)ψ = (−1)|α|
∫
R−

ζ(u)Dαψ = (−1)|α|
∫
Ω
uDαψ = lim

m→∞
(−1)|α|

∫
Ω
ϕmD

αψ,

where the last equality follows from ϕm → u in Lp(Ω) as m → ∞. Now the integration by

parts gives

lim
m→∞

(−1)|a|
∫
Ω
ϕmD

αψ = lim
m→∞

∫
Ω
Dαϕmψ =

∫
Ω
Dαuψ =

∫
Rn

ζ (Dαu)ψ,

where the penultimate step follows from the convergence of Dαϕm to Dαu in Lp(Ω). Thus,

we have ∫
Rn

Dαζ(u)ψ =

∫
R−

ζ (Dαu)ψ for any ψ ∈ C∞
0 (Rn) .

Thus, Dαζ(u) = ζ (Dαu) a.e. in Rn by the fundamental lemma of the calculus of variations.

Finally, noting that ζ (Dαu) ∈ DP (Rn), we see that the statement follows.

(ii) If k = 0, W k,p(Ω) = Lp(Ω), and it is obvious that the zero extension of a Lp(Ω) function

is in Lp (Rn), as there is no additional contribution to the integral. Otherwise, if k ≥ 1,

take a point x of ∂Ω where the boundary is C1 with outer normal ν, such that x+ εν /∈ Ω

for ε > 0 small enough. We can find an element of W k,p(Ω) which behaves like a non-zero

constant in a Ω-neighborhood of x : for instance, given small enough ε and r, we can take

1Br(x) ∗ ηε (with ∗ denoting the Rn-convolution). The zero-extension of such function has a

jump discontinuity across ∂Ω close to x, so that its ν-directional weak derivative is not well

defined in L1 of a neighborhood of x, hence not well defined in L1
loc (Rn). As such, in this

case, ζ
(
W k,p(Ω)

)
̸⊂W 1,p(R) and thus ζ

(
W k,p(Ω)

)
cannot be a subset of W k,p(R).

Exercise 5. Let Ω = [−1, 1] and 1 ≤ p <∞. Show that W 2,p
0 (Ω) ⊊

(
W 2,p(Ω) ∩W 1,p

0 (Ω)
)
.

Hint: You may use the following result (without proof): u ∈ W 1,p
0 ([−1, 1]) if and only if the

zero-extension ζu of u to R satisfies ζu ∈W 1,p(R) for 1 ≤ p <∞.

Solution: Obviously W 2,p
0 (Ω) ⊂ W 2,p(Ω) ∩W 1,p

0 (Ω), so we just have to show that there exists

u ∈W 2,p(Ω) ∩W 1,P
0 (Ω) such that u /∈W 2,p

0 (Ω). We take

u(x) = 1− x2

(but any function u ∈ C2(Ω̄) such that u(−1) = u(1) = 0 ̸= |u′(−1)| + |u′(1)| works). We have

Du(x) = −2x and D2u(x) = −2. Thus, we have u ∈ C2(Ω̄), so that u ∈W 2,p(Ω) for all p ≥ 1.
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Let us show that u ∈ W 1,p
0 (Ω). We have ζu ∈ Lp(R), and the weak derivative of ζu is well

defined: given ϕ ∈ C∞
0 (Rn), we have∫

R
D(ζu)ϕ = −

∫
R
ζuDϕ = −

∫ 1

−1
uDϕ =

∫ 1

−1
Duϕ− (uϕ)|1−1 =

∫
R
ζ(Du)ϕ.

Moreover, we have D(ζu) ∈ Lp(R) for all p ≥ 1, so that in view of the hint we have u ∈
W 1,P

0 (Ω). To show that u /∈ W 2,p
0 (Ω), we observe that, since the first weak derivative of ζu has

jump discontinuities at ±1, it is not weakly differentiable. Thus, ζu /∈W 2,p(R), and the statement

follows.

Exercise 6. In this exercise, we wish to show that C∞(Ω̄) is not always dense in W 1,p(Ω): we need

to be very careful about the regularity of the domain.

Let R2 ⊃ Ω = B1\{(x, 0), x ≥ 0}, and consider u(x, y) = u(ρ, θ) = 0 in polar coordinates (0 < ρ < 1

and 0 < 0 < 2π).

(i) Show that u ∈W 1,1(Ω), but u /∈W 1,1 (B1).

(ii) Show that, for a smooth ϕ ∈ C∞ (
B1

)
, the natural norms in the spaces W 1,1(Ω) and W 1,1 (B1)

coincide.

(iii) Conclude that is not possible that there exists ϕm ∈ C∞ (
B1

)
such that ϕm|Ω → u in W 1,1(Ω).

