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Preface

These lecture notes accompany the course “Introduction to Partial Differential Equations”,
held for the Bachelor’s Degree in Mathematics at EPFL in the Winter Semester 2024/25.

Let us start with a quotation from [Die82]:

The theory of partial differential equations has been studied incessantly for more
than two centuries. By reason of its permanent symbiosis with almost all parts
of physics, as well as its ever closer connections with many other branches of
mathematics, it is one of the largest and most diverse regions of present-day
mathematics, and the vastness of its bibliography defies the imagination.

For some insight into the vastness of this research area, the interested reader may consult
[Nir94; BB98; Kla00; Kla09; Lue82; Die81].

Although the course title may suggest a broad overview, our focus will be specific: we aim to
introduce “elliptic partial differential equations”, delving into the theory surrounding both classical
and generalized (weak) solutions.

The prerequisites for this course are “Analysis I–IV”. We also recommend familiarity with
“Measure and Integration” and “Functional Analysis I”.

The structure of the course and the core of these lecture notes draws heavily from the material
prepared by Fabio Nobile for the course conducted in the Winter Semester 2023/24 at EPFL.
In addition, we will be significantly informed by several key textbooks: [Hun14, Chapters 1–4],
[Eva10, Chapters 1, 2.2, 5–6, 8, 9.4], [Jos07, Chapters 1–4, 10–14], [Joh82, Chapter 4], [Bre13,
Chapters 8–9, Appendix], [Bre11, Chapters 8–9], [HL11, Chapters 1–2, 6], [GT01, Chapters 1–4,
7–8], and [FR22, Chapters 1–2]. In total, these lecture notes have no pretense of originality.

Exam

A detailed list of examinable topics (a subset of the lecture notes and exercise series) will be
provided on Moodle.

The exam consists of a 30-minute oral examination at the blackboard. Each student will
select two questions: one from each part of the course (A: classical solutions, B: weak solutions).
Students will then have an additional 30 minutes to prepare their answers without external material
or support before the oral examination begins. It is essential for each student to arrive on time
(i.e., 30 minutes prior to their scheduled oral exam). Each student must bring a CAMIPRO card
or an ID card. Paper and pen for preparation will be provided.

Additional resources

[ACM18] L. Ambrosio, A. Carlotto, and A. Massaccesi. Lectures on elliptic partial differential
equations. Vol. 18. Appunti, Sc. Norm. Super. Pisa (N.S.) Pisa: Edizioni della Normale,
2018.

[Bre13] A. Bressan. Lecture notes on functional analysis. With applications to linear partial
differential equations. Vol. 143. Grad. Stud. Math. Providence, RI: American Mathe-
matical Society (AMS), 2013.

[Bre11] H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Uni-
versitext. New York, NY: Springer, 2011.

[BB98] H. Brézis and F. Browder. “Partial differential equations in the 20th century”. In: Adv.
Math. 135.1 (1998), pp. 76–144.
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CHAPTER 1

Introduction

Lect. 1, 10.091. Notation for partial derivatives

Let Ω Ă Rn, n ě 2, be open, x “ px1, . . . , xnq P Ω and u : Ω Ñ R be a scalar function.
The partial derivatives of u at x, are defined as

Bu

Bxi
pxq :“ lim

hÑ0

u px` heiq ´ upxq

h
(if the limit exists),

for i “ 1, . . . , n, where ei denotes the i-th standard basis vector of Rn. Commonly used are also
the notations Bu

Bxi
“ Bxi

u “ uxi
.

The partial derivatives of second order are defined as

B2u

BxiBxj
pxq :“

B

Bxi

ˆ

Bu

Bxj

˙

pxq (if they exist)

for i, j “ 1, . . . , n. Commonly used are also the notations B
2u

BxiBxj
“ B2

xixj
u “ uxixj .

More generally, let α “ pα1, . . . αnq P Nn
0 be a multi-index. Its order is defined as

|α| :“
n
ÿ

i“1

αi

and the corresponding |α|-th order partial derivatives of u are

Dαupxq “
B|α|u

Bxα1
1 ¨ ¨ ¨ Bxαn

n
pxq “ Bα1

x1
¨ ¨ ¨ Bαn

xn
upxq (if they exist).

Moreover, for k P N we denote by

Dkupxq :“ tDαupxq : |α| “ ku

the collection of all k-th order partial derivatives of u in x.
In particular, we write D1upxq as a column vector (the gradient of u at x),

D1upxq “ Dupxq “

¨

˚

˝

Bx1
upxq

...
Bxn

upxq

˛

‹

‚

“ ∇upxq,

and D2upxq as a matrix (the Hessian of u at x),

D2upxq “

¨

˚

˝

B2
x1x1

upxq . . . B2
x1xn

upxq

...
. . .

...
B2
xnx1

upxq . . . B2
xnxn

upxq

˛

‹

‚

.

2. What is a partial differential equation?

A partial differential equation (PDE) is an equation for an unknown function u of several
variables that involves partial derivatives of u. The order of the highest partial derivative is called
the order of the PDE.

Definition 1.1 (k-th order PDE). Let Ω Ă Rn be open, n ě 2 and k P N. An expression of
the form

F
`

Dkupxq, Dk´1upxq, . . . , upxq, x
˘

“ 0, x P Ω, (2.1)

is called a k-th order PDE, where

F : Rnk

ˆ Rnk´1

ˆ . . .ˆ Rn ˆ R ˆ Ω Ñ R

1



2 CHAPTER 1. INTRODUCTION

is a given function and u : Ω Ñ R is the unknown.

Definition 1.2 (Classical solution). A classical solution of the PDE (2.1) is a k-times con-
tinuously differentiable function u : Ω Ñ R that satisfies (2.1).

Depending on the structure of the function F in (2.1), we classify PDEs as follows.

Definition 1.3. The PDE (2.1) is linear if the function F is linear in u and its derivatives,
i.e. if it is of the form

ÿ

|α|ďk

aαpxqDαupxq ` fpxq “ 0,

for given functions aα and f . Moreover, if f ” 0, the PDE is called homogeneous and otherwise
inhomogeneous.

The PDE (2.1) is semilinear if it is linear in the highest order derivatives, i.e. if it is of the
form

ÿ

|α|“k

aαpxqDαupxq ` a0
`

Dk´1upxq, . . . , upxq, x
˘

“ 0,

for given functions aα and a0.
The PDE (2.1) is quasilinear if it is of the form

ÿ

|α|“k

aα
`

Dk´1upxq, . . . , upxq, x
˘

Dαupxq ` a0
`

Dk´1upxq, . . . , upxq, x
˘

“ 0,

for given functions aα and a0.
The PDE (2.1) is fully nonlinear if F is a nonlinear function of the highest order derivatives

Dku.

For linear homogeneous equations the superposition principle holds, i.e., if u and v are both
solutions of the PDE, then the same applies to αu ` βv, for all α, β P R. More generally, if
u1, . . . , um are solutions, then so is any linear combination of these solutions.

Typically, the difficulty of the analysis of a PDE increases with the degree of nonlinearity.
Instead of scalar equations we can also look at systems of PDEs which arise in many appli-

cations. Here, several unknown functions u1, . . . , um,m ě 2, have to be determined that satisfy a
system of m PDEs.

Definition 1.4 (k-th order system of PDEs). An expression of the form (2.1) is called a k-th
order system of PDEs if m ě 2 and

F : Rmnk

ˆ Rmnk´1

ˆ . . .ˆ Rmn ˆ Rm ˆ Ω Ñ Rm,

where u “ pu1, . . . , umq : Ω Ñ Rm is the unknown. Here, Dαu “ pDαu1, . . . , D
αumq and Dku “

tDαu : |α| ď ku.

Definition 1.5 (Classical solution). A classical solution of the system of PDEs (2.1) is a
k-times continuously differentiable function u : Ω Ñ Rm that satisfies (2.1).

3. Type classification of linear second order PDEs

In this course, we mainly focus on linear, scalar PDEs of second order, i.e., equations of the
form

n
ÿ

i,j“1

aijpxqB2
xixj

upxq `

n
ÿ

i“1

aipxqBxi
upxq ` a0pxqupxq “ fpxq, x P Ω, (3.1)

that we now further classify.
By Schwarz’ theorem, the Hessian matrix is symmetric if u is twice continuously differentiable;

hence, when working in this regularity class, we can assume that

aij “ aji, for all i, j “ 1, . . . , n,

i.e., that the coefficients aij form a symmetric matrix

Apxq “

¨

˚

˝

a11pxq . . . a1npxq

...
. . .

...
an1pxq . . . annpxq

˛

‹

‚

, x P Ω
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A useful type classification of the PDE (3.1) is based on the definiteness properties of A.

Definition 1.6 (Elliptic, parabolic, and hyperbolic PDEs). We call the linear second-order
PDE (3.1) elliptic if Apxq is positive or negative definite, parabolic if Apxq is singular (i.e.,
detApxq “ 0), and hyperbolic if one eigenvalue of Apxq has a different sign than all the oth-
ers (where the eigenvalues are counted according to their multiplicity).

The following three examples are the archetypes of second-order linear PDEs.

Example 1.1 (Laplace equation).

∆u “ B2
x1x1

u` . . .` B2
xnxn

u “ 0 in Ω,

where Ω Ă Rn is open, u : Ω Ñ R and ∆ is the Laplace operator or Laplacian.
We have Apxq “ I P Rnˆn ( identity matrix) and, thus, the PDE is elliptic.

Example 1.2 (Heat equation).

Btu´ ∆u “ 0 in Ω “ I ˆ U,

where t P I denotes time, x P U space, I Ă R is an open interval, U Ă Rn is open, u : I ˆ U Ñ R,
and ∆u “ ∆xu is the Laplace operator with respect to x.

We obtain a singular matrix

Apt, xq “

ˆ

0 0
0 ´I

˙

,

I P Rnˆn, and, thus, the PDE is parabolic.

Example 1.3 (Wave equation).

B2
t u´ ∆u “ 0 in Ω “ I ˆ U,

where we use the same notation as for the heat equation.
In this case, we have

Apt, xq “

ˆ

1 0
0 ´I

˙

,

and thus, the PDE hyperbolic.

4. Studying PDEs

A classical solution of a k-th order PDE is a k-times continuously differentiable function that
satisfies the PDE pointwise in Ω Ă Rn.

Often, a PDE possesses families of solutions, but the solution u is uniquely determined if values
of u and/or its derivatives are specified on the boundary BΩ of Ω. A PDE together with these
boundary conditions is called a boundary-value problem. In applications that involve time (see,
e.g., Examples 1.2–1.3), we typically consider sets if the form Ω :“ I ˆ U where I :“ pt0, t1q Ă R
is an open interval and U Ă Rn is open. In this special case, the values of u and/or its derivatives
specified at the initial time t0 are called initial conditions and the values specified on BU boundary
conditions. A PDE together with initial and boundary conditions is is called an initial-boundary-
value problem.

In the ideal case, we find explicit solutions for a given PDE, but this is only possible in few
particularly simple cases. This classical approach to PDEs that dominated the 19th century was
to develop methods for deriving explicit representation formulas for solutions.

If such formulas cannot be found, we aim at proving the existence and studying qualitative
properties of solutions. In particular, we say that a problem is well-posed1 if the following properties
hold:

(1) there exists a solution;
(2) the solution is unique;
(3) the solution depends continuously on the given data (e.g., parameters, boundary or initial

values).

1 Or well-posed in the sense of Hadamard, after [Had02].
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For many PDEs the notion of classical solutions is too restrictive and such solutions do not
exist. However, one can weaken the concept of solutions and consider so-called weak solutions
or distributional solutions which are less regular and satisfy the PDE in a generalized sense. For
instance, PDEs describing the occurrence of shocks (essentially, the appearance of discontinuities
in the derivatives), require this notion. Moreover, even if classical solutions exist, it is often easier
to prove the existence of weak solutions first and then to show that the solutions have a higher
regularity and are, in fact, classical solutions of the problem.

5. Objectives of this course

In this course, we will focus on elliptic partial differential equations. In particular, we will
cover the following topics:

I. Laplacian operator; Laplace equation; mean-value property; maximum principles; Har-
nack’s inequality; Weyl’s lemma; fundamental solution; Green function and solutions to
the Dirichlet problem for the Laplace equation; Newtonian potential.

II. Theory of distributions; Sobolev spaces; weak derivatives and their properties; density
results; extension results; traces; embedding theorems; Poincaré inequalities.

III. Weak solutions of several elliptic PDEs involving the Laplace operator via variational
methods.

IV. General second-order linear elliptic PDEs: classical solutions (maximum principles, a
priori bounds) and weak solutions theory.



CHAPTER 2

Laplace equation and harmonic functions

1. Harmonic functions

Let Ω Ă Rn (with n ě 1) be an open set. The first equation we will study is the Laplace
equation:1

´∆upxq “ 0, x P Ω. (1.1)

Remark 2.1. We recall that

∆upxq “ div∇upxq “ B2
x1x1

u` . . .` B2
xnxn

u.

Definition 2.1 (Harmonic, sub-harmonic, and super-harmonic functions). A function u P

C2pΩq is called

(1) harmonic in Ω if it satisfies ∆upxq “ 0 for all x P Ω;
(2) sub-harmonic in Ω if it satisfies ´∆upxq ď 0 for all x P Ω;
(3) super-harmonic in Ω if it satisfies ´∆upxq ě 0, for all x P Ω.

As we will see, to recover a unique solution to this equation, suitable boundary conditions
should be provided. The most common are the following.

Dirichlet2 problem:
#

´∆upxq “ 0, x P Ω

upxq “ gpxq, x P BΩ

Neumann3 problem:
#

´∆upxq “ 0, x P Ω

Bνupxq “ hpxq, x P BΩ

Robin4 problem:
#

´∆upxq “ 0, x P Ω

Bνupxq ` αupxq “ hpxq, x P BΩ
(with α ą 0 given)

The non homogeneous version of (1.1) is called the Poisson5 equation:6

´∆upxq “ fpxq, x P Ω (1.2)

for some given continuous function f : Ω Ñ Rn.
The Poisson equation appears in many different fields of physics. For instance, it may describe

the distribution of temperature in a region Ω, in the presence of a heat source f , knowing the
temperature at the boundary (Dirichlet problem) or the heat flux through the boundary (Neumann
problem).

Example 2.1. Any affine linear function in Rn is harmonic in Rn since

∆

˜

a`
ÿ

j

bjxj

¸

“ 0 in Rn.

1 Named after Pierre-Simon Laplace.
5 Named after Siméon Denis Poisson
6 The minus sign in the above equations could, of course, be removed (upon changing the sign of f). However,

we prefer to keep it and always think of the operator in the Laplace or Poisson equation as “´∆”.

5
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Example 2.2. The function ln
a

x2 ` y2 “ 1
2 ln

`

x2 ` y2
˘

is harmonic in R2ztp0, 0qu.

Indeed, assuming p0, 0q ‰ px, yq P R2, we compute

∇
´

ln
a

x2 ` y2
¯

“ ∇1

2
ln
`

x2 ` y2
˘

“
px, yq

x2 ` y2
;

∆
´

ln
a

x2 ` y2
¯

“ div

ˆ

∇
ˆ

1

2
ln
`

x2 ` y2
˘

˙˙

“ div
px, yq

x2 ` y2
“

B

Bx

x

x2 ` y2
`

B

By

y

x2 ` y2

“

`

y2 ´ x2
˘

`
`

x2 ´ y2
˘

px2 ` y2q
2

“ 0.

Example 2.3. The function
`

x2 ` y2 ` z2
˘´1{2

is harmonic in R3ztp0, 0, 0qu.

Indeed, assuming p0, 0, 0q ‰ px, y, zq P R3, we compute

∇

˜

1
a

x2 ` y2 ` z2

¸

“
p´x,´y,´zq

px2 ` y2 ` z2q
3{2

;

∆

˜

1
a

x2 ` y2 ` z2

¸

“ ´div
px, y, zq

px2 ` y2 ` z2q
3{2

“ ´
y2 ` z2 ´ x2

px2 ` y2 ` z2q
5{2

´
x2 ` y2 ´ z2

px2 ` y2 ` z2q
5{2

´
x2 ` z2 ´ y2

px2 ` y2 ` z2q
5{2

“ 0.

Lect. 2, 17.09

Example 2.4. Let n ě 2. We compute

∆|x|α “ pnα ` αpα ´ 2qq|x|α´2.

Thus |x|α is harmonic for α “ 2 ´ n and sub-harmonic for α ě 2 ´ n.

Example 2.5 (Harmonic polynomials). Let us find all harmonic polynomials of degree n in
two variables,

Pnpx, yq “

n
ÿ

k“0

ckx
n´kyk,

that are harmonic. To this end, we compute

∆Pnpx, yq “

n´2
ÿ

k“0

ckpn´ kqpn´ k ´ 1qxn´k´2yk `

n
ÿ

h“2

chhph´ 1qxn´hyh´2

“

n´2
ÿ

k“0

ckpn´ kqpn´ k ´ 1qxn´k´2yk `

n´2
ÿ

k“0

ck`2pk ` 2qpk ` 1qxn´k´2yk

“

n´2
ÿ

k“0

rckpn´ kqpn´ k ´ 1q ` ck`2pk ` 2qpk ` 1qsxn´k´2yk

and notice that, for Pn to be harmonic, each summand must necessarily have zero coefficient. That
is, for any k, we need

ckpn´ kqpn´ k ´ 1q ` ck`2pk ` 2qpk ` 1q “ 0.

This condition yields

ck`2 “ ´
pn´ kqpn´ k ´ 1q

pk ` 2qpk ` 1q
ck.
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Therefore the even coefficients depend on the choice of Cc, while the odd ones depend on c1. Let
us consider the former ones:

c2 “ ´
npn´ 1q

2 ¨ 1
Cc “ ´

npn´ 1qpn´ 2q!

2! ¨ pn´ 2q!
Cc “ ´

ˆ

n

2

˙

Cc

c4 “ ´
pn´ 2qpn´ 3q

4 ¨ 3
c2 “

npn´ 1qpn´ 2qpn´ 3q

4 ¨ 3 ¨ 2 ¨ 1
Cc “

“
npn´ 1qpn´ 2qpn´ 3qpn´ 4q!

4! ¨ pn´ 4q!
Cc “

ˆ

n

4

˙

Cc.

By induction, we can prove that

c2h “ p´1qh
ˆ

n

2h

˙

Cc, and, analogously, c2h`1 “ p´1qh
ˆ

n

2h` 1

˙

c1
n
.

In conclusion

Pnpx, yq “

n
ÿ

k“0

c̃k

ˆ

n

k

˙

xn´kyk, with c̃k “

#

p´1qhCc for k “ 2h

p´1qh c1
n for k “ 2h` 1

and Cc, c1 arbitrary.

Example 2.6. Let u : Ω Ñ R be harmonic and positive and β ě 1. Then uβ is sub-harmonic.
Indeed, we compute

∆uβ “

d
ÿ

i“1

`

βuβ´1B2
xi
u` βpβ ´ 1quβ´2Bxi

u Bxi
u
˘

“

d
ÿ

i“1

βpβ ´ 1quβ´2Bxi
u Bxi

u “

d
ÿ

i“1

βpβ ´ 1quβ´2pBxi
uq2.

Example 2.7. From Example 2.6, we note that, if u P C2pRnq is a positive function and β P R,
then

∆
`

uβ
˘

“ βuβ´1∆u` βpβ ´ 1quβ´2|∇u|2.

Example 2.8. Let u : Ω Ñ R be harmonic and positive. Then

∆ log u “

n
ÿ

i“1

ˆ

B2
xi
u

u
´

Bxi
u Bxi

u

u2

˙

“ ´

n
ÿ

i“1

Bxi
u Bxi

u

u2
“ ´

n
ÿ

i“1

pBxi
uq2

u2
.

Thus, log u is super-harmonic and ´ log u is sub-harmonic.

Example 2.9. Let u : Ω Ñ R be harmonic, f : upΩq Ñ R be a C2 convex function. Then f ˝u
is sub-harmonic. We compute

∆fpupxqq “

n
ÿ

i“1

`

f 1pupxqqB2
xi
u` f2pupxqqBxi

u Bxi
u
˘

“

n
ÿ

i“1

f2pupxqq pBxi
uq

2
(since u is harmonic)

ě 0

since for a convex C2-function f2 ě 0.

Remark 2.2 (Chain rule). From Example 2.9, we note that, if u P C2 pRnq and φ P C2pRq,

∆φpuq “ φ2puq|∇u|2 ` φ1puq∆u

(which is just the chain rule). If we assume that φ is also convex, then φ2 ě 0, and we obtain

p´∆qφpuq ď φ1puqp´∆qu.

Remark 2.3 (Product rule). If u, v P C2pRnq, we compute

∆puvq “ u∆v ` 2∇u ¨ ∇v ` v∆u.

In particular, we notice that, if u and v are harmonic, then uv is harmonic if and only if ∇u ¨∇v ”

0.
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Example 2.10. If u, v P C2pΩq with u positive, then

∆ puvq “vuv´1∆u` uvplog uq∆v ` vpv ´ 1quv´2|∇u|2

` uvplog uq2|∇v|2 ` 2uv´1p1 ` v log uq∇u ¨ ∇v.

