Exercise Sheet 5
Introduction to Partial Differential Equations (W. S. 2024 /25)
EPFL, Mathematics section, Dr. Nicola De Nitti

e The exercise series are published every Tuesday morning at 8am on the moodle page of the course. The

exercises can be handed in until the following Tuesday at 8am via email.

Exercise 1. Prove the following result, in which the fundamental solution ® of the Laplace equation
is used to derive a representation formula for the point value of a C2?(Q2) function in terms of its

Laplacian and boundary values.

Green’s representation formula: Let Q C R™ be a bounded domain with C'! boundary. For
any u € C%(Q) and y € ), we have

u(y) = /Q O(x —y)(—Au(z))dz — 0,P(z — y)u(x)dS(z) + / O(x — y)o,u(x)dS(z).
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(GRF)

Context and hints for the proof: The starting point of the proof is Green’s integration by parts identity,

/ (vAu — uAv)dz = / (vO,u — udyv) dS. (GI)
Q onN

which holds for every u,v € C?(Q) and a bounded domain with C! boundary. Now fix y € Q. To
prove the (GRF), the idea is to take v = ®(- —y) in (GI). However, z — ®(z — ) is not C%(Q) and, in
particular, a singularity occurs at x = y. So we need to be more careful: to circumvent this difficulty,
we write the identity on the domain Q. = Q\ B¢(y), with € small enough so that B.(y) C €2, and let
e— 0.

Exercise 2. Let u € C%(Q) be a solution (provided it exists) of the Neumann boundary value problem

—Au=f xe€l,

(N-BVP)
du=h, x€df,

for a smooth domain 2 C R"™ and smooth data f,h which satisfy the compatibility condition

J? == bt



(i) Fix y € Q2. Show that the Neumann problem

_A’(Z}(ay) = 07 HAS Qa
(-, y) = 8,8(- —y), x €,

has no solution ¢ € C2(Q).

(i) Fix y € Q. Suppose that (-, y) € C?(Q) satisfies

_Aw(ay) = 07 HARS Q,
8V¢(7y) = ayq)( - y) + ﬁ, x € 0fd.

Show that we have the following representation formula for the solution u of (N-BVP):

1
u(y) — 199 Jog u(z) dS(z) Z/Qf(x)N(w,y) dl‘+/8ﬂ h(z)N (x,y) dS(x),

where N(z,y) = ®(z —y) — ¥(x,y).

Exercise 3. The aim of this exercise is to define basic operations over distributions in D'(R).
First of all, let us introduce some notation. Let f : R — R be a real-valued function, we then

define the following;:

(a) Translation of f by a € R:

Tof () = f(x +a) forallz € R.

(b) Dilation of f by a > 0:
D,f(z) = f(ax) for all xz € R.

(¢c) Reflection of f:
f(x) = f(—z) forall x € R.

(d) Multiplication by a function g € C*°(R):

(f9)(z) = f(z)g().

We now extend these definitions to elements of the space D’'(R).
Given T € D'(R), we can define the following distributions.

(a) The translation by a € R of T is the distribution 7,7 € D'(R) such that:

(ral,d) = (T, 7_q¢) for all ¢ € D(R).
(b) The dilation by a > 0 of T is the distribution D,T" € D'(R) such that:

(DaT, ) = <T, éDl /a¢> for all ¢ € D(R).



(c) The reflection of T is the distribution 7' € D'(R) such that:
(T,¢) =(T,¢) for all ¢ € D(R).

(d) The multiplication of T by g € C*°(R) is a distribution ¢7" € D'(R) such that:
(gT, ¢) = (T, g¢) for all p € D(R).

Given f € Ll _(R), we can associate to f the distribution T} € D'(R) such that:

loc

(Ty,¢) = /Rf(:n)qb(m) dz for all ¢ € D(R).

First, check that, for T built in such a way, the previous definitions are consistent.

Next, prove the following derivation rules for distributions.
(a) Given T € D'(R) and a € R, (17,T)" = 7.(T").
(b) Given T' € D'(R) and a > 0, (D,T) = a D,(T").
(¢) Given T € D'(R), (T) = —T".
(d) Given T € D'(R) and g € C*(R), (¢7) = ¢'T + ¢T".

We say that a distribution 7 € D(R) is even if T = T in D'(R) and we say that a distribution
T € D(R) is odd if T = —T in D'(R).
Prove that

(a) dp is an even distribution.
(b) ¢&f is an odd distribution.

Finally, as further exercise, double-check the computations in the examples and remarks of Section

3 “An interlude about distributions” of the Lecture Notes.