Solution:

(i) The function u is bounded in Ω, so it belongs to L1(Ω) and L1 (B1). If its weak gradient

exists, it can be calculated directly:

∂xu(ρ, θ) = −1

ρ
sin θ and ∂yu(ρ, θ) =

1

ρ
cos θ.

We can check that we know that |∇u(ρ, θ)| =
(
∂xu(ρ, θ)

2 + ∂yu(ρ, θ)
2
)1/2

= 1
ρ =

(
x2 + y2

)−1/2

belongs to L1(Ω). So it remains to check whether Du is actually the weak gradient of u in

W 1,1(Ω) and W 1,1 (B1). We start from the latter: given ϕ ∈ C∞
0 (B1), the definition of the

x-partial weak derivative reads

−
∫
B1

Dxuϕ =

∫
B1

uDxϕ =

∫ 1

0

∫ 2π

0
ρθ

(
cos θ∂ρϕ(ρ, θ)−

1

ρ
sin θ∂θϕ(ρ, θ)

)
dθ dρ

=

∫ 1

0

∫ 2π

0
ρθ cos θ∂ρϕ(ρ, θ)dθ dρ−

∫ 1

0

∫ 2π

0
θ sin θ∂θϕ(ρ, θ)dθ dρ

=

∫ 2π

0
θ cos θ

(
−
∫ 1

0
ϕ(ρ, θ)dρ

)
dθ −

∫ 1

0

(
−
∫ 2π

0
∂θ(θ sin θ)ϕ(ρ, θ)dθ

)
dρ

=

∫ 1

0

∫ 2π

0
sin θϕ(ρ, θ)dθ dρ = −

∫
D1

∂xuϕ
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where all the boundary terms due to integration by parts
(
ρϕ(ρ, θ)|ρ=1

ρ=0 and θ sin θϕ(ρ, θ)|θ=2π
θ=0

)
are zero. Now we consider the y-derivative: if Dyu ∈ Lloc (B1), then

−
∫
B1

Dyuϕ =

∫
B1

uDyϕ =

∫ 1

0

∫ 2π

0
ρθ

(
sin θ∂ρϕ(ρ, θ) +

1

ρ
cos θ∂θϕ(ρ, θ)

)
dθ dρ

=

∫ 1

0

∫ 2π

0
ρθ sin θ∂ρϕ(ρ, θ)dθ dρ+

∫ 1

0

∫ 2π

0
θ cos θ∂0ϕ(ρ, θ)dθ dρ

=

∫ 2π

0
θ sin θ

(
−
∫ 1

0
ϕ(ρ, θ)dρ

)
dθ

+

∫ 1

0

(
2πϕ(ρ, 2π)−

∫ 2π

0
∂θ(θ cos θ)ϕ(ρ, θ)dθ

)
dρ

= 2π

∫ 1

0
ϕ(ρ, 2π)dρ−

∫ 1

0

∫ 2π

0
cos θϕ(ρ, θ)dθ dρ

= 2π

∫ 1

0
ϕ(ρ, 2π)dρ−

∫
B1

∂yuϕ

which, in general, is different from −
∫
B1
∂yuϕ due to the presence of the boundary term

on B1\Ω. Hence, we can conclude that there cannot exist Dyu ∈ Lloc (B1) satisfying the

definition of weak derivative. Consequently, u /∈ W 1,1 (B1). On the other hand, the same

calculation with ϕ ∈ C∞
0 (Ω) shows that Du = ∇u ∈ L1(Ω)2, since ϕ (B1\Ω) = 0.

(ii) Since for ϕ ∈ C∞ (
B1

)
its classical and its weak derivative coincide and since the Lebesgue

measure of B1\Ω is zero, the norm of ϕ in the spaceW 1,1 (B1) and the norm of its restriction

ϕ|Ω in the space W 1,1(Ω) coincide as well.

(iii) Suppose by contradiction that there exists {ϕm}m∈N ⊆ C∞ (
B1

)
such that ϕm|Ω → u(x, y) =

θ in W 1,1(Ω). Then the sequence {ϕm|Ω}m∈N is Canchy in W 1,1 (B1), indeed,

∥ϕm|Ω − ϕn|Ω∥W 1,1(Ω) = ∥ϕm − ϕn∥W 1,1(B1)
→ 0 for m,n→ ∞

By completeness of the space W 1,1 (B1), there exists u⋆ ∈ W 1,1 (B1) such that ϕm → u⋆ in

W 1,1 (B1). But this is a contradiction since, by uniqueness, of the limit, it would imply that

there exists an extension of u ∈W 1,1(Ω) to u⋆ ∈W 1,1 (B1) and this can not happen. In fact,

by point a), we proved that the distributional derivative of u with respect to the coordinate

y is not a function. If this extension existed, then its distributional derivative would not

coincide with its weak derivative (that is an object in Lp (B1)) and this is not possible.

6