Example 2.11 (Laplacian in polar coordinates). Let u P C2pR2q and define a function U by
Upr, θq “ upr cos θ, r sin θq. We compute

∆u “
1

r

B

Br

ˆ

r
BU

Br

˙

`
1

r2
B2U

Bθ2
.

Example 2.12 (Laplacian in spherical coordinates). Let u P C2pR3q and define a function U
by Upρ, θ, φq “ upρ sinφ cos θ, ρ sinφ sin θ, ρ cosφq. We compute

∆u “
1

ρ2
B

Bρ

ˆ

ρ2
BU

Bρ

˙

`
1

ρ2 sinφ

B

Bφ

ˆ

sinφ
BU

Bφ

˙

`
1

ρ2 sin2 φ

B2U

Bθ2
.

2. Properties of harmonic functions

Before addressing the question of the existence and uniqueness of solutions of the above-
mentioned boundary value problems, we first focus on some important properties of harmonic
functions.

2.1. Mean-value formula. In what follows, we will use the notation ωn :“ |BB1p0q| for the
surface of the unit sphere in Rn. For instance, ω2 “ 2π, ω3 “ 4π, and the general expression

is ωn “ 2πn{2

Γpn{2q
. We will use αn “ |B1p0q| to denote the volume of the unit ball in Rn. We can

compute the relationship between αn and ωn as follows:

αn “

ż

B1p0q

1 dx “

ż 1

0

|BBrp0q| dr “ ωn

ż 1

0

rn´1 dr “
ωn

n
.

Finally, by a simple scaling argument, we can check that |BBrpxq| “ rn´1ωn and |Brpxq| “ rnαn,
for any r ą 0 and x P Rn.

Harmonic functions have the following mean-value property which states that the average value
of the function over a ball or sphere is equal to its value at the center.

Theorem 2.1 (Mean-value formula). Let Ω be a domain and u P C2pΩq a harmonic function.

Then, for any closed ball Brpxq Ă Ω, it holds

upxq “
1

|Brpxq|

ż

Brpxq

upyqdy “
1

|BBrpxq|

ż

BBrpxq

upyqdSpyq. (2.1)

Following the proof of Theorem 2.1, we can actually show a mean-value property for sub/super-
harmonic functions as well.

Theorem 2.2 (Mean-value property for sub/super-harmonic functions). Let u P C2pΩq be a

sub-harmonic (resp., super-harmonic) function. Then, for any closed ball Brpxq Ă Ω it holds

upxq ď (resp. ě)
1

|Brpxq|

ż

Brpxq

upyqdy,

upxq ď (resp. ě)
1

|BBrpxq|

ż

BBrpxq

upyqdSpyq.

It follows from these inequalities in Theorem 2.2 that the value of a sub-harmonic (or super-
harmonic) function at the center of a ball is less (or greater) than or equal to the value of a harmonic
function with the same values on the boundary. Thus, the graphs of sub-harmonic functions lie
below the graphs of harmonic functions and the graphs of super-harmonic functions lie above,
which explains the terminology.

Example 2.13. The function upxq “ |x|4 is sub-harmonic in Rn since ∆u “ 4pn` 2q|x|2 ě 0.
The function is equal to the constant harmonic function Upxq “ 1 on the sphere |x| “ 1, and
upxq ď Upxq when |x| ď 1.
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Proof of Theorem 2.1. We divide the proof into two parts.
Step 1. We first prove

upxq “
1

|BBrpxq|

ż

BBrpxq

upyqdSpyq.

To this end, let us define the function

ϕprq “
1

|BBrpxq|

ż

BBrpxq

upyqdSpyq

Writing y “ x` rz with z “
y´x
r P BB1p0q, we can recast the integral on the unit sphere

ϕprq “
1

rn´1ωn

ż

BB1p0q

upx` rzqrn´1 dSpzq “
1

ωn

ż

BB1p0q

upx` rzqdSpzq

Since u P C1
´

Brpxq

¯

, in particular u and ∇u are uniformly continuous in Brpxq and

ϕp0q “ lim
rÑ0

ϕprq “
1

ωn

ż

BB1p0q

lim
rÑ0

upx` rzqdSpzq “ upxq

Moreover,

ϕ1prq “
1

ωn

ż

BB1p0q

d

dr
upx` rzqdSpzq

“
1

ωn

ż

BB1p0q

∇upx` rzq ¨ z dSpzq p where z is the normal unit vector)

“
1

rn´1ωn

ż

BBrpxq

∇upyq ¨ νpyqdSpyq

“
1

rn´1ωn

ż

Brpxq

∆upyqdy “ 0 (since u is harmonic), (2.2)

which yields ϕprq “ ϕp0q “ upxq.
Step 2. To prove the first identity,

upxq “
1

|Brpxq|

ż

Brpxq

upyqdy,

we compute
ż

Brpxq

upyqdy “

ż r

0

˜

ż

BBtpxq

upyqdSpyq

¸

dt

“

ż r

0

tn´1ωnupxqdt

“
rnωn

n
upxq “ |Brpxq|upxq.

□

Proof of Theorem 2.2. Compared to the proof of Theorem 2.1, the only difference is in
line (2.2). □

The converse of this result is also true, i.e. if a function u P C2pΩq satisfies the mean-value
property, then it is harmonic.

Theorem 2.3 (Mean-value property implies harmonicity). If u P C2pΩq satisfies the mean-
value property

upxq “
1

|BBrpxq|

ż

BBrpxq

upyqdSpyq

for any closed ball Brpxq Ă Ω, then u is harmonic in Ω.
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Proof. We argue by contradiction. If u is not harmonic, then there exists x P Ω such that
∆upxq ‰ 0. Assume ∆upxq ą 0. Since u P C2pΩq, then there exists s ą 0 such that ∆upyq ą 0, for

all y P Bspxq and Bspxq Ă Ω. As in the proof of Theorem 2.1, we define the function

ϕprq :“
1

|BBrpxq|

ż

BBrpxq

upyqdSpyq, 0 ă r ď s,

and compute that

0 “ ϕ1prq “
1

rn´1ωn

ż

Brpxq

∆upyqdy ą 0,

a contradiction. □

In Theorem 2.3, we can drop the hypothesis u P C2pΩq and the claim remains true for any
u P C0pΩq, i.e., if a function u P C0pΩq satisfies the mean-value formula (2.1) for any closed ball
contained in Ω, then it is automatically C2pΩq and harmonic. More than that, it is of class C8pΩq.
To prove this result we recall first the notion of mollifier7.

Definition 2.2 (Standard mollifier). Let us consider the C8 function

ϕ : R` Ñ R, ϕprq :“

#

C exp
´

1
r2´1

¯

, if 0 ď r ă 1,

0, if r ě 1,

with C ą 0 chosen such that
ş

Rn ϕp}x}qdx “ 1. For any ε ą 0 we call standard ε-mollifier the
function

ηε : Rn Ñ R, ηεpxq “
1

εn
ϕ

ˆ

}x}

ε

˙

We can show that the ε-mollifier satisfies ηε P C8 pRnq,
ş

Rn ηεpxqdx “ 1, and supp pηεq “ Bεp0q

where, for a function f : Rn Ñ R, we recall that supppfq “ tx P R : fpxq ‰ 0u.

Definition 2.3 (Mollification). Let Ω Ă Rn be a domain and, for all ε ą 0, define the
subdomain Ωε :“ tx P Ω : distpx, BΩq ą εu. For f : Ω Ñ R locally intergrable, we call ε-
mollification of f the function fε : Ωε Ñ R,

fεpxq “ pηε ˚ fq pxq “

ż

Ω

ηεpx´ yqfpyqdy “

ż

Bεp0q

ηεpyqfpx´ yqdy

It can be proven that fε P C8 pΩεq (for all ε ą 0) and that the following properties hold:

(1) fε Ñ f a.e. in Ω as ε Ñ 0;
(2) if f P C0pΩq then fε Ñ f uniformly on any compact subset of Ω;
(3) if f P Lp

locpΩq then fε Ñ f in Lp
locpΩq.

Theorem 2.4. If u P C0pΩq satisfies the mean-value property

upxq “
1

|BBrpxq|

ż

BBrpxq

upyqdSpyq

for any closed ball Brpxq Ă Ω, then u P C8pΩq and is harmonic in Ω.

7 Also known as Friedrichs mollifier, after Kurt Otto Friedrichs [Fri44], or approximations of the identity
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Proof. Let us consider an ε-mollification of u, uε “ ηε ˚ u : Ωε Ñ R and recall that ηε is a
radial function, i.e. ηεpxq “ ε´nϕp}x}{εq and uε P C8 pΩεq for all ε ą 0. Then

uεpxq “

ż

Bεpxq

ηεpx´ yqupyqdy “

ż

Bεpxq

1

εn
ϕ

ˆ

}x´ y}

ε

˙

upyqdy

“

ż ε

0

˜

ż

BBtpxq

1

εn
ϕ

ˆ

t

ε

˙

upyqdSpyq

¸

dt

“
1

εn

ż ε

0

ϕ

ˆ

t

ε

˙

˜

ż

BBtpxq

upyqdSpyq

¸

dt

“
1

εn

ż ε

0

ϕ

ˆ

t

ε

˙

|BBtpxq|upxqdt (by mean-value property)

“
upxq

εn

ż ε

0

ϕ

ˆ

t

ε

˙

|BBtpxq| dt

“ upxq

ż

Bεp0q

ηεpyqdy

“ upxq.

Hence upxq “ uεpxq for all x P Ωε and we conclude that u P C8 pΩεq. Since ε ą 0 is arbitrary,
it follows that u P C8pΩq, hence, in particular, u P C2pΩq and, by Theorem 2.3, u is harmonic in
Ω. □

Remark 2.4. The stronger result of Theorem 2.4 does not extend to sub/super harmonic
functions, in general. If a function u P C0pΩq satisfies upxq ď 1

|Brpxq|

ş

Brpxq
upyqdy for any closed

Brpxq Ă Ω, it is not true, in general, that u P C8pΩq, nor that ´∆u ď 0 (the Laplacian of u might
not even exist).

We stress that the C8 regularity result for harmonic functions contained in Theorem 2.4 says
nothing about the behavior of u at the boundary of Ω.

Example 2.14. We can check that the functions

upx, yq “
x

x2 ` y2
, vpx, yq “ ´

y

x2 ` y2

are harmonic and C8 in the open unit disc

Ω “
␣

px, yq P R2 : px´ 1q2 ` y2 ă 1
(

.

However, both are unbounded as px, yq Ñ p0, 0q P BΩ.

2.2. Derivative estimates. An important feature of the Laplace equation is that we can
estimate the derivatives of a solution in a ball in terms of the solution on a larger ball.

Theorem 2.5 (Gradient estimate). Let us suppose that u P C2pΩq is harmonic in the open set
Ω and Brpxq Ť Ω. Then, for any 1 ď i ď n,

|Biupxq| ď
n

r
max

xPBrpxq

|upxq|.

Proof. Since u is smooth, differentiation of Laplace’s equation with respect to xi shows that
Biu is harmonic. Therefore, by the mean-value property for balls and the divergence theorem,

Biu “

 
Brpxq

Biupxqdx “
1

αnrn

ż

BBrpxq

upyq νipyqdSpyq.

Taking the absolute value of this equation and using the estimate
ˇ

ˇ

ˇ

ˇ

ˇ

ż

BBrpxq

uνi dS

ˇ

ˇ

ˇ

ˇ

ˇ

ď nαnr
n´1 max

Brpxq
|u|

we get the result. □
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One consequence of Theorem 2.5 is that a bounded harmonic function on Rn is constant.8

Corollary 2.1 (Liouville’s theorem). If u P C2 pRnq is bounded and harmonic in Rn, then u
is constant.

Proof. If |u| ď M on Rn, then Theorem 2.5 implies that

|Biupxq| ď
Mn

r

for any r ą 0. Taking the limit as r Ñ 8, we conclude that ∇u “ 0, so u is constant. □

We will also present an alternative proof of Corollary 2.1, due to [Nel61].

Alternative proof of Corollary 2.1. Let r ą 0 and consider x, y P Rn. The mean-value
property yields:

|upxq ´ upyq| “
1

|Br|

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Brpxq

upzqdz ´

ż

Brpyq

upzqdz

ˇ

ˇ

ˇ

ˇ

ˇ

ď M
|Brpxq △Brpyq|

|Br|

ÝÑ 0 as r Ñ `8.

Thus upxq “ upyq and we conclude that u is a constant from the arbitrariness of x, y P Rn. □

x y

Figure 1. Illustration of the argument in the alternative proof of Corollary 2.1.

Lect. 3, 24.09 We can also prove a derivative estimate in terms of the L1-norm of u.

Theorem 2.6. Let us suppose that u P C2pΩq is harmonic in the open set Ω Ă Rn and
Brpxq Ť Ω. Then, for any 1 ď j ď n,

|upxq| ď
1

αnrn
}u}L1pBrpxqq, (2.3)

ˇ

ˇBxj
upxq

ˇ

ˇ ď
2n`1n

αnrn`1
}u}L1pBrpxqq. (2.4)

Proof. By the mean-value property,

|upxq| “

ˇ

ˇ

ˇ

ˇ

ˇ

1

αnrn

ż

Brpxq

upyqdy

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

αnrn

ż

Brpxq

|upyq| dy “
1

αnrn
}u}L1pBrpxqq,

which yields (2.3).

8 This result is called Liouville’s theorem, after Joseph Liouville. Actually, this statement first appeared in
[Bôc03] and was later rediscovered in [Pic24]. On the other hand, Liouville, in [Lio80], proved that “A doubly periodic

function without poles is identically constant”. Finally, the statement of Liouville’s theorem about holomorphic

functions is actually due to Augustin-Louis Cauchy [Cau44], in response to [Lio80].
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To show (2.4), note that Bxj
u is harmonic. Thus, by the divergence theorem, we have

ˇ

ˇBxj
upxq

ˇ

ˇ “
1

αn

`

r
2

˘n

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Br{2pxq

Bxj
upyqdy

ˇ

ˇ

ˇ

ˇ

ˇ

“
2n

αnrn

ˇ

ˇ

ˇ

ˇ

ˇ

ż

BBr{2pxq

upyqνj dSpyq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
2n

αnrn

ż

BBr{2pxq

|upyq| dSpyq.

Within the integral, we can apply (2.3) over Br{2pyq, obtaining

ˇ

ˇBxj
upxq

ˇ

ˇ ď
2n

αnrn

ż

BBr{2pxq

2n

αnrn
}u}L1pBr{2pyqq dSpyq

“
22n

α2
nr

2n

ż

BBr{2pxq

}u}L1pBr{2pyqq dSpyq.

Since Br{2pyq Ă Brpxq, we have }u}L1pBr{2pyqq ď }u}L1pBrpxqq, which leads to

ˇ

ˇBxj
upxq

ˇ

ˇ ď
22n

α2
nr

2n

ż

BBr{2pxq

}u}L1pBrpxqq dSpyq “
22n

α2
nr

2n
}u}L1pBrpxqq

ż

BBr{2pxq

dy.

The claim follows by observing that
ż

BBr{2pxq

dy “ ωn

´r

2

¯n´1

“ nαn

´r

2

¯n´1

.

□

We can extend the estimate in Theorem 2.5 to higher-order derivatives.

Theorem 2.7 (Estimate on higher derivatives). Let us suppose that u P C2pΩq is harmonic
in the open set Ω and Brpxq Ť Ω. Then for any multi-index α P Nn

0 of order k “ |α|,

|Bαupxq| ď
nkek´1k!

rk
max
B̄rpxq

|u|.

Proof. We prove the result by induction on |α| “ k.
Base case: From Theorem 2.5, the result is true when k “ 1.
Induction step: Let us suppose that the result is true when |α| “ k. We will prove it for

|α| “ k ` 1.
If |α| “ k ` 1, we may write Bα “ BxiB

β where 1 ď i ď n and |β| “ k. For 0 ă θ ă 1, let
ρ :“ p1 ´ θqr. Then, since Bβu is harmonic and Bρpxq Ť Ω, Theorem 2.5 implies that

|Bαupxq| ď
n

ρ
max

xPBrpxq

|Bβupxq|.

Let y P Bρpxq. Then Br´ρpyq Ă Brpxq, and, using the induction hypothesis, we get

ˇ

ˇBβupyq
ˇ

ˇ ď
nkek´1k!

pr ´ ρqk
max

Br´ρpyq
|u| ď

nkek´1k!

rkθk
max
Brpxq

|u|.

We then deduce that

|Bαupxq| ď
nk`1ek´1k!

rk`1θkp1 ´ θq
max
Brpxq

|u|.

Choosing θ “ k{pk ` 1q and, using the inequality

1

θkp1 ´ θq
“

ˆ

1 `
1

k

˙k

pk ` 1q ď epk ` 1q,

we get

|Bαupxq| ď
nk`1ekpk ` 1q!

rk`1
max
Brpxq

|u|.

□
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A consequence of this estimate is that the Taylor series of u converges to u near any point.

Theorem 2.8 (Harmonic functions are analytic). If u P C2pΩq is harmonic in an open set Ω
then u is real-analytic in Ω.

Proof. Suppose that x P Ω and choose r ą 0 such that B2rpxq Ť Ω. Since u P C8pΩq, we
may expand it in a Taylor series with remainder of any order k P N to get

upx` hq “
ÿ

|α|ďk´1

Bαupxq

α!
hα `Rkpx, hq,

where we assume that |h| ă r.
The remainder9 is given by

Rkpx, hq “
ÿ

|α|“k

Bαupx` θhq

α!
hα,

for some 0 ă θ ă 1. We have to show that Rk Ñ 0 as k Ñ `8 (for a sufficiently small |h|). To
estimate the remainder, we use Theorem 2.7:

|Bαupx` θhq| ď
nkek´1k!

rk
max

B̄rpx`θhq

|u|.

Since |h| ă r, we have Brpx` θhq Ă B2rpxq; so, for any 0 ă θ ă 1, we have

max
Brpx`θhq

|u| ď M, M “ max
B2rpxq

|u|

and then

|Bαupx` θhq| ď
Mnkek´1k!

rk

Since |hα| ď |h|k when |α| “ k, we deduce

|Rkpx, hq| ď
Mnkek´1|h|kk!

rk

¨

˝

ÿ

|α|“k

1

α!

˛

‚

The multinomial expansion

nk “ p1 ` 1 ` ¨ ¨ ¨ ` 1qk “
ÿ

|α|“k

ˆ

k

α

˙

“
ÿ

|α|“k

k!

α!

shows that
ÿ

|α|“k

1

α!
“
nk

k!
.

In conclusion, we have

|Rkpx, hq| ď
M

e

ˆ

n2e|h|

r

˙k

and, thus, Rkpx, hq Ñ 0 as k Ñ 8 provided that |h| ă r
n2e . □

2.3. Maximum principles. We present now a second important property of harmonic and
sub/super-harmonic functions, the maximum principle.

9 Let us recall Taylor’s theorem: If u P Ck pBrpxqq and h P Brp0q, then

upx ` hq “
ÿ

|α|ďk´1

Bαupxq

α!
hα ` Rkpx, hq,

where the remainder is given by

Rkpx, hq “
ÿ

|α|“k

Bαupx ` θhq

α!
hα

for some 0 ă θ ă 1. We also recall that, for a multi-index α P Nn
0 , the factorial is defined as α! “ α1! . . . αk!
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2.3.1. Strong maximum principle. First, we present the strong maximum principle, which
states that a sub/super-harmonic function which attains an interior maximum/minimum is a trivial
constant function.

Theorem 2.9 (Strong maximum principle for sub-harmonic functions). Let us suppose that
Ω Ă Rn is a connected open set and u P C2pΩq. If u is sub-harmonic and attains a global maximum
value in Ω, then u is constant in Ω.

Proof. By assumption, u is bounded from above and attains its maximum in Ω. Let

M :“ max
Ω

u

and consider

F :“ tx P Ω : upxq “ Mu.

Then F is non-empty (by assumption, since the maximum is attained) and relatively closed in Ω
(since u is continuous). If x P F and Brpxq Ť Ω, then the mean value inequality for sub-harmonic
functions implies that  

Brpxq

rupyq ´ upxqsdy “

 
Brpxq

upyqdy ´ upxq ě 0.

Since u attains its maximum at x, we have upyq ´ upxq ď 0 for all y P Ω, and it follows that
upyq “ upxq in Brpxq. Therefore, F is open as well as closed. Since Ω is connected, and F is
non-empty, we must have F “ Ω, so u is constant in Ω.

If Ω is not connected, then u is constant in any connected component of Ω that contains an
interior point where u attains a maximum value.

□

Example 2.15. The function upxq “ |x|2 is sub-harmonic in Rn. It attains a global minimum
in Rn at the origin, but it does not attain a global maximum in any open set Ω Ă Rn. It does,
of course, attain a maximum in any bounded closed set Ω̄, but the attainment of a maximum at a
boundary point instead of an interior point does not imply that a sub-harmonic function is constant.

It follows immediately that super-harmonic functions satisfy a minimum principle, and har-
monic functions satisfy a maximum and minimum principle.

Theorem 2.10 (Strong maximum principle for harmonic functions). Let us suppose that Ω is
a connected open set and u P C2pΩq. If u is harmonic and attains either a global minimum or
maximum in Ω, then u is constant.

Proof. Any super-harmonic function u that attains a minimum in Ω is constant, since ´u
is sub-harmonic and attains a maximum. A harmonic function is both sub-harmonic and super-
harmonic. □

Example 2.16. The function

upx, yq “ x2 ´ y2

is harmonic in R2. It has a critical point at 0, meaning that Dup0q “ 0. This critical point is a
saddle-point, however, not an extreme value. Note also that

 
Brp0q

udxdy “
1

2π

ż 2π

0

`

cos2 θ ´ sin2 θ
˘

dθ “ 0,

as required by the mean-value property.

2.3.2. Weak maximum principle. Theorem 2.10 leads to a weak maximum principle for har-
monic functions, which states that the function is bounded inside a domain by its values on the
boundary. In physical terms, this means for example that the interior of a bounded region which
contains no heat sources or sinks cannot be hotter than the maximum temperature on the boundary
or colder than the minimum temperature on the boundary.
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Theorem 2.11 (Weak maximum principle). Let Ω be bounded and u P C2pΩq X C0pΩ̄q with
´∆u ď 0 (resp. ´∆u ě 0 ) in Ω. Then

max
xPΩ̄

upxq “ max
xPBΩ

upxq

ˆ

resp. min
xPΩ̄

upxq “ min
xPBΩ

upxq

˙

In particular, if u is harmonic in Ω, then

min
yPBΩ

upyq ď upxq ď max
yPBΩ

upyq, @x P Ω

Proof. Suppose u sub-harmonic in Ω and let M “ maxxPΩ̄ upxq which is finite since u P

C0pΩ̄q. If there exists y P Ω such that upyq “ M , then u is constant by strong maximum principle
and the thesis follows. If there is no such y P Ω, then upyq ă M “ maxxPBΩ upxq for all y P Ω.

□

Example 2.17. The harmonic function upxq “ x1 on the half-space tx P Rn : x1 ą 0u is equal
to zero on the boundary, but is positive in the domain. We cannot apply the maximum principle
because the domain is unbounded.

Remark 2.5. The maximum principle is a second-order phenomenon. The function u :

r0, 1s Ñ R defined as upxq “ 3x2 ´ 4x3 satisfies d4

dx4upxq “ 0 but x “ 1{2 is an interior max-
imum.

Corollary 2.2. Let u and v be harmonic and sub-harmonic in a bounded domain Ω, respec-
tively. If u ě v on BΩ, then u ě v in Ω.

Proof. We observe that v ´ u is sub-harmonic in Ω, and that v ´ u ď 0 on BΩ. By the weak
maximum principle, maxΩpv ´ uq ď 0, and the claim follows. □

2.3.3. Alternative proof of the weak maximum principle. We present also a proof by contra-
diction, which does not use the strong maximum principle and generalizes easily to more general
second-order elliptic equations.

Alternative proof of Theorem 2.11. We will split the proof into two cases.
Case 1: ´∆u ă 0 (with strict inequality). Let us consider the case ´∆u ă 0. Let us assume,

for the sake of finding a contradiction, that

max
xPΩ̄

upxq ą max
xPBΩ

upxq.

Then there exists y P Ω such that upyq “ M “ maxxPΩ̄ upxq and, since u P C2pΩq, we have
B2
xi
upyq ď 0 for i “ 1, . . . , n, which contradicts ´∆upyq ă 0.

Case 2: ´∆u ď 0. In this case, we introduce an auxiliary function v P C2pΩ̄q which satisfies
´∆vpxq ď α ă 0 for all x P Ω and some α ą 0. For instance, we can take

vpxq :“ |x|2 “

n
ÿ

i“1

x2i .

Then, for any ε ą 0, the function uε :“ u` εv satisfies

´∆uε ď ´2nε ă 0 in Ω

and (by the analysis in Case 1)
max
xPΩ̄

uεpxq “ max
xPBΩ

uεpxq.

Since Ω is bounded, there exists R ą 0 such that |x| ď R for all x P Ω. Then

max
Ω̄

u ď max
Ω̄

uε ď max
BΩ

uε ď max
BΩ

u` εR2,

and, letting ε Œ 0, we conclude. Finally, we note that the statement for super-harmonic functions,
´∆u ě 0 is proved in the same way (considering that, if u is sub-harmonic, then ´u is super-
harmonic).

In particular, for harmonic functions, we conclude

min
yPBΩ

upyq “ min
yPΩ̄

upyq ď upxq ď max
yPΩ̄

upyq “ max
yPBΩ

upyq, for all x P Ω.

□
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2.3.4. Application to the study of uniqueness for the Laplace equation. The weak maximum
principle can be used to prove uniqueness of solutions of the Dirichlet problem in bounded domains.
Indeed, let us assume that two solutions u1 and u2 exist. Then, v “ u1 ´ u2 satisfies the problem

#

´∆v “ 0, in Ω,

v “ 0, on BΩ.

By the weak maximum principle, we have v “ 0, hence u1 “ u2.
The same principle can be used to establish stability estimates for the solution. Indeed, if u is

a solution of the Dirichlet problem with boundary data g P C0pBΩq, then

min
yPBΩ

gpyq ď upxq ď max
yPBΩ

gpyq, for all x P Ω,

which implies
}u}C0pΩ̄q ď }g}C0pBΩq,

i.e., the C0-norm of the solution is controlled by the C0-norm of the data.
Similarly, if ug1 and ug2 solve the problems

#

´∆ug1 “ 0, x P Ω,

ug1 “ g1, x P BΩ,
and

#

´∆ug2 “ 0, x P Ω,

ug2 “ g2, x P BΩ,

with g1, g2 P C0pBΩq and }g1 ´ g2}C0pBΩq ď ε, then

}ug1 ´ ug2}C0pΩ̄q ď }g1 ´ g2}C0pBΩq ď ε,

i.e., small perturbations on the data imply small perturbations on the solution. Equivalently, the
solution depends continuously on the data (the map g ÞÑ ug is continuous in the C0 topology).

2.3.5. Uniqueness via energy methods. We mention also an alternative way, based on the so
called energy estimates, to establish uniqueness of solutions for either the Dirichlet, the Neumann,
or the Robin problems.

Energy estimates are obtained by multiplying the equation ´∆u “ 0 by u on both sides,
integrating over the domain and integrating by parts. If u1, u2 P C2pΩ̄q are two classical solutions
of the boundary value problem and we apply the procedure to their difference, w “ u1 ´u2, which
also satisfies the equation ´∆w “ 0, we obtain

0 “

ż

Ω

w∆w dx “ ´

ż

Ω

∇w ¨ ∇w dx`

ż

BΩ

wBνw dS (2.5)

(1) Dirichlet problem: Since w “ 0 on BΩ, from (2.5) yields
ż

Ω

|∇w|2 “

ż

BΩ

wBνw “ 0

Since Ω is connected, this implies that w is constant in Ω and being w “ 0 on BΩ we
conclude w “ u1 ´ u2 “ 0 in Ω̄.

(2) Neumann problem: Since Bw “ 0 on BΩ,
ż

Ω

|∇w|2 “

ż

BΩ

wBνw “ 0.

hence, again, w is constant in Ω. However, this time the value of the solution on the
boundary is not fixed, so the only conclusion that we can draw is that any two solutions
u1, u2 differ for a constant value or, equivalently, the solution to the Neumann problem is
unique up to an additive constant. We note, on the other hand, that the boundary datum
h cannot be chosen arbitrarily for the solution to exist and has to satisfy a compatibility
condition

ż

BΩ

h “

ż

BΩ

Bνu “

ż

Ω

∆u “ 0.

(3) Robin problem: Since Bνw ` αw “ 0 on BΩ,
ż

Ω

|∇w|2 ` α

ż

BΩ

w2 “ 0,

which yields |∇w| “ 0 in Ω and w “ 0 on BΩ, hence again w “ u1 ´ u2 “ 0 in Ω̄ and
uniqueness of solutions.
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2.3.6. Alternative proof of the strong maximum principle. Next we present another proof, based
on a key lemma due to10 Hopf11 [Hop27] and Olĕınik12 [Ole52] (see also [AN16; Naz12; PS04b;
PS04a] for further discussion) which does not rely on the mean-value property.

Lemma 2.1 (Zaremba–Hopf–Olĕınik’s boundary point lemma). Let us suppose that u P C2pΩqX

C1pΩ̄q is sub-harmonic in an open set Ω and upxq ă M for every x P Ω. If upx̄q “ M for some
x̄ P BΩ and Ω satisfies the interior sphere condition13 at x̄, then Bνupx̄q ą 0, where Bν is the
derivative in the outward unit normal direction to a sphere that touches BΩ at x̄.

Proof. By the interior sphere condition, there is a ball BRpxq Ă Ω with x̄ P BBRpxq. Let
M 1 :“ maxBR{2pxq

u ă M and define ε :“ M ´M 1 ą 0. We consider a perturbation

w “ u` εv ´M,

of u, where v P C2 pRnq to have the following properties:

(1) v “ 0 on BBRpxq;
(2) v “ 1 on BBR{2pxq;
(3) Bνv ă 0 on BBRpxq;
(4) ´∆v ď 0 in BRpxqzBR{2pxq.

Then w ď 0 on BBRpxq and BBR{2pxq, and ´∆w ď 0 in BRpxqzBR{2pxq. The weak maximum

principle for sub-harmonic functions in Theorem 2.11 implies that w ď 0 in BRpxqzBR{2pxq. Since
wpx̄q “ 0, it follows that Bνwpx̄q ě 0. Therefore,

Bνupx̄q “ Bνwpx̄q ´ εBνvpx̄q ą 0,

which proves the result.
Let us give an explicit example of the perturbation v (considering BRp0q, without loss of

generality):

vpxq “ c
”

e´α|x|
2

´ e´αR2
ı

,

where c, α are suitable positive constants. We have vpxq “ 0 on |x| “ R, and by choosing

c “
1

e´αR2{4 ´ e´αR2 ,

we ensure that vpR{2q “ 1. We compute

Bνvpxq “ ´2cα|x|e´α|x|
2

ă 0 on |x| “ R.

and

∆vpxq “ 2cα
“

2α|x|2 ´ n
‰

e´α|x|
2

.

Thus, by choosing α ě 2n
R2 , we obtain ´∆v ă 0 for R{2 ă |x| ă R.

□

Alternative proof of Theorem 2.10. As before, let

M :“ max
Ω̄

u

and define

F :“ tx P Ω : upxq “ Mu.

Then F is non-empty by assumption, and it is relatively closed in Ω since u is continuous.

10 A particular case, for the Laplace equation in a 3-dimensional domain, of this lemma is due to Stanis law

Zaremba [Zar10].
11 Eberhard Hopf (known for the Hopf maximum principle, the Hopf bifurcation theorem, the Wiener–Hopf

method in integral equations, and the Cole–Hopf transformation for solving the viscous Burgers equation), not to

be confused with Heinz Hopf (known for the Hopf–Rinow theorem, the Hopf fibration, and Hopf algebras.
12 Olga Olĕınik.
13 We say that an open set Ω satisfies the interior sphere condition at x̄ P BΩ if there is an open ball Brpxq

contained in Ω such that x̄ P BBrpxq. Note that the interior sphere condition is satisfied by open sets with a

C2-boundary, but it need not be satisfied by open sets with a C1-boundary, and in that case the conclusion of the

Hopf lemma may not hold.
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Let us suppose, for the sake of finding a contradiction, that F ‰ Ω. Then

G “ ΩzF

is non-empty and open, and the boundary BF XΩ “ BGXΩ is non-empty (otherwise F and G are
open and Ω is not connected).

Choose y P BGX Ω and let d “ distpy, BΩq ą 0. Then choose x P G such that |x´ y| ă d
2 and

let r “ distpx, F q, which satisfies 0 ă r ă d
2 , so Brpxq Ă G. Moreover, there exists at least one

point x̄ P BBrpxq X BG such that upx̄q “ M .
We therefore have the following situation: u is sub-harmonic in an open set G where u ă M ,

the ball Brpxq is contained in G, and upx̄q “ M for some point x̄ P BBrpxq X BG. Lemma 2.1 then
implies that

Bνupx̄q ą 0

where Bν is the outward unit normal derivative to the sphere BBrpxq.
However, since x̄ is an interior point of Ω and u attains its maximum value M there, we have

∇upx̄q “ 0, so Bνupx̄q “ ∇upx̄q ¨ ν “ 0, which is a contradiction.
If Ω is not connected, then u is constant in any connected component of Ω that contains an

interior point where u attains a maximum value. □

2.4. Harnack’s inequality. The maximum principle gives a basic pointwise estimate for
solutions of Laplace’s equation. Harnack’s inequality14 is another useful pointwise estimate. It
states that if a function is nonnegative and harmonic in a domain, then the ratio of the maximum
and minimum of the function on a compactly supported subdomain is bounded by a constant
that depends only on the domains. This inequality controls, for example, the amount by which a
harmonic function can oscillate inside a domain in terms of the size of the function.

Theorem 2.12 (Harnack’s inequality). Suppose that Ω1 ĂĂ Ω is a connected open set that is
compactly contained in an open set Ω. There exists a constant C, depending only on Ω and Ω1,
such that if u P CpΩq is a non-negative function with the mean-value property (i.e., a non-negative
harmonic function), then

sup
Ω1

u ď C inf
Ω1
u. (2.6)

Proof. Step 1. First, we establish the inequality for a compactly contained open ball. Sup-
pose that x P Ω and B4Rpxq ĂĂ Ω, and let u be any non-negative function with the mean-value
property in Ω. If y P BRpxq, then

upyq “

 
BRpyq

udx ď 2n
 
B2Rpxq

udx,

since BRpyq Ă B2Rpxq and u is non-negative. Similarly, if z P BRpxq, then

upzq “

 
B3Rpzq

udx ě

ˆ

2

3

˙n  
B2Rpxq

udx,

since B3Rpzq Ą B2Rpxq. It follows that

sup
BRpxq

u ď 3n inf
BRpxq

u.

Step 2. Suppose that Ω1 ĂĂ Ω and 0 ă 4R ă distpΩ1, BΩq. Since Ω̄1 is compact, we may cover
Ω̄1 by a finite number of open balls of radius R, where the number N of such balls depends only
on Ω1 and Ω. Moreover, since Ω1 is connected, for any x, y P Ω there is a sequence of at most N
overlapping balls tB1, B2, . . . , Bku such that Bi X Bi`1 ‰ H and x P B1, y P Bk. Applying the
above estimate to each ball and combining the results, we obtain that

sup
Ω1

u ď 3nN inf
Ω1
u.

□

14 Named after Carl Gustav Axel Harnack.
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Harnack’s inequality leads to an important convergence theorem for harmonic functions known
as Harnack’s principle or Harnack’s convergence theorem. Consider a monontone sequence of
continuous functions on Ω. The pointwise limit of such a sequence need not behave well—it could
be infinite at some points and finite at other points. Even if it is finite everywhere, there is no
reason to expect that our sequence converges uniformly on every compact subset of Ω. Harnack’s
principle shows that this kind of pathologies cannot occur for a monotone sequence of harmonic
functions.

Theorem 2.13 (Harnack’s convergence theorem). Suppose Ω is connected and tumumPN is
a pointwise increasing sequence of harmonic functions on Ω. Then either tumumPN converges
uniformly on compact subsets of Ω to a function harmonic on Ω, or umpxq Ñ 8 for every x P Ω.

Proof. Replacing um by um ´ u1 ` 1, we can assume that each um is positive on Ω (since
tumumPN is monotone increasing). Set upxq “ limmÑ8 umpxq for each x P Ω.

Case 1. First suppose u is finite everywhere on Ω. Let K be a compact subset of Ω. Fix x P K.
Harnack’s inequality shows there is a constant C P p1,8q such that

umpyq ´ ukpyq ď Cpumpxq ´ ukpxqq

for all y P K, whenever m ą k. This implies pumq is uniformly Cauchy on K, and thus um Ñ u
uniformly on K, as desired. Thanks to Problem 1 in Exercise Sheet 2, we have that the limit
function u is harmonic on Ω.

Case 2. Now suppose upxq “ 8 for some x P Ω. Let y P Ω. Then Harnack’s inequality, applied
to the compact setK “ tx, yu, shows that there is a constant C P p1,8q such that umpxq ď Cumpyq

for every m. Because umpxq Ñ 8, we also have umpyq Ñ 8, and so upyq “ 8. This implies that
u is identically 8 on Ω. □

3. An interlude about distributions

The theory of distributions15 is a powerful theory that allows one to extend the definition of
derivative of a function beyond the classical sense.

Let us consider a function f P C1pΩq and φ P C8
c pΩq, where C8

c pΩq denotes the space of C8

functions compactly supported in Ω. The integration by parts formula gives in this case
ż

Ω

Bf

Bxi
φdx “ ´

ż

Ω

f
Bφ

Bxi
dx

where the boundary term disappears since φ vanishes on BΩ. If now f R C1pΩq, the idea is to

define Bf
Bxi

via (2.21), i.e., we define Bf
Bxi

as an object that, when integrated (tested) against smooth
functions with compact support, returns

B

Bf

Bxi
, φ

F

:“ ´

ż

Ω

f
Bφ

Bxi
dx.

The symbol x¨, ¨y is used here to denote the action of the derivative Bf
Bxi

on the test function φ.

Definition 2.4 (Space of test functions). We denote by DpΩq, called the space of test func-
tions, the space C8

c pΩq of infinitely smooth functions with compact support in Ω, endowed with the
following notion of convergence: given tφkukPN Ă DpΩq and φ P DpΩq, we say that φk Ñ φ in
DpΩq as k Ñ 8 if

(1) there exists a compact subset K Ă Ω such that supppφkq Ă K for all k P N;
(2) Dαφk Ñ Dαφ uniformly in K, for all α P Nn.

One can construct a topology T on DpΩq which is consistent with the notion of convergence
given in Definition 2.4. The topological space pDpΩq, T q is complete, however non-metrizable.

Definition 2.5 (Distribution). A distribution T in Ω is a functional T : DpΩq Ñ R that
satisfies the following properties:

‚ linearity: xT, αφ` βψy “ αxT, φy ` βxT, ψy, for all φ,ψ P DpΩq, α, β P R;
‚ sequential continuity: xT, φky Ñ xT, φy whenever φk Ñ φ in DpΩq.

The set of all distributions is denoted by D1pΩq.

15 Laurent Schwartz was awarded the Fields Medal for his work on distributions in 1950 [Sch50; Sch51; Sch66].
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We say that two distributions T1, T2 P D1pΩq are equal if

xT1, φy “ xT2, φy, for all φ P DpΩq.

One can show that linear functionals on pDpΩq, T q are continuous if and only if they are
sequentially continuous. The space D1pΩq thus coincides then with the topological dual of DpΩq.

Example 2.18. As a first example of distribution, let us consider a locally integrable function
f P L1

locpΩq. To it, we can associate a distribution Tf : DpΩq Ñ R defined as

xTf , φy “

ż

Ω

fφdx, for all φ P DpΩq.

The distribution Tf is clearly a linear functional. It is also sequentially continuous in DpΩq. Indeed,
let φk Ñ φ in DpΩq; in particular, there exists K ĂĂ Ω such that suppφk Ă K, for all k. (Here
A ĂĂ B means that A has compact closure in B) and φk Ñ φ uniformly in K. It follows that

|xTf , φky ´ xTf , φy| “

ˇ

ˇ

ˇ

ˇ

ż

Ω

fpφk ´ φqdx

ˇ

ˇ

ˇ

ˇ

ď }f}L1pKq}φk ´ φ}L8pKq Ñ 0 as k Ñ 8.

With some abuse of notation, we will denote by f both the function in L1
locpΩq and the corre-

sponding distribution Tf P D1pΩq.

Example 2.19. As a second example of distribution, we define the Dirac mass or Dirac dis-
tribution at y, denoted δy: it is the distribution that satisfies

xδy, φy “ φpyq, for all φ P DpΩq.

Again, the functional δy : DpΩq Ñ R is clearly linear. It is also sequentially continuous in
DpΩq since, for φk Ñ φ in DpΩq, it holds

xδy, φky “ φkpyq Ñ φpyq “ xδy, φy.

We conclude then that δy P D1pΩq.

On the space of distributions, we can introduce the following notion of (weak) convergence.

Definition 2.6 (Convergence in distribution). Let tTkukPN Ă D1pΩq and T P D1pΩq. We say
that Tk Ñ T in D1pΩq as k Ñ 8 if

xTk, φy Ñ xT, φy, for all φ P DpΩq.

We now introduce the notion of distributional derivative.

Definition 2.7 (Distributional derivatives). Given a distribution T , for α P Nn, the α-
distributional derivative DαT P D1pΩq is defined as

xDαT, φy :“ p´1q|α| xT,Dαφy, for all φ P DpΩq.

Example 2.20. In the particular case f P L1
locpΩq, the distributional partial derivative Bxi

f P

D1pΩq is defined as

xBxif, φy :“ ´

ż

Ω

fBxiφdx, for all φ P DpΩq.

Lect. 5, 08.10

Proposition 2.1. Let pTkqně0 be a sequence in D1pΩq that converges to T P D1pΩq. Then, for
all α P Nn, pBαTkqkě0 converges to BαT in D1pΩq.

Proof. Let φ P C8
c pΩq. For all k P N,

xBαTk, φy “ p´1q|α|xTk, B
αφyÝÑp´1q|α|xT, Bαφy “ xBαT, φy as k Ñ 8.

□

Example 2.21. The distributional derivative of the Heaviside function16

Hpxq “

#

1 if x ě 0,

0 if x ă 0,

16 Named after Oliver Heaviside.
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is given by the Delta distribution δ0. Indeed,

xH 1, φy “ ´

ż

R
Hpxqφ1pxqdx “ ´

ż 8

0

φ1pxqdx “ φp0q, for all φ P DpΩq.

Example 2.22. The function defined for x ‰ 0 by fpxq “ log |x| and assigned any arbitrary
value at 0 belongs to L1

locpRq. Therefore, it can be associated with a distribution Tf P D1pRq. Let
us compute its distributional derivative. For φ P C8

c pRq, we have

xf 1, φy “ ´xf, φ1y “ ´

ż

R
log |x| ¨ φ1pxqdx

Due to the integrability of the logarithm at 0, we have

´

ż

R
log |x| ¨ φ1pxqdx “ ´ lim

εÑ0

ż

|x|ěε

log |x| ¨ φ1pxqdx

“ ´ lim
εÑ0

ˆ
ż ´ε

´8

logp´xq ¨ φ1pxqdx`

ż 8

ε

logpxq ¨ φ1pxqdx

˙

Integrating by parts yields
ż

|x|ěε

log |x| ¨ φ1pxqdx

“ ´

ż

|x|ěε

φpxq

x
dx` φp´εq logpεq ´ φpεq logpεq

“ ´

ż

|x|ěε

φpxq

x
dx´ 2ε logpεq

ˆ

φp´εq ` φpεq

2ε

˙

.

Since ε logpεq Ñ 0 as ε Ñ 0 and φ1 is bounded, we conclude that

xf 1, φy “ ´ lim
εÑ0

ż

|x|ěε

log |x| ¨ φ1pxqdx

“ lim
εÑ0

ż

|x|ěε

φpxq

x
dx “:

B

p.v.

ˆ

1

x

˙

, φ

F

.

The expression p.v. stands for principal value. If f has an isolated singularity at the origin
but is C8 away from it, then the principal-value distribution of f is defined by

xp. v.pfq, φy “ lim
εÑ0

ż

RnzBεp0q

fpxqφpxqdx, for all φ P DpΩq.

Such a limit may not be well-defined, or, being well-defined, it may not necessarily define a distri-
bution. It is, however, well-defined if f is a continuous homogeneous function of degree ´n.

Example 2.23. Let u P L1
locpRq, and define, for x P R, vpxq “

şx

0
uptqdt. Then v is a

continuous function on R and v1 “ u in the sense of distributions.
Let us first show the continuity of v. Let x0 P R and let txkuně0 be a sequence converging to

x0. We have, for all n ě 0,

vpxkq “

ż

R
χp0,xkqptquptqdt

By Lebesgue’s dominated convergence theorem, the sequence pvpxkqqně0 converges to
ş

R χp0,x0qptquptqdt “ vpx0q, proving the continuity of v at x0, and thus on R.
Let φ P C8

c pRq and assume that supppφq Ă r´A,As. Using Fubini’s theorem, we have:

xv1, φy “ ´xv, φ1y “ ´

ż A

´A

ˆ
ż x

0

uptqdt

˙

φ1pxqdx

“ ´

ż A

0

ż x

0

uptqφ1pxqdtdx`

ż 0

´A

ż 0

x

uptqφ1pxqdtdx

“ ´

ż A

0

uptq

˜

ż A

t

φ1pxqdx

¸

dt`

ż 0

´A

uptq

ˆ
ż t

´A

φ1pxqdx

˙

dt

“

ż A

0

uptqφptqdt`

ż 0

´A

uptqφptqdt “

ż

R
uptqφptqdt “ xu, φy.
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Thus, v1 “ u in D1pRq.

Proposition 2.2. Let a P C8pΩq and let T P D1pΩq. Then, defining the product aT as

xaT, φy :“ xT, aφy, for all φ P DpΩq,

we have Bxi
paT q “ pBxi

aqT ` aBxi
T .

Example 2.24. The i-th partial derivative of a distribution Tf with f P C1pRnq is the distri-
bution TBxi

f .

Example 2.25. Let f be a piecewise C1 function on ra, bs. This means that there exists a
subdivision of ra, bs into intervals rai, ai`1s such that f is C1 on rai, ai`1s. Suppose that, at every
point where it is not continuous, f admits a right limit and a left limit. To fix notations, we let
a0 “ a, an`1 “ b, and a1, . . . , an P pa, bq. We denote by fpa`

i q and fpa´
i q the right and left limits

of f at the point ai, respectively. As a convention, we let fpa´
0 q “ fpa`

n`1q “ 0.
Then, we claim that

pTf q1 “ Tf 1 `

n`1
ÿ

i“1

pfpa`
i q ´ fpa´

i qqδai
.

First, we note that the function f defines a distribution, of which we calculate the derivative,
which we denote by pTf q1. By definition, for φ P C8

c pRq, we have

xpTf q1, φy “ ´xTf , φ
1y “ ´

ż b

a

fpxqφ1pxqdx

Thus,
ż b

a

fpxqφ1pxqdx “

n
ÿ

i“0

ż ai`1

ai

fpxqφ1pxqdx.

Integrating by parts, we get
ż ai`1

ai

fpxqφ1pxqdx “ rfpxqφpxqs
ai`1

ai
´

ż ai`1

ai

f 1pxqφpxqdx,

which yields

´

ż b

a

fpxqφ1pxqdx “

n
ÿ

i“0

“

fpa`
i qφpa`

i q ´ fpa´
i`1qφpa´

i`1q
‰

`

ż ai`1

ai

f 1pxqφpxqdx.

Hence,

xpTf q1, φy “ xTf 1 , φy ` fpa`
n qφpa`

n q ´ fpa´
0 qφpa´

0 q `

n
ÿ

i“1

pfpa`
i q ´ fpa´

i qqφpaiq,

which implies our claim.

Remark 2.6. To regularize a distribution, we can use the convolution with the standard mol-
lifier: if T P D1pΩq, then

xT ˚ ηε, φy “ xT, ηεp´¨q ˚ φy, for all φ P DpΩq.

It can be shown that the convolution of a smooth, compactly supported function and a distribution
is a smooth function, namely

x ÞÑ pT ˚ ηεqpxq “ xT, ηεp¨ ´ xqy.

Furthermore, we note that
T ˚ ηε Ñ T in D1pΩq as ε Ñ 0.

Remark 2.7. The standard mollifier ηε from Definition 2.2 converges in distribution to the
Dirac delta as ε Ñ 0: for every φ P DpΩq and y P Ω, we have

φεpyq “

ż

Ω

ηεpx´ yqφpxqdx Ñ φpyq as ε Ñ 0;

hence
xηεp¨ ´ yq, φy “ φεpyq Ñ φpyq “ xδy, φy as ε Ñ 0.

i.e., ηεp´yq Ñ δy in D1pΩq.



24 CHAPTER 2. LAPLACE EQUATION AND HARMONIC FUNCTIONS

Proposition 2.3. Let T P D1pRdq, φ P C8
c pRdq, and α P Nd. Then,

BαpT ˚ φq “ pBαT q ˚ φ “ T ˚ pBαφq.

More generally, for any decomposition of the multi-index α “ α1 ` α2, we have

BαpT ˚ φq “ pBα1T q ˚ pBα2φq.

Proposition 2.4. Let T P D1pRq. We have T 1 “ 0 if and only if T is constant.

Proof. If we assume that T is constant, it is clear that T 1 “ 0 since φ has compact support.
Conversely, suppose that T 1 “ 0. Then, for all φ P C8

c pRq,

xT 1, φy “ ´xT, φ1y “ 0.

Thus, T vanishes on all functions of the form φ1, where φ P C8
c pRq. Let us characterize these

functions. We show that
`

ψ “ φ1, with φ P C8
c pRq

˘

ðñ

ˆ

ψ P C8
c pRq and

ż

R
ψpxqdx “ 0

˙

. (3.1)

The direct implication is clear because φ has compact support. Conversely, we set φpxq “
şx

´8
ψptqdt with suppψ P r´M,M s. Then φ P C8pRq. If x ă ´M , then φpxq “ 0 (since ψ

vanishes on s ´ 8, xs in this case). If x ą M , then (since
ş`8

x
ψptqdt “ 0 and

ş

R ψptqdt “ 0 by
assumption),

φpxq “

ż x

´8

ψptqdt` 0 “

ż x

´8

ψptqdt`

ż `8

x

ψptqdt “

ż

R
ψptqdt “ 0.

Thus, suppφ Ă r´M,M s and φ P C8
c pRq and, of course, ψ “ φ1.

We will use the equivalence (3.1) to conclude the proof. Let χ P C8
c pRq with

ş

R χpxqdx “ 1.
Let φ P C8

c pRq. Let us define

ψpxq “ φpxq ´

ˆ
ż

R
φptqdt

˙

χpxq, x P R.

Then ψ P C8
c pRq and

ş

R ψptqdt “ 0. Consequently, there exists φ P C8
c pRq such that ψ “ φ1 and

xT, ψy “ 0. Thus, by the linearity of T ,

xT, φy “ xT, χy ¨

ż

R
φpxqdx “ C ¨ x1, φy “ xC,φy

with C :“ xT, χy being a constant. Thus, we conclude that T is constant. □

4. Distributional Laplacian and Weyl’s lemma

Thanks to Definition 2.7, we can say that any distribution admits distributional derivatives of
any order. In particular, the distributional Laplacian of T P D1pΩq will be defined as

x∆T, φy “ xT,∆φy, for all φ P DpΩq.

We will say that a distribution u P D1pΩq is a distributional solution of the Laplace equation if

x∆u, φy “ 0 for all φ P DpΩq.

We conclude by stating the fundamental lemma of the calculus of variations. This tool is
typically used to transform the distributional formulation of a differential problem into the strong
formulation using a priori knowledge on the regularity of the distributional solution.

Lemma 2.2 (Fundamental lemma of the calculus of variations). Let Ω Ă Rn, and suppose
f P CpΩq. Suppose also that

ż

Ω

fφdx “ 0

for every φ P C8
c pΩq. Then f “ 0 on Ω.

Remark 2.8. One could state a more general version of the fundamental lemma of the calculus
of variations without requiring continuity, e.g., assuming f P L1

locpΩq and reach the conclusion
f “ 0 almost everywhere. The argument is done by approximation, but we skip the details.
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Proof. For the sake of finding a contradiction, suppose that f is strictly positive at some
point x̄ P Ω. By continuity, there exists some neighborhood U “ }x ´ x̄} ă δ where f is positive.
Consider the function

φpxq “

#

0, if x R U,
śn

j“1 e
´1{pxj´x̄jq

2

, if x P U,

which is continuous and infinitely differentiable on Rn, and satisfies φpxq “ 0 for x P BΩ, so it
satisfies the hypotheses required above. Furthermore,

ż

Ω

fφdx “

ż

Ω

fφdx ą 0,

which is a contradiction. □

Example 2.26. If u P C8pΩq is a distributional solution of the Laplace equation, then, for
every φ P DpΩq,

x∆u, φy “ xu,∆φy “

ż

Ω

u∆φdx “

ż

Ω

∆uφdx

where we first used some abuse of notation to identify the distribution u with the L1
loc function u

and then we integrated by parts. By Lemma 2.2, we now conclude that ∆u “ 0 in Ω.

We can now strengthen the regularity result for harmonic functions shown in Section 2.1 and
prove Weyl’s lemma,17 which states that every distributional solution of Laplace’s equation is
smooth.

Theorem 2.14 (Weyl’s lemma). Let u P D1pΩq and suppose that x∆u, φy “ 0 for all φ P DpΩq.
Then u P C8pΩq and is harmonic in Ω.

Proof. Let ηε be the standard mollifier and consider uε :“ u ˚ ηε. Then uε P C8 and
∆uε “ p∆uq ˚ ηε “ 0. So uε, being smooth and harmonic, satisfies the mean-value property.
Hence, arguing as in the proof of Theorem 2.4,

uε ˚ ηpxq “

ż 8

0

rn´1ηprqdr

ż

BB1p0q

uεpx´ ryqdSpyq

“ ωnuεpxq

ż 8

0

rn´1ηprqdr “ uεpxq

ż

Rn

ηpyqdy

“ uεpxq

(recall that here η denotes the standard mollified with ε “ 1). Letting ε Ñ 0, we get u “ u˚η P C8.
Moreover, by the fundamental lemma of the calculus of variations, ´∆u “ 0 (i.e., u is harmonic
in the classical sense). □

Alternative proof of Theorem 2.14. Let tηεuεą0 be the standard mollifier. Recall that
ηpxq “ ηp|x|q “ θp|x|2q Fix Ω1 Ă Ω and put ε0 “ distpΩ1, BΩq. For each x P Ω1 and ε P p0, ε0q the
function

y ÞÑ ηεpx´ yq

belongs to DpΩq and so we may consider xu, ηεpx´ ¨qy.
We compute

d

dε

ˆ

ε´nη

ˆ

x´ y

ε

˙˙

“ ´nε´n´1η

ˆ

x´ y

ε

˙

´ ε´n∇η
ˆ

x´ y

ε

˙

¨
x´ y

ε

“ ´
1

εn`1
div

ˆ

x´ y

ε
η

ˆ

x´ y

ε

˙˙

Defining

Θptq :“
1

2

ż 8

t

θpsqds,

we note that

´z ηpzq “ ´z θp|z|2q “ ∇
`

Θp|z|2q
˘

,

17 Named after Hermann Weyl [Wey40]. See also [Str08].
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and then we arrive at

d

dε

ˆ

ε´nη

ˆ

x´ y

ε

˙˙

“ ´
1

εn`1
div

ˆ

x´ y

ε
η

ˆ

x´ y

ε

˙˙

“ ∆y

˜

ε1´nΘ

˜

ˆ

x´ y

ε

˙2
¸¸

.

Since, by assumption, u is harmonic in the sense of distributions, we deduce
C

u,∆y

˜

ε1´nΘ

˜

ˆ

x´ y

ε

˙2
¸¸G

“ 0.

Now, by considering difference quotients, we see that

d

dε
xu, ηεpx´ ¨qy “

B

u,
d

dε
ηεpx´ ¨q

F

“

C

u,∆y

˜

ε1´nΘ

˜

ˆ

x´ y

ε

˙2
¸¸G

“ 0.

Integrating between ε and ε1 (such that ε, ε1 P p0, ε0q), we deduce

xu, ηεpx´ ¨qy “ xu, ηε1px´ ¨qy

For φ P DpΩ1q, we have

xu ˚ ηε, φy “

ż

Ω1

xu, ηεpx´ ¨qyφpxqdx “

ż

Ω1

xu, ηε1px´ ¨qyφpxqdx.

Hence, as ηε ˚ φ Ñ φ in DpΩq as ε Ñ 0`, we get

xu, φy “

ż

Ω1

xu, ηε1px´ ¨qyφpxqdx.

Consequently, u|Ω1 P C8pΩ1q, and since Ω1 was arbitrary, this concludes the proof. □

5. Fundamental solution of the Laplace equation

Motivated by the fact that harmonic functions are invariant under rotations (Problem 4 in
Exercise Sheet 1), we want to construct a radially symmetric solution upxq “ vp|x|q, with v :
R` Ñ R, to the Laplace equation in Rn.

We denote by r “ |x| “
a

řn
i“1 x

2
i the radial coordinate and note that

Bxi
r “

xi
r
, B2

xi
“

1

r
´
x2i
r3
, i “ 1, . . . , n.

Hence,

Bxiupxq “ v1prq
xi
r
, B2

xi
upxq “ v2prq

x2i
r2

` v1prq

ˆ

1

r
´
x2i
r3

˙

.

Then the Laplace equation is reduced to

∆upxq “

n
ÿ

i“1

B2
xi
u “ v2prq ` v1prq

n´ 1

r
“ 0. (5.1)

If v1 ‰ 0, we can solve the ODE (5.1) by noticing that

v2

v1
“

1 ´ n

r
,

which yields

ln v1 “ p1 ´ nq ln r,

that is

v1 “
C

rn´1
.

Integrating once more, we conclude that (5.1) admits the non-constant solutions of the form

vprq “

$

’

&

’

%

C1r ` C2 if n “ 1,

C1 log r ` C2, if n “ 2,

C1r
2´n ` C2, if n ě 3.
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We define the fundamental solution or free-space Green’s function Φ : Rn Ñ R of the Laplace
equation18 by

Φpxq :“

$

’

&

’

%

´ 1
2 |x|, if n “ 1,

´ 1
2π log |x|, if n “ 2,

1
npn´2qαn|x|n´2 , if n ě 3.

(5.2)

The fundamental solution satisfies

´∆Φ “ δ0

in the sense of distributions in Rn, as we will show in Theorem 2.15.
Lect. 6, 15.10

Remark 2.9 (Some properties of the fundamental solution). We collect here some properties
of the fundamental solution Φ of the Laplace equation.

(1) Φ is smooth away from the origin: Φ P C8pRnzt0uq. In particular, for x ‰ 0, we compute
that

Bxi
Φpxq “ ´

1

nαn

xi
|x|n

, (5.3)

B2
xixj

Φpxq “
xixj

αn|x|n`2
´

δij
nαn|x|n

(5.4)

(here

δij “

#

0, if i ‰ j,

1, if i “ j.

is the Kronecker19 delta).
(2) From (5.4), we deduce that

∆Φ “ 0 if x ‰ 0,

so Φ is harmonic in any open set that does not contain the origin.
(3) The function Φ is homogeneous of degree ´n ` 2, its first derivative is homogeneous of

degree ´n` 1, and its second derivative is homogeneous of degree n.
(4) Φ is unbounded as x Ñ 0 with Φpxq Ñ 8 as |x| Ñ 0. Nevertheless, Φ and ∇Φ are locally

integrable. For example, the local integrability of BiΦ follows from (5.3) by noticing that

|Bxi
Φpxq| ď

Cn

|x|n´1
,

holds and that |x|n´1 is locally integrable on Rn.
(5) The second partial derivatives of Φ are not locally integrable, however, since they are of

the order |x|´n as x Ñ 0.
(6) For x ‰ 0,

∇Φ ¨
x

|x|
“ ´

1

nαn

1

|x|n´1
. (5.5)

Thus we get the following surface integral over a sphere centered at the origin with normal
ν “ x

|x|
:

´

ż

BBrp0q

∇Φ ¨ ν dS “ 1. (5.6)

18 In general, the fundamental solution Φ of a linear partial differential operator L is the distributional solution
of LΦ “ δ0. The existence of fundamental solutions for every linear partial differential equation with constant
coefficients was first proved independently by Bernard Malgrange [Mal56, Th. 1] and Leon Ehrenpreis [Ehr54,

Th. 6]. Before 1950, when the first edition of [Sch50] appeared, the question about the existence of a fundamental
solution was not even raised, since there did not exist a generally accepted definition of a fundamental solution. By

now there are several proofs of Malgrange–Ehrenpreis’ theorem, which can be roughly classified into three categories:

(1) non-constructive proofs using Hahn–Banach’s theorem; (2) constructive proofs via explicit formulae; (3) proofs
by solving a “division problem”. See [OW96; Ros91; Wag09] for further information.

19 Named after Leopold Kronecker.
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(7) As follows from the divergence theorem and the fact that Φ is harmonic in BRp0qzBrp0q,
the integral (5.6) does not depend on r. The surface integral is not zero, however, as
it would be for a function that was harmonic everywhere inside Brp0q, including at the
origin.

(8) The normalization of the flux integral in (5.6) to one accounts for the choice of the mul-
tiplicative constant in the definition of Φ.

Theorem 2.15. We have

´∆Φ “ δ0

in the sense of distributions, i.e.,

´xΦ,∆φy “ xδ0, φy

for all φ P DpRnq.

We will prove Theorem 2.15 for n ě 2. The case n “ 1 is left as an exercise. Indeed, it
follows directly from Problem 4 of Exercise Sheet 4: after computing the distributional derivatives
pT|¨|q

1 “ Tsign and pTHq1 “ δ0 (where H “ χr0,`8q is the Heaviside function), one only has to notice
the relationship between sign and Heaviside function, namely sign “ 2H ´ 1, to conclude that

´∆

ˆ

´
1

2
|x|

˙

“ δ0

in the sense of distributions.

Proof. Let TΦ be the distribution associated with the fundamental solution Φ (which is an
L1
loc-function). That is, let TΦ : DpRnq Ñ R be defined as

xTΦ, gy “

ż

Rn

Φpxqgpxqdx, for all g P DpRnq.

We want to show that

xTΦ,∆gy “ ´xδ0, gy “ ´gp0q,

which means ´∆Φ “ δ0 in Rn in the sense of distributions.
By definition,

x∆TΦ, gy “ xTΦ,∆gy “

ż

Rn

Φpxq∆gpxqdx.

Now we would like to apply the divergence theorem, but Φ has a singularity at x “ 0. We get
around this by breaking up the integral into two pieces:

pTΦ,∆gq “

ż

Rn

Φpxq∆gpxqdx

“

ż

Bδp0q

Φpxq∆gpxqdx`

ż

RnzBδp0q

Φpxq∆gpxqdx

“: I ` J.

Step 1. We look first at term I. For n “ 2,

ˇ

ˇ

ˇ

ˇ

ˇ

´

ż

Bδp0q

1

2π
ln |x|∆gpxqdx

ˇ

ˇ

ˇ

ˇ

ˇ

ď C }∆g}L8pRnq

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bδp0q

ln |x|dx

ˇ

ˇ

ˇ

ˇ

ˇ

ď C

ż 2π

0

ż δ

0

| ln r| r dr dθ

“ C

ż δ

0

| ln r| r dr

“ Cδ2| ln δ|.
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For n ě 3,
ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bδp0q

1

npn´ 2qαn

1

|x|n´2
∆gpxqdx

ˇ

ˇ

ˇ

ˇ

ˇ

ď C }∆g}L8pRnq

ż

Bδp0q

1

|x|n´2
dx

ď C

ż δ

0

˜

ż

BBrp0q

1

|y|n´2
dSpyq

¸

dr

“ C

ż δ

0

1

rn´2

˜

ż

BBrp0q

dSpyq

¸

dr

“ C

ż δ

0

1

rn´2
nαnr

n´1 dr

“ nαnC

ż δ

0

r dr

“
nαnC

2
δ2.

Therefore, as δ Ñ 0`, |I| Ñ 0.
Step 2. Next, we look at term J . Applying the divergence theorem, we have

ż

RnzBδp0q

Φpxq∆xgpxqdx “

ż

RnzBδp0q

∆xΦpxqgpxqdx
looooooooooooooomooooooooooooooon

“0

´

ż

BpRnzBδp0qq

BνΦpxqgpxqdSpxq `

ż

BpRnzBδp0qq

ΦpxqBνgpxqdSpxq

“ ´

ż

BpRnzBδp0qq

BνΦpxqgpxqdSpxq `

ż

BpRnzBδp0qq

ΦpxqBνg dSpxq

“: J1 ` J2,

using the fact that ∆xΦpxq “ 0 for x P RnzBδp0q.
Step 2a. We first look at term J1. Since g vanishes as |x| Ñ 8, we only need to calculate the

integral over BBδp0q where the normal vector ν is the outer normal to RnzBδp0q. From (5.3), we
have

∇xΦpxq “ ´
x

nαn|x|n
.

The outer unit normal to RnzBδp0q on Bδp0q is given by ν “ ´ x
|x|
, so the normal derivative of Φ

on Bδp0q is given by

BνΦ “

ˆ

´
x

nαn|x|n

˙

¨

ˆ

´
x

|x|

˙

“
1

nαn|x|n´1

(as in (5.5)). Therefore, J1 can be written as

´

ż

BBδp0q

1

nαn|x|n´1
gpxqdSpxq “ ´

1

nαnδn´1

ż

BBδp0q

gpxqdSpxq.

Since g is a continuous function, then we conclude

´

 
BBδp0q

gpxqdSpxq Ñ ´gp0q as δ Œ 0.

Step 2b. Lastly, we look at term J2. Using the fact that g vanishes as |x| Ñ 8, we only need
to integrate over BBδp0q. Since g P DpRnq, we compute

ˇ

ˇ

ˇ

ˇ

ˇ

ż

BBδp0q

ΦpxqBνgpxqdSpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď }Bνg}L8pBBδp0qq

ż

BBδp0q

|Φpxq| dSpxq ď C

ż

BBδp0q

|Φpxq| dSpxq.
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For n “ 2,
ż

BBδp0q

|Φpxq|dSpxq “ C

ż

BBδp0q

| ln |x|| dSpxq

ď C| ln δ|

ż

BBδp0q

dSpxq

“ C| ln δ|p2πδq ď Cδ| ln δ|.

For n ě 3,
ż

BBδp0q

|Φpxq| dSpxq “ C

ż

BBδp0q

1

|x|n´2
dSpxq

ď
C

δn´2

ż

BBδp0q

dSpxq

“
C

δn´2
nαnδ

n´1 ď Cδ.

In both cases, we have |J2| Ñ 0 as δ Œ 0.
Step 3. Combining these estimates, we see that

ż

Rn

Φpxq∆xgpxqdx “ lim
δÑ0`

pI ` J1 ` J2q “ ´gp0q,

which concludes the proof. □

5.1. Solution of the Poisson equation. We can use the fundamental solution Φ to build
a solution to the Poisson equation.

Theorem 2.16. Suppose that f P C8
c pRnq, and let

u “ Φ ˚ f

where Φ is the fundamental solution (5.2). Then u P C8pRnq and

´∆u “ f in Rn.

Proof. By a change of variables, we write

upxq “

ż

Rn

Φpx´ yqfpyqdy “

ż

Rn

Φpyqfpx´ yqdy.

Let ei :“ p. . . , 0, 1, 0, . . .q be the unit vector in Rn with a 1 in the ith slot. Then

u px` heiq ´ upxq

h
“

ż

Rn

Φpyq

„

f px` hei ´ yq ´ fpx´ yq

h

ȷ

dy.

Now f P C2 implies

f px` hei ´ yq ´ fpx´ yq

h
Ñ Bxi

fpx´ yq, as h Ñ 0, uniformly in Rn.

Therefore,

Bxiupxq “

ż

Rn

ΦpyqBxifpx´ yqdy.

Similarly, we also obtain

B2
xixj

upxq “

ż

Rn

ΦpyqB2
xixj

fpx´ yqdy.

In particular,

∆xupxq “

ż

Rn

Φpyq∆xfpx´ yqdy “

ż

Rn

Φpyq∆yfpx´ yqdy.

Since f P DpRnq, we apply Theorem 2.15 and conclude that

´∆u “ xδx, fy “ fpxq.

□



CHAPTER 3

Classical solutions to the Dirichlet problem

1. Dirichlet problem for the Laplace equation

The fundamental solution Φ of the Laplace equation studied in Section 5 can be used to derive
a representation formula for the point value of a C2pΩq function in terms of its Laplacian and
boundary values.

Theorem 3.1 (Green’s representation formula). Let Ω Ă Rn be a bounded domain with C1

boundary. For any u P C2pΩ̄q and y P Ω, we have

upyq “

ż

Ω

Φpx´ yqp´∆upxqq dx

´

ż

BΩ

BνxΦpx´ yqupxqdSpxq `

ż

BΩ

Φpx´ yqBνupxqdSpxq,

(1.1)

where Bνx denotes the normal derivative with respect to the x variables, i.e. Bνxp¨q “ ∇xp¨q ¨ ν “
řn

i“1
B

Bxi
p¨qνi.

The starting point of the proof is Green’s integration by parts identity,

ż

Ω

pv∆u´ u∆vqdx “

ż

BΩ

pvBνu´ uBνvqdS. (1.2)

which holds for every u, v P C2pΩ̄q and a bounded domain with C1 boundary. Now fix y P Ω. To
prove the (1.1), the idea is to take v “ Φp¨ ´ yq in (1.2). However, x ÞÑ Φpx ´ yq is not C2pΩ̄q

and, in particular, a singularity occurs at x “ y. So we need to be more careful: to circumvent
this difficulty, we write the identity on the domain Ωε “ ΩzBεpyq, with ε small enough so that
Bεpyq Ă Ω, and let ε Ñ 0.

Proof. Exploiting the fact that Φpx´ yq P C2pΩ̄εq and ∆xΦpx´ yq “ 0 in Ωε, we have

ż

Ωε

∆upxqΦpx´ yqdx
looooooooooooomooooooooooooon

“:C

´

ż

BΩ

pBνupxqΦpx´ yq ´ upxqBνΦpx´ yqq dSpxq

“

ż

BBεpyq

BνupxqΦpx´ yqdSpxq

loooooooooooooooooomoooooooooooooooooon

“:A

´

ż

BBεpyq

upxqBνΦpx´ yqdSpxq

loooooooooooooooooomoooooooooooooooooon

“:B

.

We show now that A Ñ 0, B Ñ upyq, and C Ñ
ş

Ω
∆upxqΦpx´ yqdx as ε Ñ 0.

For A, we estimate

|A| “ |Φpεq|

ˇ

ˇ

ˇ

ˇ

ˇ

ż

BBεpyq

BνudS

ˇ

ˇ

ˇ

ˇ

ˇ

ď |Φpεq|εn´1ωn sup
Bεpyq

|∇u| ÝÑ 0 as ε Ñ 0.

31
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For B, we estimate the difference |B ´ upyq|:

|B ´ upyq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ż

BBεpyq

`

upyq ` ∇u
`

y ` θxpx´ yq
˘

¨ px´ yq
˘

BνΦpx´ yqdSpxq ´ upyq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

upyq

˜

ż

BBεpyq

BνΦpx´ yqdSpxq ´ 1

¸
ˇ

ˇ

ˇ

ˇ

ˇ

looooooooooooooooooooooooomooooooooooooooooooooooooon

“0

`

ˇ

ˇ

ˇ

ˇ

ˇ

ż

BBεpyq

∇upy ` θxpx´ yqq ¨ px´ yqBνΦpx´ yqdSpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
Bεpyq

|∇u|ε

ż

BBεpyq

|BνΦpx´ yq| dSpxq ÝÑ 0 as ε Ñ 0..

Notice that, in the second line, the fact that
ş

BBεpyq
BνΦpx ´ yqdSpxq “ 1 is due to ν being the

normal outgoing vector to the domain ΩzBεpyq, hence the normal ingoing vector to Bεpyq.
Finally, for the term C, since Φpx´ yq is integrable in Ω for any y P Ω, we have

ˇ

ˇ

ˇ

ˇ

C ´

ż

Ω

∆upxqΦpx´ yqdx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bεpyq

∆upxqΦpx´ yqdx

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
Bεpyq

|∆u|

ż

Bεpyq

|Φpx´ yq| dx

ď sup
Bεpyq

|∆u|

ż ε

0

sn´1ωn|Φpsq| ds ÝÑ 0 as ε Ñ 0.

□

Remark 3.1. In these notes, we will use also the notation Φpx, yq :“ Φpx ´ yq “ Φp|x ´ y|q,
as needed.

Applying Green’s representation formula to a test function φ P DpΩq, we obtain

φpyq “

ż

Ω

Φpx, yq∆φpxqdx

that is,

∆xΦpx, yq “ δy,

which is consistent with Theorem 2.15.

We may draw the following consequence from the Green representation formula: If one knows
∆u, then u is completely determined by its values and those of its normal derivative on BΩ. In
particular, a harmonic function on Ω can be reconstructed from its values on BΩ. One may then
ask conversely whether one can construct a harmonic function for arbitrary given values on BΩ for
the function and its normal derivative.

Definition 3.1 (Green function). A function G “ Gpx, yq, defined for x, y P Ω̄, with x ‰ y,
is called a Green function for Ω if

(1) Gpx, yq “ 0 for x P BΩ,
(2) hpx, yq :“ Gpx, yq ´ Φpx, yq is harmonic in x P Ω (thus in particular also at the point

x “ y).

Roughly speaking, (if it exists) Gpx, yq “ Φpx, yq ` hpx, yq, where h solves
#

´∆xhpx, yq “ 0, x P Ω,

hpx, yq “ ´Φpx, yq, x P BΩ.
(1.3)

In other words, G solves, for y P Ω,
#

´∆xGpx, yq “ δ0px´ yq, x P Ω,

Gpx, yq “ 0, x P BΩ.
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We now assume that a Green function Gpx, yq for Ω exists and put vpxq “ hpx, yq in Green’s
identity (see Appendix 2) and subtract the result from (1.1), obtaining

upyq “ ´

ż

BΩ

upxqBνx
Gpx, yqdSpxq ´

ż

Ω

Gpx, yq∆upxqdx. (1.4)

We call Kpx, yq :“ ´BνxGpx, yq the Poisson kernel of Ω.
In particular, formula (1.4) implies that a harmonic u is already determined by its boundary

values u|BΩ. This construction now raises the converse question. If we are given functions g : BΩ Ñ

R and f : Ω Ñ R, can we obtain a solution of the Dirichlet problem for the Poisson equation
#

´∆upxq “ fpxq, x P Ω,

upxq “ gpxq, x P BΩ,
(1.5)

by the representation formula

upyq “ ´

ż

BΩ

φpxqBνx
Gpx, yqdSpxq `

ż

Ω

fpxqGpx, yqdx (1.6)

derived above? One implication is already proven: if u is a solution, it does satisfy this formula.
For the other implication (namely, if u satisfies the formula (1.6), then it is a solution of (1.5)), we
will see that, essentially, the answer is yes, under suitable hypotheses.

We start our analysis by first considering the case f ” 0 and then extending it to a general f .
In special domains, the Green function can be explicitly constructed.

1.1. Dirichlet problem for the Laplace operator in a ball. We start with the case
Ω :“ BRp0q and consider the problem

#

´∆upxq “ 0, x P BRp0q,

upxq “ gpxq, x P BBRp0q.
(1.7)

The idea is to construct h by a proper reflection of Φp¨ ´ yq.
For y P Rn, we put

ỹ :“

#

R2

|y|2
y if y ‰ 0,

8 if y “ 0,

(ỹ is the point obtained from y by reflection across BBRp0q.) We then put

Gpx, yq :“

#

Φp|x´ y|q ´ Φ
´

|y|

R |x´ ỹ|

¯

, if y ‰ 0,

Φp|x|q ´ ΦpRq, if y “ 0.
(1.8)

For x ‰ y, Gpx, yq is harmonic in x, since, for y P BRp0q, the point ỹ lies in the exterior
of BRp0q. The function Gpx, yq has only one singularity in BRp0q, namely, at x “ y, and this
singularity is the same as that of Φpx, yq. The formula

Gpx, yq “ Φ
´

`

|x|2 ` |y|2 ´ 2x ¨ y
˘1{2

¯

´ Φ

˜

ˆ

|x|2|y|2

R2
`R2 ´ 2x ¨ y

˙1{2
¸

then shows that for x P BBRp0q, i.e., |x| “ R, we have indeed Gpx, yq “ 0.
Therefore, the function G defined by (1.8) is the Green function of BRp0q. Equation (1.8) also

implies the symmetry

Gpx, yq “ Gpy, xq.

We compute the partial derivatives of the Green function:

BxiGpx, yq “
1

ωn

ˆ

´
xi ´ yi
|x´ y|n

`
Rn´2

|y|n´2

xi ´ ỹi
|x´ ỹ|n

˙

;

since |y|

R |x´ ỹ| “ |x´ y| whenever x P BBRp0q, we have, in particular,

BxiGpx, yq “ ´

´

1 ´
|y|

2

R2

¯

xi

ωn|x´ y|n
, x P BBRp0q.
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Finally, since x ¨ ν “ R, for x P BBRp0q, we have

Bνx
Gpx, yq “ ´

R2 ´ |y|2

ωnR|x´ y|n
, x P BBRp0q, y P BRp0q.

In conclusion, we construct then a candidate solution to the Dirichlet problem (1.7) on the
ball BRp0q with the formula

upyq “
R2 ´ |y|2

ωnR

ż

BBRp0q

gpxq

|x´ y|n
dSpxq. (1.9)

The function

Kpx, yq “ ´Bνx
Gpx, yq “

R2 ´ |y|2

ωnR|x´ y|n

is called the Poisson kernel for the ball BRp0q and formula (1.9) is called the Poisson integral
formula for the ball BRp0q.

Theorem 3.2. Given g P C0 pBBRp0qq, the function

upyq “

$

&

%

ż

BBRp0q

Kpx, yqgpxqdSpxq, y P BRp0q,

gpyq, y P BBRp0q,

belongs to C2pBRp0qq X C0pBRp0qq and is the unique solution of (1.7).

Proof. In the proof we use the shorthand notation BR “ BRp0q. Since Gpx, yq “ Gpy, xq for
all x, y P BR, with x ‰ y, the function y ÞÑ Gpx, yq is harmonic in BR for any x P BBR, and so is
y ÞÑ BνxGpx, yq. It follows that u is harmonic (and C8) in BR.

To prove that u P C0
`

BR

˘

, we first observe that
ż

BBR

Kpx, yqdSpxq “ 1, for all y P BRp0q.

We want to show that, for all y0 P BBR, we have limBRQyÑy0
upyq “ g py0q.

Since g is continuous at y0, we have: for all ε ą 0, there exists δε ą 0 such that |gpxq ´ g py0q| ď

ε for any x P BBR such that |x´ y0| ď δε. Then

|upyq ´ g py0q| “

ˇ

ˇ

ˇ

ˇ

ż

BBR

Kpx, yq pgpxq ´ g py0qq dSpxq

ˇ

ˇ

ˇ

ˇ

ď

ż

BBR

Kpx, yq |gpxq ´ g py0q| dSpxq

“

ż

BBRXBδε py0q

Kpx, yq |gpxq ´ g py0q| dSpxq

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

“:A

`

ż

BBRzBδε py0q

Kpx, yq |gpxq ´ g py0q| dSpxq

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

“:B

,

where we have dropped the absolute value on the Poisson kernel since Kpx, yq ą 0 for y P BR and
x P BBR.

The first term can be bounded as

A ď ε

ż

BBRXBδε py0q

Kpx, yqdSpxq ă ε, for all y P BR

For the second term, we take |y ´ y0| ď δ̃ ă δε{2 and |x´ y0| ě δε. Then |x ´ y| ą δε{2 and,

since |y0| “ R, also R ´ |y| ď |y ´ y0| ď δ̃ so that

Kpx, yq “
R2 ´ |y|2

ωnR|x´ y|n
ď

pR ` |y|qpR ´ |y|q2n

Rωnδnε
ă

2R2nδ̃

Rωnδnε
, for all x R Bδε py0q, y P Bδ̄ py0q
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and, setting M “ }g}C0pBBRq, we have

B ă 2M

ż

BBRzBδε py0q

Kpx, yqdSpxq ď
2n`2MRn´1

δnε
δ̃.

Taking now δ̃ ă min
!

δε
2 ,

εδnε
2n`2MRn´1

)

we conclude that

|upyq ´ g py0q| ă 2ε if |y ´ y0| ă δ̃,

which proves the continuity of u in y0. □

1.2. Dirichlet problem for the Laplace operator in a half-plane. Let Ω :“ Rn
` “

tx “ px1, ¨ ¨ ¨ , xnq P Rn : xn ą 0u. We want to build the Green function of the Laplacian in Rn
`.

Again, the idea is to construct the function h by suitable refleciton of Φp¨ ´ yq. For any
y “ py1, ¨ ¨ ¨ , yn´1, ynq P Rn

`, we define the reflected point ỹ :“ py1, ¨ ¨ ¨ , yn´1,´ynq R Rn
`.

We claim that hpx, yq :“ ´Φpx´ ỹq solves
#

´∆hpx, yq “ 0, x P Rn
`,

hpx, yq “ ´Φpx´ yq, x P BRn
`,

and Gpx, yq :“ Φpx´ yq ´ Φpx´ ỹq is the Green function of the Laplace equation in Rn
`.

Moreover, since

BxiGpx, yq “
1

ωn

„

´
xi ´ yi
|x´ y|n

`
xi ´ ỹi
|x´ ỹ|n

ȷ

“

#

0, if i ‰ n,
2yn

ωn|x´y|n
, if i “ n,

the Poisson Kernel is

Kpx, yq :“ ´BνxGpx, yq “ BxnGpx, yq “
2yn

ωn|x´ y|n
,

and a candidate solution to the Dirichlet problem in Rn
` is given by the following Poisson integral

formula

upyq “

ż

BRn
`

Kpx, yqgpxqdSpxq.

We report these results in the following theorem (whose proof is left as an exercise in Exercise
Sheet 6 for n “ 2).

Theorem 3.3. Let g P C0
c

`

BRn
`

˘

and define

upyq :“

$

’

&

’

%

2yn
ωn

ż

BRn
`

gpxq

|x´ y|n
dx, y P Rn

`,

gpyq, y P BRn
`.

Then, u P C2
`

Rn
`

˘

X C0
`

Rn
`

˘

is the unique solution to the Dirichlet problem
$

’

&

’

%

´∆u “ 0, x P Rn
`,

u “ g, x P BRn
`,

lim|x|Ñ8 upxq “ 0.

Lect. 7, 29.10

NB: 22.10 is in the

semester break
1.3. Dirichlet problem for the Laplace operator in a general domain via Perron’s

method. We now consider an open bounded set Ω Ď Rn and the Dirichlet problem
#

´∆u “ 0, x P Ω,

u “ g, x P BΩ.
(1.10)

In general, we will not be able to find a closed form expression for the Green function. However,
we can still ask a more fundamental question whether the solution to such Dirichlet problem exists
for any g P C0pBΩq. Observe that by the weak maximum principle, if a solution of this problem
exists, it is unique (see Section 2.3.4).
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If the answer to the existence question is positive, this will, in particular, ensure the existence
of the Green function for the domain Ω. To answer this question, we construct a solution using
Perron’s method.1

1.3.1. Sub-harmonic functions and harmonic lifting. As a first step, we revisit the characteriza-
tion of sub-harmonic functions via the mean-value property by suitably generalizing Theorem 2.4.2

Proposition 3.1. Let u P CpΩq. Then the following properties are equivalent.

(1) For all x P Ω and Brpxq ĂĂ Ω,

upxq ď

 
Brpxq

upyqdy

(2) For all B ĂĂ Ω and for all h : B̄ Ñ R which satisfies
#

´∆h “ 0, x P B,

h ě u, x P BB,

we have hpxq ě upxq for all x P B̄.
(3) For all x P Ω and Brpxq ĂĂ Ω,

upxq ď

 
BBrpxq

upyqdSpyq.

(4) For all x P Ω and for all ϕ P C2pΩq such that u ´ ϕ has a local maximum in x, then
´∆ϕpxq ď 0.

Proof. p1q ùñ p2q. We have that u´h is a sub-harmonic function in B such that u´h ď 0
in BB. We conclude by the weak maximum principle.

p2q ùñ p3q. Let x P Ω and Brpxq ĂĂ Ω and let h be the solution to
#

´∆h “ 0, y P Brpxq,

h “ u, y P BBrpxq.

Then by the Poisson integral formula (or by the property of spherical mean for harmonic functions)
hpxq “

ffl
BBrpxq

hpyqdSpyq. Moreover by (2), hpxq ě upxq, so we conclude.

p3q ùñ p1q. Let x P Ω and Brpxq ĂĂ Ω. Then, by the formula of integral over spheres and
by (iii),

ż

Brpxq

upyqdy “

ż r

0

ż

BBspxq

upyqdSpyqds ě

ż r

0

upxqnωns
n´1 ds “ upxqωnr

n,

which gives the conclusion.
p3q ùñ p4q. Let x P Ω, ϕ P C2pΩq and Brpxq Ď Ω such that upyq ´ ϕpyq ď upxq ´ ϕpxq for all

y P Brpxq. Since the inequality holds for every y P Brpxq we get, by (3), that, for all s P p0, rq,

upxq ´ ϕpxq ě

 
BBspxq

upyqdSpyq ´

 
BBspxq

ϕpyqdSpyq ě upxq ´

 
BBspxq

ϕpyqdSpyq. (1.11)

We define, for s P p0, rq,

ψpsq “

 
BBspxq

ϕpyqdSpyq “

 
BB1p0q

ϕpx` szqdSpzq.

We note that limsÑ0` ψpsq “ ϕpxq and so, owing to (1.11),

ϕpxq “ ψp0q ď ψpsq, for all s P p0, rq. (1.12)

Moreover, we compute, using the divergence theorem,

ψ1psq “

 
BB1p0q

Dϕpx` szq ¨ z dSpzq “
1

nωnsn´1

ż

Bspxq

∆ϕpyqdy “
s

n

 
Bspxq

∆ϕpyqdy.

Let us assume now by contradiction that (4) is not verified, then there exists δ ą 0 such that
´∆ϕpxq ą 2δ ą 0. By continuity, there exists s ą 0 such that ´∆ϕpyq ą δ for all y P Bspxq. This

1 Introduced by Oskar Perron [Per23].
2 Point (iv) in Proposition 3.1 may be restated as “u is sub-harmonic in Ω in the sense of viscosity solutions”,

where we refer to the theory of viscosity solutions introduced in [CL83; CEL84; CIL92].
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gives that ψ1ptq ă ´δt{n for all t ď s, so ψptq ą ψpsq for all t P p0, sq and then, integrating in

t P p0, sq, ψpsq ´ ψp0q ă ´ δs2

2n ă 0, which contradicts (1.12).
p4q ùñ p3q. Assume by contradiction that (3) is not verified. So there exists x P Ω and there

exists r ą 0 such that

upxq ą

 
BBrpxq

upyqdSpyq.

Let us fix c ą 0 sufficiently small such that

upxq ´

 
BBrpxq

upyqdSpyq ą c r2. (1.13)

Let U P C2pBrpxqq X CpBrpxqq to be the unique solution to the Dirichlet problem
#

´∆U “ 0, y P Brpxq,

Upyq “ upyq, y P BBrpxq.

Then, Upyq “ upyq on BBrpxq and (by Poisson’s integral formula) Upxq “
ffl

BBrpxq
upyqdSpyq.

Define

ϕpyq :“ Upyq ` c
`

r2 ´ |y ´ x|2
˘

.

Then upyq ´ϕpyq “ 0 if y P BBrpxq, ϕ P C2pBrpxq and upxq ´ϕpxq “ upxq ´Upxq ´ cr2 ą 0 by the
choice of c in (1.13). Then max

Brpxq
upyq ´ ϕpyq ą 0 and there exists a point z P Brpxq (we stress

that the important thing is that z is in the interior of Brpxq) such that upzq´ϕpzq “ max
Brpxq

upyq´

ϕpyq. By (4), this implies that ´∆ϕpzq ď 0, but ∆ϕpzq “ ∆Upzq ´ c∆
`

|z ´ x|2
˘

“ 0 ´ 2cn ă 0,
and so we reached a contradiction. □

We now define, given a sub-harmonic function u in Ω, its harmonic lifting in B Ă Ω.

Definition 3.2 (Harmonic lifting). Let u be a sub-harmonic function in Ω and B ĂĂ Ω.
Then the harmonic lifting of u in B is the function U which coincides with u in ΩzB and in B
solves the Dirichlet problem

#

´∆U “ 0, x P B,

U “ u, x P BB.

Remark 3.2. By weak maximum principle, we have that u ď U in Ω.

Remark 3.3. Let U be the harmonic lifting of u in B, then U is a sub-harmonic function.
It is sufficient to show that U satisfies property (2) in Proposition 3.1. Let B1 ĂĂ Ω and h be a
function satisfying

#

´∆h “ 0, x P B1,

h ě U, x P BB1.

We consider two cases:

(1) if B1 XB “ H, then it is true that h ě u “ U since u is sub-harmonic.
(2) if B1 XB ‰ H, we split the domain into two parts: in B1z pB1 XBq, we have h ě u “ U

(arguing as in the previous case); in B1 X B, we have that h and U are both harmonic,
and moreover on B pB1 XBq , h ě U , so we conclude by the weak maximum principle.

(3)

1.3.2. Existence result. Let Ω be a bounded open set and g P L8pBΩq. Let us define

Sg :“ tv P CpΩ̄q : v sub-harmonic in Ω and vpxq ď gpxq for x P BΩu.

Remark 3.4. The set Sg is not empty and bounded from above. In fact the constant function
v :“ infBΩ g is in Sg. Moreover, by the weak maximum principle, we get v ď supBΩ g for all v P Sg.

Theorem 3.4. Let Ω be an open and bounded set and g P L8pBΩq. Then the function

Hgpxq :“ sup
vPSg

vpxq

is harmonic in Ω.
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Proof. Fix x P Ω. We want to show that Hg is harmonic in x. Let vn be a sequence in Sg

such that vnpxq Ñ Hgpxq.
Step 1. Without loss of generality, we can assume that vn is equi-bounded. Indeed, if it is not

the case we consider the sequence ṽn “ max pvn, infBΩ gq. Note that ṽn P Sg, ṽn is equi-bounded
(since infBΩ g ď ṽn ď supBΩ g) and ṽnpxq Ñ Hgpxq (since vnpxq ď ṽnpxq ď Hgpxqq. So vn is an
equi-bounded sequence in Sg with vnpxq Ñ Hgpxq.

Step 2. We fix r ą 0 such that Brpxq ĂĂ Ω and consider for every n the harmonic lifting
Vn of vn in Brpxq. Then Vn P Sg and Vn is equi-bounded (by the weak maximum principle and
the fact that vn is equi-bounded) and Vnpxq Ñ Hgpxq. By Ascoli–Arzelà’s theorem for harmonic
functions (see Problem 1 in Exercise Sheet 7),3 possibly passing to a subsequence (that we still
denote with Vn) we get that Vn Ñ V uniformly in Bρpxq for every ρ ă r. Moreover, we have that
V is harmonic in Brpxq, V pyq ď Hgpyq for every y P Brpxq, and V pxq “ Hgpxq.

Step 3. We claim now that there exists ρ ă r such that V pyq “ Hgpyq for every y P Bρpxq. If
it is true, we are done, since then Hg is harmonic in x.

We assume that the claim is not true, so for every ρ we find z P Bρpxq such that V pzq ă Hgpzq.
We prove that this leads to a contradiction.

Take a sequence wn P Sg such that wnpzq Ñ Hgpzq. As above, we can assume wlog that wn

is equi-bounded. Moreover we can also assume that wn ě Vn for every n. Indeed, if it is not the
case we consider the sequence w̃n “ max pwn, Vnq. Note that w̃n P Sg, ṽn is equi-bounded (since
wn and Vn are equi-bounded) and w̃npzq Ñ Hgpzq (since wnpzq ď w̃npzq ď Hgpzq).

For every n we consider the harmonic lifting Wn of wn in Bρpxq. Then Wn P Sg,Wn is equi-
bounded, Vnpyq ď Wnpyq (in particular Vnpxq ď Wnpxq ď Hgpxq). By Ascoli–Arzelà’s theorem for
harmonic functions, eventually passing to a subsequence (that we still denote withWn) we get that
Wn Ñ W uniformly in Bρ1 pxq for every ρ1 ă ρ. Moreover, W is harmonic in Bρpxq, V pyq ď W pyq

for every y P Bρpxq,W pxq “ Hgpxq “ V pxq and W pzq “ Hgpzq ą V pzq.
So, V,W are two harmonic functions in Bρpxq such that V ´ W ď 0, and V pxq ´ W pxq “ 0.

This implies, by the strong maximum principle, that V ” W in Bρpxq, in contradiction with the
fact that W pzq ą V pzq. □

1.3.3. Study of the boundary behaviour. In Theorem 3.4, we proved that, for every bounded
function g, there exists a harmonic function Hg P C8pΩq which solves

#

´∆Hg “ 0, x P Ω

Hg ě g, x P BΩ.

Now, we assume that g P CpBΩq and we wonder under which conditions Hg is the solution of the
Dirichlet problem (1.10), in particular under which conditions we can prove that, for all x0 P BΩ,

lim
xÑx0,
xPΩ

Hgpxq “ g px0q . (1.14)

Indeed, if we prove this identity, we get that Hg P C8pΩq X CpΩ̄q and coincides with g on the
boundary of Ω.

Remark 3.5. Observe that in general we cannot expect that (1.14) holds true for every Ω
bounded. Let Ω :“ tx P R2 : 0 ă |x| ă 1u and g P CpBΩq such that gpxq “ 0 for |x| “ 1 and
gp0q “ 1. Then Hg ” 0 (and, in particular, it is not a solution of the Dirichlet problem with
boundary data g since Hgp0q “ 0 ‰ 1). In fact, 0 P Sg, so Hgpxq ě 0 for every x P Ω. Let v P Sg.
So, by the weak maximum principle, vpxq ă 1 for every x P Ω. Fix δ ą 0 and ε “ εpδq P p0, 1q such
that ´δ logpεq ą 1. Consider now the function wδpxq “ ´δ log |x|. This is harmonic in ε ă |x| ă 1,
moreover wδpxq “ 0 if |x| “ 1 and wδpxq “ ´δ log ε ą 1 if |x| “ ε. This implies, by the weak
maximum principle, that vpxq ď wδpxq for every ε ď |x| ď 1. Moreover, wδpxq ą 1 ě vpxq also
for every |x| ď ε. Then wδpxq ě vpxq for every 0 ă |x| ď 1 and every v P Sg, which implies that
Hgpxq ď ´δ log |x| for every 0 ă |x| ď 1, and every δ ą 0, which gives the conclusion letting δ Ñ 0.

The continuity assumption (1.14) on the boundary is connected with the geometric properties
of the boundary through the concept of barrier.

3 Alternatively, we can define a new sequence tṼn :“ maxjďn Vjun, which is now a non-decreasing sequence;

we can then use Harnack’s convergence theorem.
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Definition 3.3 (Local barrier). Let x0 P BΩ. Then w is a local barrier at x0 if there exists a
neighborhood U of x0 such that w P CpΩ X Uq and

(1) w is super-harmonic in Ω X U ;
(2) w px0q “ 0 and wpxq ą 0 for every x P Ω X Uz tx0u.

A barrier w in x0, is a local barrier with U “ Rn.

Remark 3.6. Given a local barrier in x0, it is always possible to construct a barrier in x0 as
follows: given r ą 0 such that B2r px0q ĂĂ U and m :“ infpUzBrpx0qqXΩ w ą 0, let

wpxq :“

#

mintm, wpxqu, x P B px0, 2rq X Ω,

m, elsewhere.

Then w is a barrier in x0.

Definition 3.4 (Regular points). Let x0 P BΩ. Then x0 is a regular point (with respect to
the Laplacian), if there exists a (local) barrier at x0.

Theorem 3.5. Let Ω be an open bounded set, g P L8pBΩq. Let x0 P BΩ. If x0 is regular (with
respect to the Laplacian) and g is continuous in x0, then (1.14) holds in x0.

Proof. Fix ε ą 0, then there exists δ ą 0 such that, for all y P BΩ, with |y ´ x0| ď δ, we
have |gpyq ´ g px0q | ď ε (since g is continuous). Let M :“ }g}C0pBΩq. Let w be a barrier in x0. We
have that K :“ minxPΩ̄zBδpx0q wpxq ą 0. Let us define

wpxq :“ gpξq ´ ϵ´
2M

K
wpxq, w̄pxq :“ gpξq ` ϵ`

2M

K
wpxq.

We have that w is sub-harmonic and, for x P BΩ, wpxq ď gpxq. Indeed,

if |x´ ξ| ă δ, wpxq “ gpξq ´ gpxq ´ ϵ
loooooooomoooooooon

ă0

´
2M

K
wpxq ` gpxq ď gpxq,

if |x´ ξ| ě δ, wpxq ď gpxq ´ ϵ` gpξq ´ gpxq ´
2M

K
wpxq

loooooooooooooomoooooooooooooon

ď0 since wpxqěK

ď gpxq.

Similarly, we can prove that w̄ is super-harmonic and w ě gpxq on BΩ.
In conclusion, wpxq ď Hgpxq ď w̄pxq, for all x P Ω̄, which implies

|Hgpxq ´ gpx0q| ď ϵ`
2M

K
wpxq.

Since wpxq Ñ 0 as x Ñ x0, there exists δ̃ ą 0 such that wpxq ă K
2M ϵ for all |x ´ x0| ď δ̃, and

|upxq ´ gpx0q| ď 2ϵ for all x P Ω̄ such that |x´ x0| ď δ̃ which proves the continuity of u in x0.
□

From Theorem 3.4 and Theorem 3.5 we get the following result.

Corollary 3.1. For every g P CpBΩq, the Dirichlet problem (1.10) admits a unique solution
u P C8pΩq X CpΩ̄q if and only if all the boundary points of Ω are regular.

Proof. Step 1. If g is continuous and all the points of the boundary are regular, then Hg is
a solution of (1.10), and it is unique by weak maximum principle.

Step 2. If (1.10) admits a solution for every continuous boundary data, take x0 P BΩ and the
solution u to (1.10) with gpxq “ |x´ x0|. Then the solution u to (1.10) is a barrier in x0. □

1.3.4. Regular boundary points. It remains open the question: for which domains Ω all the
boundary points are regular? Sufficient conditions for this property to hold can be stated in terms
of local geometric (for n ą 2) or topological (for n “ 2) properties of the boundary.4

We mention some of these conditions.

4 The detailed study of this subject was initiated by Norbert Wiener [Wie24], and then extended to uniformly

elliptic divergence-form equations with smooth coefficients by Werner Püschel [Püs32], and then to uniformly elliptic

divergence form equations with bounded measureable coefficients by Walter Littman, Guido Stampacchia, and Hans
Weinberger [LSW63]. We refer also to the useful book [Lan72] for further information and context. For fully-

nonlinear equations (and, in particular, equations not in divergence form), see [LL23] and the references discussed

therein.
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Definition 3.5 (Exterior ball condition). Let Ω be a open set of Rn. We say that Ω has
the exterior ball condition if, at every point x P BΩ, there exists y P RnzΩ and r ą 0 such that

Brpyq Ă RnzΩ̄ and Brpyq X Ω̄ “ txu.

Remark 3.7. Observe that if Ω is convex, then the exterior ball condition is satisfied, due to
the Hahn Banach separation theorem. Indeed at every point of BΩ it is possible to construct an
hyperplane passing through that point and such that Ω is entirely contained in one of the two half
spaces in which the space is divided by the hyperplane.

Observe that Ω of class C1 is not sufficient to assure that the exterior ball condition is satisfied.
For example, consider Ω “

␣

px1, x2q P R2 : x2 ą x21 log |x1|
(

. Then Ω is of class C1 but in p0, 0q

the exterior ball condition is not satisfied. Indeed to prove this, let fpxq “ x2 log |x| and gpxq “?
r2 ´ x2 ´ r, for r ą 0 to be fixed. Note that fp0q “ gp0q “ 0. If the exterior ball condition were

satisfied in p0, 0q, then there would exist r ą 0 such that fpxq ą gpxq for every x P p´r, rq, x ‰ 0.
But this is not the case, since f 1pxq ă g1pxq for x Ñ 0`and f 1pxq ą g1pxq for x Ñ 0´.

If Ω is of class C2, then we can show that it satisfies the exterior ball condition (also the
interior ball condition).

Proposition 3.2. Let Ω be a bounded open set and x0 P BΩ such that in x0 the exterior ball
condition is satisfied. Then x0 is regular (with respect to the Laplacian).

Proof. Let Ω be a bounded open set and x0 P BΩ such that in x0 it is satisfied the exterior
ball condition: there exists y0 P RnzΩ and r0 ą 0 such that B̄ py0, r0q X Ω̄ “ tx0u. Then x0 is
regular (with respect to the Laplacian).

It can be checked that a barrier is given by

wpxq :“ wpxq “

#

1
rn´2 ´ 1

|x´y0|n´2 n ą 2

log |x´y0|

r0
n “ 2.

□

Definition 3.6 (Exterior cone condition). Let Ω be a bounded open set. We say that Ω has
the exterior cone condition if, at every point x P BΩ, there exists a cone5 C with intC ‰ H and a
neighborhood U of x such that such that px` Cq X U Ă RnzΩ.

Proposition 3.3. Let Ω be a bounded open set and x0 P BΩ such that in x0 the exterior cone
condition is satisfied. Then x0 is regular (with respect to the Laplacian).

Remark 3.8. It is possible to prove that if Ω is of class C1, then at every boundary point of
Ω the exterior cone condition (and also the interior cone condition) is satisfied.

Actually, in order for the (exterior and interior) cone condition to be satisfied it is sufficient
that the boundary of Ω is Lipschitz.

Remark 3.9. In dimension n “ 2, much more irregular domains can be considered. It can
be proved that x0 P BΩ is a regular boundary point if it is the endpoint of a single arc lying in the
exterior of Ω.

2. Dirichlet problem for the Poisson equation

We consider now the Dirichlet problem for the Poisson equation
#

´∆u “ f, x P Ω,

u “ g, x P BΩ.
(2.1)

We could again take inspiration from the Green representation formula and construct a candidate
solution as

upyq “

ż

Ω

Gpx, yqfpxqdx´

ż

BΩ

Bνx
Gpx, yqgpxqdSpxq,

where G is the Green function of the Laplace equation for the domain Ω. We know already by
maximum principle that if a solution exists it is unique. However, for an arbitrary domain, we do
not have, in general, the exact expression of the Green function. We proceed therefore in a slightly

5 We recall that C Ď Rn is a (convex) cone if, for every x, y P C, then x ` y P C and λx P C for every λ ą 0.
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different way. We consider first the function w : Rn Ñ R, called the Newtonian potential of f ,
given by

wpyq “

ż

Ω

Φpx´ yqfpxqdx, y P Rn, (2.2)

where Φ is the fundamental solution of the Laplace equation.
We will argue that, for a sufficiently smooth f , we have

w P C2pΩq X C0pΩ̄q, and ´ ∆w “ f in Ω; (2.3)

next, we consider the problem
#

∆u0 “ 0, x P Ω,

u0 “ g ´ w, x P BΩ,

which has a unique solution provided Ω is bounded with all boundary points regular and g ´ w P

C0pBΩq, thanks to the results in Section 1.3. It follows that u “ u0 ` w is the unique solution of
the original problem (2.1).

In summary, the sudy of the well-posedness of (2.1) boils down to showing that the Newtonian
potential of f satisfies (2.3).

Theorem 3.6. Let Ω be a bounded domain and f P C2
c pΩq. Then, the Newtonian potential

(2.2) of f satisfies w P C2 pRnq and ´∆w “ f in Ω.

Proof. Since f has compact support in Ω, its extension by zero outside Ω, which we denote
f̃ , is still a C2 function. We can then rewrite the Newtonian potential as

wpyq “

ż

Ω

Φpx´ yqfpxqdx “

ż

Rn

Φpx´ yqf̃pxqdx “

ż

Rn

Φpzqf̃pz ` yqdz.

Since f̃ P C2
c pRnq and Φ is locally integrable we have that w P C2 pRnq and

´∆wpyq “ ´

ż

Rn

Φpzq∆f̃pz ` yqdz “ ´

ż

BRp0q

Φpx´ yq∆f̃pxqdx,

where BRp0q is any sufficiently large ball that contains Ω. Green’s representation formula yields

f̃pyq “

ż

BRp0q

Φpx´ yqp´∆f̃pxqq dx

´

ż

BBRp0q

BνΦpx´ yqf̃pxqdSpxq `

ż

BBRp0q

Φpx´ yqBν f̃pxqdSpxq;

since f̃ P C2
c pBRp0qq, the boundary terms vanish and we conclude that ´∆wpyq “ f̃pyq “ fpyq for

all y P Ω. □

Corollary 3.2. Let Ω be a bounded domain with all boundary points regular, g P C0pBΩq and
f P C2

0 pΩq. Then there exists a unique solution u P C2pΩq X C0pΩ̄q of (2.1).

Remark 3.10. One could generalize the theorems above and show that, if f P C0,α, the New-
tonian potential satisfies w P C2pΩq X C1pΩ̄q and ´∆w “ f . If Ω is a bounded domain with
all boundary points regular and g P C0pBΩq, then the Dirichlet problem for the Poisson equation
admits a unique solution u P C2pΩq X C0pΩ̄q and, moreover, u P C2,αpΩq.

Here, we recall that a function f : Ω Ă Rn Ñ R is locally Hölder continuous in Ω with
exponent α P p0, 1s if, in any compact set K Ă Ω,

|f |α,K :“ sup
x, yPK,
x‰y

|fpxq ´ fpyq|

|x´ y|α
ă 8;

and C0,αpΩq denotes the space of locally α-Hölder continuous functions in Ω.





CHAPTER 4

Sobolev spaces and weak solutions to second-order elliptic
PDEs

1. Sobolev spaces

Lect. 8, 5.111.1. Lp spaces. Let Ω Ă Rn be a domain and denote by L1pΩq the space of Lebesgue inte-
grable functions from Ω to R, where, as usual, two functions are identified if they coincide almost
everywhere, i.e., L1pΩq is the space of equivalence classes where two functions are equivalent if the
set where they differ has zero Lebesgue measure.

We recall the definition of Lp spaces.1

Definition 4.1 (Lp spaces). For 1 ď p ă 8, we define

LppΩq :“
␣

f : Ω Ñ R, measurable, s.t. |f |p P L1pΩq
(

and, for p “ 8,

L8pΩq :“ tf : Ω Ñ R measurable, s.t. there exists C ą 0 s.t. |f | ď C a.e. in Ωu

For p P r1,8s, we denote define

Lp
locpΩq “ tf : Ω Ñ R s.t. f P LppKq for any K ĂĂ Ωu .

For a function f P LppΩq and p P r1,8s, we denote

}f}LppΩq :“

ˆ
ż

Ω

|fpxq|p dx

˙1{p

, 1 ď p ă 8,

}f}L8pΩq :“ ess sup
xPΩ

|fpxq| :“ inftC : |f | ď C a.e. in Ωu.

We recall (without proof) some fundamental properties of Lp spaces.

Completedness: With the definitions above, the normed vector space
`

LppΩq, } ¨ }LppΩq

˘

is a

Banach space2 for any 1 ď p ď 8, i.e., every Cauchy sequence tfnunPN Ă LppΩq has a
limit in LppΩq. We recall, moreover, that every Cauchy sequence tfnunPN Ă LppΩq has
a sub-sequence converging pointwise a.e. in Ω. For p “ 2, the space L2pΩq is a Hilbert
space3 with inner product pf, gqL2pΩq :“

ş

Ω
fg.

Hölder inequality: 4 Let f P LppΩq and g P LqpΩq, with 1{p` 1{q “ 1. Then fg P L1pΩq and
ż

Ω

fpxqgpxqdx ď }f}LppΩq}g}LqpΩq

More generally, if fi P LpipΩq, for i “ 1, ¨ ¨ ¨ , r with
řr

i“1 1{pi “ 1, then
śr

i“1 fi P L1pΩq

and
ż

Ω

r
ź

i“1

fipxqdx ď

r
ź

i“1

}fi}Lpi pΩq

Embeddings: Let Ω be bounded. For any 1 ď p ď q ă 8, if f P LqpΩq, then f P LppΩq and

}f}LppΩq ď |Ω|1{p´1{q}f}LqpΩq.

If f P L8pΩq, then f P LppΩq for all 1 ď p ă 8 and }f}LppΩq ď |Ω|1{p}f}L8pΩq.
Moreover, limpÑ8 }f}LppΩq “ }f}L8pΩq.

1 Sometimes also called Lebesgue spaces, after Henri Lebesgue, although they were first introduced by Frigyes
Riesz [Rie10] (see [Pie07, Section 1.1.4] for further historical discussions).

2 Named after Stefan Banach (see [Pie07, Chapter 1] for further historical information).
3 Named after David Hilbert (see [Pie07, Chapter 1, Section 1.5]).
4 Named after Otto Hölder [Höl89], but previously proven by Leonard James Rogers [Rog88]. See [Mal98].
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Thus, the embedding LppΩq ãÑ LqpΩq is continuous. This result is not true if the
measure of Ω is infinite, but in general we have the following interpolation result: if
1 ď p ď q ď r, then LppΩq X LrpΩq ãÑ LqpΩq and

}f}q ď }f}θp}f}1´θ
r ,

where 0 ď θ ď 1 is given by 1
q “ θ

p ` 1´θ
r .

Dual of Lp and reflexivity: We recall that the (topological) dual of a Banach space pV, } ¨ }V q,
denoted V 1, is the space of linear and bounded functionals G : V Ñ R. It is also a Banach

space when endowed with the norm }G}V 1 :“ sup
fPV
f‰0

|Gpfq|

}f}V
. For 1 ď p ă 8, the dual space

of LppΩq can be identified with LqpΩq with q “
p

p´1 : for any functional G P pLppΩqq
1
,

there exists a unique function g P LqpΩq such that

Gpfq “

ż

Ω

gpxqfpxqdx, for all f P LppΩq.

Moreover, }G}pLppΩqq1 “ }g}LqpΩq. Thanks to this identification, the spaces LppΩq for

p P p1,8q are reflexive, i.e., the “double dual” pLppΩqq
2
can be identified with LppΩq

itself. This property does not hold for p “ 1,8 and, in fact, pL8pΩqq
1

Ą L1pΩq with
strict inclusion.

Density of continuous functions and separability: C0
c pΩq is dense in LppΩq for any 1 ď p ă

8, i.e., for any f P LppΩq and ϵ ą 0, there exists g P C0
c pΩq such that }f ´ g}LppΩq ď ϵ.

Such density result is not true, however, in L8pΩq. From this result it also follows that all
LppΩq spaces with 1 ď p ă 8 are separable, i.e., they have a countable dense subspace.5

Mollification: Let ηϵ denote the standard mollifier and, for any f P L1
locpΩq and ϵ ą 0, denote by

fϵ : Ωϵ Ñ R the ϵ-mollification of f :

fϵpxq “ pηϵ ˚ fq pxq “

ż

Ω

ηϵpx´ yqfpyqdy, x P Ωϵ,

with Ωϵ :“ ty P Ω : distpy, BΩq ą ϵu. Then fϵ P C8 pΩϵq for any ϵ ą 0. Moreover,
if f P Lp

locpΩq, with 1 ď p ă 8, for any V ĂĂ Ω, we have }fϵ}LppV q ď }f}LppV q and

limϵÑ0 }f ´ fϵ}LppV q “ 0.

Density of C8
c pΩq: Using ϵ-mollification, we can show that C8

c pΩq is dense in LppΩq, for any
1 ď p ă 8.

Fundamental lemma of the calculus of variations: Let Ω Ă Rn be an open set and f P

L1
loc pΩq. If

ş

Ω
fφ “ 0 for all φ P C8

c pΩq, then f “ 0 a.e. in Ω.

1.2. Weak derivatives and Sobolev spaces. In Section 3, we presented the notions of
distribution and of distributional derivative of a distribution (which always exist). Here we present
the notion of weak derivative, where we require some additional integrability.

Definition 4.2 (Weak derivative). Let u P L1
loc pΩq and α P Nn be a multi-index. We say

that u has αth weak derivative if its distributional derivative satisfies Dαu P L1
loc pΩq, i.e., there

exists v P L1
loc pΩqsuch that

ż

Ω

vϕdx “ p´1q|α|

ż

Ω

uDαϕdx, for all ϕ P DpΩq.

Lemma 4.1 (Uniqueness of weak derivative). An αth-weak derivative of u P L1
locpΩq, if it exists,

is uniquely defined up to a zero measure set.

Proof. Suppose that there exist two αth-weak derivatives v, ṽ P L1
locpΩq such that

ż

Ω

vϕ “ p´1q|α|

ż

Ω

uDαϕ “

ż

Ω

ṽϕ, for all ϕ P DpΩq.

Then
ş

Ω
pv´ ṽqϕ “ 0 for all ϕ P DpΩq, which implies v “ ṽ a.e. in Ω by the fundamental lemma of

the calculus of variations. □

5 To show this, it is enough to take a sequence of compact subdomains Ωm ĂĂ Ω such that Ω “
Ť8

m“1 Ωm and

the spaces Pm of polynomials in Ωm, extended by zero on Ωc
m, having rational coefficients. Then P “

Ť8
m“1 Pm is

countable and dense in C0
c pΩq hence in LppΩq as well.
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Remark 4.1. If u P CkpΩq, then the classical α-th derivatives Dαu, |α| ď k, coincide with the
α-th weak derivatives. Indeed, if we denote by vα P L1

locpΩq the α-th weak derivative, we have
ż

Ω

vαϕdx “ p´1q|α|

ż

Ω

uDαϕ dx “

ż

Ω

Dαuϕ dx, for all ϕ P DpΩq,

which implies Dαu “ vα a.e. in Ω and, since Dαu is continuous, vα admits a continuous version
coinciding with Dαu. Hence, the notion of weak-derivative extends that of classical derivative and,
for this reason, we use the same symbol Dαu to denote either classical or weak (or distributional)
derivative depending on the context.

The next lemma extends another familiar result, stating that the weak derivative of a limit
coincides with the limit of the weak derivatives.

Lemma 4.2 (Convergence of weak derivatives). Consider a sequence of functions fn P L1
locpΩq.

For a fixed multi-index α, assume that each fn admits the weak derivative gn “ Dαfn. If fn Ñ f
and gn Ñ g in L1

locpΩq, then g “ Dαf .

Proof. For every test function ϕ P C8
c pΩq, a direct computation yields

ż

Ω

gϕdx “ lim
nÑ8

ż

Ω

gnϕ dx “ lim
nÑ8

p´1q|α|

ż

Ω

fnD
αϕ dx

“ p´1q|α|

ż

Ω

fDαϕ dx

By definition, this means that g is the α-th weak derivative of f . □

We are now ready to define Sobolev spaces.6

Definition 4.3 (Sobolev spaces). For 1 ď p ď 8, we define

W k,ppΩq :“ tf P LppΩq : Dαf P LppΩq, for all α P Nn, |α| ď ku .

For p “ 2, the space W k,2pΩq is denoted by HkpΩq and, for k “ 0, W 0,ppΩq “ LppΩq. Finally, we
define

W k,p
loc :“

␣

f : Ω Ñ R s.t. f P W k,ppKq for all K ĂĂ Ω
(

.

On the space W k,ppΩq, we define the semi-norms7

|f |Wk,ppΩq :“

¨

˝

ÿ

|α|“k

ż

Ω

|Dαf |
p

˛

‚

1{p

, for 1 ď p ă 8,

|f |Wk,8pΩq :“ max
|α|“k

sup
Ω
Dαf,

and the norms

}f}Wk,ppΩq :“

¨

˝

ÿ

|α|ďk

ż

Ω

|Dαf |
p

˛

‚

1{p

»
ÿ

|α|ďk

}Dαf}LppΩq » max
αďk

}Dαf}LppΩq, for 1 ď p ă 8,

}f}Wk,8pΩq :“ max
|α|ďk

sup
Ω
Dαf »

ÿ

}α|ďk

}Dαf}L8pΩq.

We recall that two norms } ¨} and | ¨ | on a vector space X are equivalent if there exist constants
c1, c2 P p0,8q such that

}x} ď c1|x| ď c2}x} for all x P X

In this case, we often write (as above) } ¨ } » | ¨ |. Note that the property of a set to be open, closed,
compact, or complete in a normed space is not affected if the norm is replaced by an equivalent
norm.

We will often use the shorthand notation }¨}k,p,Ω or simply }¨}k,p for }¨}Wk,ppΩq, if no ambiguity
arises.

6 Named after Sergei Sobolev [Sob91] (see also the discussion in [Nau02]).
7 A seminorm q on a vector space has all the properties of a norm except that qpfq “ 0 need not imply f “ 0.
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Lemma 4.3. The application } ¨ }k,p :W k,ppΩq Ñ R` is a norm for any 1 ď p ď 8.

Proof. The proof relies on the fact that } ¨ }LppΩq and } ¨ }ℓppRmq are norms. Indeed, clearly,
}λf}k,p “ |λ|}f}k,p for any λ P R; moreover, }f}k,p “ 0 implies, in particular, }f}Lp “ 0, hence
f “ 0 a.e. in Ω. Concerning the triangular inequality, for all f, g P W k,ppΩq and 1 ď p ă 8, we
have

}f ` g}k,p “

¨

˝

ÿ

|α|ďk

}Dαf `Dαg}
p
Lp

˛

‚

1{p

ď

¨

˝

ÿ

|α|ďk

p}Dαf}Lp ` }Dαg}Lpq
p

˛

‚

1{p

ď

¨

˝

ÿ

|α|ďk

}Dαf}
p
Lp

˛

‚

1{p

`

¨

˝

ÿ

|α|ďk

}Dαg}
p
Lp

˛

‚

1{p

“ }f}k,p ` }g}k,p.

Similarly, for p “ 8, we have

}f ` g}k,8 “ max
|α|ďk

}Dαf `Dαg}L8pΩq

ď max
|α|ďk

´

}Dαf}L8pΩq ` }Dαg}L8pΩq

¯

ď }f}k,8 ` }g}k,8

Hence } ¨ }k,p satisfies all the properties of a norm. □

Lemma 4.4. The normed vector space
`

W k,ppΩq, } ¨ }k,p
˘

is a Banach space for every k P N
and 1 ď p ď 8. In particular, the space HkpΩq “ W k,2pΩq is a Hilbert space, for every k P N,
with inner product

pf, gqHk :“
ÿ

|α|ďk

ż

Ω

Dαf ¨Dαg dx.

Proof. Let tfnu
8

n“1 be a Cauchy sequence in W k,ppΩq, i.e., for all ϵ ą 0, there exists N ą 0
such that

}fn ´ fm}k,p “

¨

˝

ÿ

|α|ďk

}Dαfn ´Dαfm}
p

˛

‚

1{p

ď ϵ, for all n,m ě N.

As a consequence, for each α P Nn, |α| ď k, the sequence tDαfnu
8

n“1 is Cauchy in LppΩq. Since
LppΩq is complete, there exists fα P Lp such that Dαfn Ñ fα in LppΩq. In particular, for

α “ p0, ¨ ¨ ¨ , 0q, fn
Lp

ÝÝÑ fp0,¨¨¨ ,0q “: f . We claim that fα “ Dαf , for all |α| ď k. Indeed,
ż

Ω

fDαϕ “ lim
nÑ8

ż

Ω

fnD
αϕ “ lim

nÑ8
p´1q|α|

ż

Ω

Dαfnϕ “ p´1q|α|

ż

Ω

fαϕ, for all ϕ P DpΩq.

The fact that one can exchange the limit and integration is just a consequence of Hölder inequal-

ity since Dαϕ P LqpΩq with 1{q`1{p “ 1 and
ˇ

ˇ

ş

fDαϕ´
ş

fnD
αϕ

ˇ

ˇ ď }f´ fn }Lp}Dαϕ}Lq
nÑ8

ÝÝÝÑ 0.

The same argument applies to show that limnÑ8

ş

Ω
Dαfnϕ “

ş

Ω
fαϕ. Therefore, D

αfn
Lp

ÝÝÑ Dαf ,

for all |α| ď k, implying that fn Ñ f in W k,p.
Finally, the bilinear form p¨, ¨qHk induces the norm } ¨ }k,2 and it is immediate to verify that it

satisfies all the assumptions of an inner product (thanks to the fact that
ş

Ω
f ¨g is an inner product

in L2pΩq
˘

. □

Remark 4.2. The inner product in Lemma 4.4 induces the norm

}f}HkpΩq “

¨

˝

ÿ

|α|ďk

ż

Ω

|Dαf |
2

˛

‚

1{2

,

while the equivalent norm
ř

|α|ďk }Dαf}L2pΩq is not induced by a scalar product.
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Lemma 4.5 (Properties of weak derivatives). Let f, g P W k,ppΩq and α P Nn, |α| ď k. The
following properties of the αth-weak derivatives hold.

Linearity: For all λ, µ P R, we have λf ` µg P W k,ppΩq and

Dαpλf ` µgq “ λDαf ` µDαg.

Commutativity: For all α, β P Nn such that |α| ` |β| ď k, we have

Dβ pDαfq “ Dα
`

Dβf
˘

“ Dα`βf.

Leibniz’s8 rule: For all ξ P C8pΩq, we have ξf P W k,p
loc pΩq and

Dαpξfq “
ÿ

βďα

ˆ

α

β

˙

DβξDα´βf.

Lemma 4.6. Let f P W k,ppΩq, with 1 ď p ă 8, and fϵ :“ ηϵ ˚ f : Ω Ñ R. Then fϵ
ϵÑ0

ÝÝÝÑ f in

LppΩq and fϵ
ϵÑ0

ÝÝÝÑ f in W k,ppKq, for any K ĂĂ Ω.

Proof. We know already that fϵ Ñ f in LppΩq when ϵ Ñ 0, so we are left to prove that

Dαfϵ
ϵÑ0

ÝÝÝÑ Dαf in LppKq for any α P Nn, |α| ď k andK ĂĂ Ω. We first show thatDαfϵ “ ηϵ˚D
αf

in Ωϵ :“ ty P Ω, distpy, BΩq ą ϵu, where Dαfϵ is a classical derivative since fϵ P C8 pΩϵq, whereas
Dαf is a weak derivative. We have indeed @x P Ωϵ

Dαfϵpxq “ Dα

ż

Ω

ηϵpx´ yqfpyqdy “

ż

Ω

Dα
xηϵpx´ yqfpyqdy

“ p´1q|α|

ż

Ω

Dα
y ηϵpx´ yq
loooomoooon

PDpΩq

fpyqdy

“

ż

Ω

ηϵpx´ yqDαfpyqdy “ pηϵ ˚Dαfq pxq.

It follows that Dαfϵ Ñ Dαf in LppKq, for all K ĂĂ Ω. Hence,

}f ´ fϵ}Wk,ppKq “

¨

˝

ÿ

|α|ďk

}Dαf ´Dαfϵ}
p
LppKq

˛

‚

1
p

ϵÑ0
ÝÝÝÑ 0.

□

Example 4.1. Consider Ω “ p0, 1q Ă R and the constant function f “ 1 in Ω, whose
(classical/weak) derivative is f 1 “ 0 in Ω and clearly f P W 1,ppΩq for any 1 ď p ď 8. Let

fϵpxq “
ş1

0
ηϵpx´ yqfpyqdy, whose derivative is

f 1
ϵpxq “

ż 1

0

Bxηϵpx´ yqfpyqdy “

ż 1

0

´Byηϵpx´ yq dy “ ηϵpxq ´ ηϵpx´ 1q.

We notice that, for ϵ ă 1
2 , we have |ηϵpxq ´ ηϵpx´ 1q| “ ηϵpxq ` ηϵpx´ 1q for all x P r0, 1s.

We claim that f 1
ϵ Û 0 in Lpp0, 1q for any p ě 1. Indeed,

›

›f 1
ϵ

›

›

Lppp0,1qq
ě
›

›f 1
ϵ

›

›

L1pp0,1qq
“

ż 1

0

ηϵpxqdx`

ż 1

0

ηϵpx´ 1qdx “ 1.

In conclusion, fϵ Û f in W 1,pp0, 1q for any p ě 1. However, we have f 1
ϵ Ñ 0 in LppKq for any

K ĂĂ p0, 1q.

Lect. 9, 12.11

1.3. Approximation of Sobolev functions. To begin with, we consider Sobolev functions
defined on all of Rn. They may be approximated in the Sobolev norm by test functions.

Theorem 4.1. For k P N and 1 ď p ă 8, the space C8
c pRnq is dense in W k,p pRnq
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Proof. We will prove the result in two steps.
Step 1. First, we show that C8 pRnq XW k,p pRnq is dense in W k,p pRnq.
Let ηϵ P C8

c pRnq be the standard mollifier and f P W k,p pRnq. Then ηϵ ˚ f P C8 pRnq X

W k,p pRnq and, for |α| ď k,

Dα pηϵ ˚ fq “ ηϵ ˚ pDαfq Ñ Dαf in Lp pRnq as ϵ Ñ 0`.

It follows that ηϵ ˚ f Ñ f in W k,p pRnq as ϵ Ñ 0.
Step 2. Now we prove that C8

c pΩq is dense in W k,p pRnq. Let us suppose that f P C8 pRnq X

W k,p pRnq, and let ϕ P C8
c pRnq be a cut-off function such that

ϕpxq “

#

1, if |x| ď 1,

0, if |x| ě 2.

Define ϕRpxq “ ϕpx{Rq and fR “ ϕRf P C8
c pRnq. Then, by the Leibnitz rule,

DαfR “ ϕRDαf `
1

R
hR,

where hR is a function that is bounded in Lp uniformly in R. Hence, by Lebesgue’s dominated
convergence theorem

DαfR Ñ Dαf in Lp as R Ñ 8,

so fR Ñ f in W k,p pRnq as R Ñ 8. This concludes the proof. □

If Ω is a proper open subset of Rn, then C8
c pΩq is not dense in W k,ppΩq. Instead, its closure

is the space of functions W k,p
0 pΩq that “vanish on the boundary BΩ”. We discuss this further in

Section 1.5. The space C8pΩq X W k,ppΩq is dense in W k,ppΩq for any open set Ω (cf. [MS64]),
so that W k,ppΩq may alternatively be defined as the completion of the space of smooth functions
in Ω whose derivatives of order less than or equal to k belong to LppΩq. Such functions need not
extend to continuous functions on Ω̄ or be bounded on Ω.

1.4. Embedding theorems. Can we estimate the Lq pRnq norm of a smooth, compactly
supported function in terms of the Lp pRnq-norm of its derivative?

1.4.1. 1 ď p ă n. We will show that, given 1 ď p ă n, this is possible for a unique value of q,
called the Sobolev conjugate of p. We are looking for an estimate of the form

}f}LqpRnq ď C}Df}LppRnq for all f P C8
c pRnq , (1.1)

for some constant C “ Cpp, q, nq. For λ ą 0, let fλ denote the rescaled function

fλpxq :“ f
´x

λ

¯

.

Then, changing variables x ÞÑ λx in the integrals that define the Lp, Lq norms, with 1 ď p, q ă 8,
and using the fact that

Dfλ “
1

λ
pDfqλ

we find that
ˆ
ż

Rn

|Dfλ|
p
dx

˙1{p

“ λn{p´1

ˆ
ż

Rn

|Df |p dx

˙1{p

,

ˆ
ż

Rn

|fλ|
q
dx

˙1{q

“ λn{q

ˆ
ż

Rn

|f |q dx

˙1{q

.

These norms must scale according to the same exponent if we are to have an inequality of the
desired form, otherwise we can violate the inequality by taking λ Ñ 0 or λ Ñ 8. The equality of
exponents implies that q “ p˚ where p˚ satisfies

1

p˚
“

1

p
´

1

n
.

Note that we need 1 ď p ă n to ensure that p˚ ą 0, in which case p ă p˚ ă 8. We assume that
n ě 2. From this, we motivate the following definition.
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Definition 4.4 (Sobolev conjugate exponents). If 1 ď p ă n, then the Sobolev conjugate p˚

of p is

p˚ “
np

n´ p

Thus, an estimate of the form (1.1) is possible only if q “ p˚; we will show that (1.1) is, in
fact, true when q “ p˚.

This result was obtained by Sobolev [Sob38] for 1 ă p ă n and by Emilio Gagliardo and Luis
Nirenberg independently up to the endpoint p “ 1 (see [Nir59; Gag58])

Theorem 4.2 (Gagliardo–Nirenberg–Sobolev’s inequality). Let 1 ď p ă n, where n ě 2, and
let p˚ be the Sobolev conjugate of p given in Definition 4.4. Then

}f}Lp˚
pRnq

ď C}Df}LppRnq, for all f P C8
c pRnq ,

where

Cpn, pq “
p

2n

ˆ

n´ 1

n´ p

˙

. (1.2)

Remark 4.3 (Optimal Sobolev constant). The constant stated in Theorem 4.2 is not optimal.
Instead, for p “ 1, the best constant is

Cpn, 1q “
1

nα
1{n
n

,

where αn is the volume of the unit ball, or

Cpn, 1q “
1

n
?
π

”

Γ
´

1 `
n

2

¯ı1{n

where Γ is the Euler Gamma function. Equality is obtained in the limit of functions that approach
the characteristic function of a ball. This result for the best Sobolev constant is equivalent to
the isoperimetric inequality that a sphere has minimal area among all surfaces enclosing a given
volume.

For 1 ă p ă n, the best constant is

Cpn, pq “
1

n1{p
?
π

ˆ

p´ 1

n´ p

˙1´1{p „
Γp1 ` n{2qΓpnq

Γpn{pqΓp1 ` n´ n{pq

ȷ1{n

and equality holds for functions of the form

fpxq “

´

a` b|x|p{pp´1q
¯1´n{p

,

where a, b are positive constants, which are called Aubin–Talenti bubbles.9

Example 4.2. The Sobolev inequality in Theorem 4.2 does not hold in the limiting case p Ñ

n, p˚ Ñ 8. If ϕpxq is a smooth cut-off function that is equal to one for |x| ď 1 and zero for |x| ě 2,
and

fpxq “ ϕpxq log log

ˆ

1 `
1

|x|

˙

,

then Df P Ln pRnq, and f P W 1,npRq, but f R L8 pRnq.

Before describing the proof, we introduce some notation, explain the main idea, and establish
a preliminary inequality.

For 1 ď i ď n and x “ px1, x2, . . . , xnq P Rn, let

x1
i “ px1, . . . , x̂i, . . . xnq P Rn´1

where the ‘hat’ means that the i-th coordinate is omitted. We write x “ pxi, x
1
iq and denote the

value of a function f : Rn Ñ R at x by

fpxq “ f
`

xi, x
1
i

˘

.

If f is smooth with compact support, then the fundamental theorem of calculus implies that

fpxq “

ż xi

´8

Bxi
f
`

t, x1
i

˘

dt

9 Named after Thierry Aubin [Aub76] and Giorgio Talenti [Tal76].
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Taking absolute values, we get

|fpxq| ď

ż 8

´8

ˇ

ˇBxi
f
`

t, x1
i

˘
ˇ

ˇ dt.

We can improve the constant in this estimate by using the fact that
ż 8

´8

Bxi
f
`

t, x1
i

˘

dt “ 0.

Lemma 4.7. Let us suppose that g : R Ñ R is an integrable function with compact support
such that

ş

g dt “ 0. If

fpxq “

ż x

´8

gptqdt,

then

|fpxq| ď
1

2

ż

|gptq|dt.

Proof. Let g “ g` ´ g´ where the nonnegative functions g`, g´ are defined by g` “

maxpg, 0q, g´ “ maxp´g, 0q. Then |g| “ g` ` g´ and
ż

g`dt “

ż

g´dt “
1

2

ż

|g|dt.

It follows that

fpxq ď

ż x

´8

g`ptqdt ď

ż 8

´8

g`ptqdt “
1

2

ż

|g|dt

fpxq ě ´

ż x

´8

g´ptqdt ě ´

ż 8

´8

g´ptqdt “ ´
1

2

ż

|g|dt,

which proves the result. □

Thus, for 1 ď i ď n we have

|fpxq| ď
1

2

ż 8

´8

ˇ

ˇBxi
f
`

t, x1
i

˘
ˇ

ˇ dt.

The idea of the proof is to average a suitable power of this inequality over the i-directions
and integrate the result to estimate f in terms of Df . In order to do this, we use the following
inequality, which estimates the L1-norm of a function of x P Rn in terms of the Ln´1-norms of n
functions of x1

i P Rn´1 whose product bounds the original function pointwise.
Thus, for 1 ď i ď n we have

|fpxq| ď
1

2

ż 8

´8

ˇ

ˇBxi
f
`

t, x1
i

˘
ˇ

ˇ dt.

The idea of the proof is to average a suitable power of this inequality over the i-directions
and integrate the result to estimate f in terms of Df . In order to do this, we use the following
inequality, which estimates the L1-norm of a function of x P Rn in terms of the Ln´1-norms of n
functions of x1

i P Rn´1 whose product bounds the original function pointwise.

Lemma 4.8 (Gagliardo’s product inequality). Let us suppose that n ě 2 and
␣

gi P C8
c

`

Rn´1
˘

: 1 ď i ď n
(

are non-negative functions. If we define g P C8
c pRnq by

gpxq :“
n
ź

i“1

gi
`

x1
i

˘

,

then
ż

g dx ď

n
ź

i“1

}gi}n´1 (1.3)
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Remark 4.4. If n “ 2, Lemma 4.8 states that
ż

g1 px2q g2 px1q dx1 dx2 ď

ˆ
ż

g1 px2q dx2

˙ˆ
ż

g2 px1q dx1

˙

,

which follows immediately from Fubini’s theorem.
If n “ 3, Lemma 4.8 states that

ż

g1 px2, x3q g2 px1, x3q g3 px1, x2q dx1 dx2 dx3

ď

ˆ
ż

g21 px2, x3q dx2 dx3

˙1{2ˆż

g22 px1, x3q dx1 dx3

˙1{2ˆż

g23 px1, x2q dx1 dx2

˙1{2

.

To prove the inequality in this case, we fix x1 and apply Cauchy–Schwartz’ inequality to the x2x3-
integral of g1 ¨ g2g3. We then use the inequality for n “ 2 to estimate the x2x3-integral of g2g3,
and integrate the result over x1. An analogous approach works for higher n.

Remark 4.5. Note that under the scaling gi ÞÑ λgi, both sides of (1.3) scale in the same way,

ż

g dx ÞÑ

˜

n
ź

i“1

λi

¸

ż

g dx,
n
ź

i“1

}gi}n´1 ÞÑ

˜

n
ź

i“1

λi

¸

n
ź

i“1

}gi}n´1

as must be true for any inequality involving norms. Also, under the spatial rescaling x ÞÑ λx, we
have

ż

gdx ÞÑ λ´n

ż

gdx

while }gi}p ÞÑ λ´pn´1q{p }gi}p, so

n
ź

i“1

}gi}p ÞÑ λ´npn´1q{p
n
ź

i“1

}gi}p

Thus, if p “ n ´ 1 the two terms scale in the same way, which explains the appearance of the
Ln´1-norms of the gi ’s on the right hand side of (1.3).

Proof. We argue by induction. We have the claim for n “ 2 owing to Remark 4.5. Supposing
that it is true for n´ 1 where n ě 3, we want to prove it for n.

For 1 ď i ď n, let gi : Rn´1 Ñ R and g : Rn Ñ R be the functions given in the theorem. Fix
x1 P R and define gx1

: Rn´1 Ñ R by

gx1

`

x1
1

˘

“ g
`

x1, x
1
1

˘

For 2 ď i ď n, let x1
i “

`

x1, x
1
1,i

˘

where

x1
1,i “ px̂1, . . . , x̂i, . . . xnq P Rn´2

Define gi,x1 : Rn´2 Ñ R and g̃i,x1 : Rn´1 Ñ R by

gi,x1

`

x1
1,i

˘

“ gi
`

x1, x
1
1,i

˘

.

Then

gx1

`

x1
1

˘

“ g1
`

x1
1

˘

n
ź

i“2

gi,x1

`

x1
1,i

˘

.

Using Hölder’s inequality with q “ n´ 1 and q1 “ pn´ 1q{pn´ 2q, we get

ż

gx1
dx1

1 “

ż

g1

˜

n
ź

i“2

gi,x1

`

x1
1,i

˘

¸

dx1
1

ď }g1}n´1

»

–

ż

˜

n
ź

i“2

gi,x1

`

x1
1,i

˘

¸pn´1q{pn´2q

dx1
1

fi

fl

pn´2q{pn´1q
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The induction hypothesis implies that

ż

˜

n
ź

i“2

gi,x1

`

x1
1,i

˘

¸pn´1q{pn´2q

dx1
1 ď

n
ź

i“2

›

›

›
g

pn´1q{pn´2q

i,x1

›

›

›

n´2

ď

n
ź

i“2

}gi,x1
}

pn´1q{pn´2q

n´1

Hence,
ż

gx1
dx1

1 ď }g1}n´1

n
ź

i“2

}gi,x1
}n´1

Integrating this equation over x1 and using the generalized Hölder inequality with p2 “ p3 “

¨ ¨ ¨ “ pn “ n´ 1, we get
ż

gdx ď }g1}n´1

ż

˜

n
ź

i“2

}gi,x1
}n´1

¸

dx1

ď }g1}n´1

˜

n
ź

i“2

ż

}gi,x1
}
n´1
n´1 dx1

¸1{pn´1q

Thus, since
ż

}gi,x1
}
n´1
n´1 dx1 “

ż
ˆ
ż

ˇ

ˇgi,x1

`

x1
1,i

˘
ˇ

ˇ

n´1
dx1

1,i

˙

dx1

“

ż

ˇ

ˇgi
`

x1
i

˘
ˇ

ˇ

n´1
dx1

i

“ }gi}
n´1
n´1

we find that
ż

g dx ď

n
ź

i“1

}gi}n´1

□

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. First, we prove the result for p “ 1 and then for 1 ă p ă n.
Case 1: p “ 1. For 1 ď i ď n, we have, by Lemma 4.7,

|fpxq| ď
1

2

ż

ˇ

ˇBxi
f
`

t, x1
i

˘
ˇ

ˇ dt

Multiplying these inequalities and taking the pn´ 1q-th root, we get

|f |n{pn´1q ď
1

2n{pn´1q
g, with g :“

n
ź

i“1

g̃i,

where g̃ipxq “ gi px1
iq with

gi
`

x1
i

˘

“

ˆ
ż

ˇ

ˇBxi
f
`

t, x1
i

˘ˇ

ˇ dt

˙1{pn´1q

.

Lemma 4.8 implies that
ż

g dx ď

n
ź

i“1

}gi}n´1

So, since

}gi}n´1 “

ˆ
ż

|Bxif | dx

˙1{pn´1q

,

it follows that
ż

|f |n{pn´1q dx ď
1

2n{pn´1q

˜

n
ź

i“1

ż

|Bxif | dx

¸1{pn´1q

.

Note that n{pn´ 1q “ 1˚ is the Sobolev conjugate of 1.
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Using the arithmetic–geometric mean inequality,
˜

n
ź

i“1

ai

¸1{n

ď
1

n

n
ÿ

i“1

ai,

we get
ż

|f |n{pn´1q dx ď

˜

1

2n

n
ÿ

i“1

ż

|Bxi
f | dx

¸n{pn´1q

,

i.e.,

}f}1˚ ď
1

2n
}Df}1.

Case 2: 1 ă p ă n For any s ą 1, we have

d

dx
|x|s “ s signx|x|s´1.

Thus,

|fpxq|s “

ż xi

´8

Bxi

ˇ

ˇf
`

t, x1
i

˘
ˇ

ˇ

s
dt

“ s

ż xi

´8

ˇ

ˇf
`

t, x1
i

˘
ˇ

ˇ

s´1
sgn

“

f
`

t, x1
i

˘‰

Bxi
f
`

t, x1
i

˘

dt

Using Lemma 4.7, it follows that

|fpxq|s ď
s

2

ż 8

´8

ˇ

ˇfs´1
`

t, x1
i

˘

Bxif
`

t, x1
i

˘
ˇ

ˇ dt

and multiplication of these inequalities gives

|fpxq|sn ď

´s

2

¯n n
ź

i“1

ż 8

´8

ˇ

ˇfs´1
`

t, x1
i

˘

Bxi
f
`

t, x1
i

˘
ˇ

ˇ dt.

Applying Lemma 4.8 with the functions

gi
`

x1
i

˘

“

„
ż 8

´8

ˇ

ˇfs´1
`

t, x1
i

˘

Bxif
`

t, x1
i

˘
ˇ

ˇ dt

ȷ1{pn´1q

,

we obtain

}f}snsn{pn´1q ď
s

2

n
ź

i“1

›

›fs´1Bxi
f
›

›

1
.

By Hölder’s inequality, we have
›

›fs´1Bxi
f
›

›

1
ď
›

›fs´1
›

›

p1 }Bxi
f}p

On the other hand,
›

›fs´1
›

›

p1 “ }f}
s´1
p1ps´1q

Choosing s ą 1 so that

p1ps´ 1q “
sn

n´ 1
,

which holds if

s “ p

ˆ

n´ 1

n´ p

˙

ðñ
sn

n´ 1
“ p˚,

then

}f}p˚ ď
s

2

˜

n
ź

i“1

}Bxi
f}p

¸1{n

.

Using the arithmetic-geometric mean inequality, we get

}f}p˚ ď
s

2n

˜

n
ÿ

i“1

}Bxi
f}

p
p

¸1{p

,

which proves the result. □

We can use the Sobolev inequality to prove various embedding theorems.
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Definition 4.5. We say that a Banach space X is continuously embedded (or embedded for
short) in a Banach space Y if there is a one-to-one, bounded linear map ı : X Ñ Y .

We often think of ι as identifying elements of the smaller space X with elements of the larger
space Y ; if X is a subset of Y , then ı is the inclusion map. The boundedness of ı means that there
is a constant C such that }ıx}Y ď C}x}X for all x P X, so the weaker Y -norm of ıx is controlled by
the stronger X-norm of x. We write an embedding as X ãÑ Y or as X Ă Y when the boundedness
is understood.

Theorem 4.2 does not, of course, imply that f P Lp pRnq wheneverDf P Lp pRnq, since constant
functions have zero derivative.

To ensure that f P Lp˚

pRnq, we also need to impose a decay condition on f that eliminates the
constant functions. In the following theorem, this is provided by the assumption that f P Lp pRnq

Theorem 4.3. Suppose that 1 ď p ă n and p ď q ď p˚ where p˚ is the Sobolev conjugate of p.
Then W 1,p pRnq ãÑ Lq pRnq and }f}LqpRnq ď C}f}W 1,ppRnq for all f P W 1,p pRnq for some constant
C “ Cpn, p, qq.

Remark 4.6. Let us present an heuristic argument for the lower bound q ě p. Let us consider
the function fpxq “ p1 ` |x|q´α, with α ą 0. Then f P LrpRnq if αr ą n. So, if W 1,ppRnq ãÑ

LqpRnq, then αp ą n should imply αq ą n for every α ą 0, but this yields p ď q (otherwise there
would exist α ą 0 sauch that q ă n{α ă p.

Proof. Step 1. If f P W 1,p pRnq, then, by Theorem 4.1, there is a sequence of functions

fn P C8
c pRnq that converges to f in W 1,p pRnq. Theorem 4.2 implies that fn Ñ f in Lp˚

pRnq. In
detail: tDfnu converges to Df in Lp so it is Cauchy in Lp; since

}fn ´ fm}p˚ ď C }Dfn ´Dfm}p ,

then tfnu is Cauchy in Lp˚

; therefore fn Ñ f̃ for some f̃ P Lp˚

since Lp˚

is complete; and f̃

is equivalent to f since a subsequence of tfnu converges pointwise a.e. to f̃ , because of the Lp˚

convergence, and to f , because of the Lp-convergence. Thus, f P Lp˚

pRnq and

}f}p˚ ď C}Df}p

Step 2. Since f P Lp pRnq, using the interpolation between Lp spaces, we have, for p ă q ă p˚,

}f}q ď }f}θp}f}
1´θ
p˚

where 0 ă θ ă 1 is defined by
1

q
“
θ

p
`

1 ´ θ

p˚
.

Therefore, using Theorem 4.2 and the inequality

aθb1´θ ď
“

θθp1 ´ θq1´θ
‰1{p

pap ` bpq
1{p

,

we get
}f}q ď C1´θ}f}θp}Df}1´θ

p

ď C1´θ
“

θθp1 ´ θq1´θ
‰1{p `

}f}pp ` }Df}pp

˘1{p

ď C1´θ
“

θθp1 ´ θq1´θ
‰1{p

}f}W 1,p .

□

Instead of the assumption that f P Lp pRnq, we can impose the following weaker decay condi-
tion.

Definition 4.6. A Lebesgue measurable function f : Rn Ñ R vanishes at infinity if for every
ϵ ą 0 the set tx P Rn : |fpxq| ą ϵu has finite Lebesgue measure.

The Sobolev embedding theorem remains true for functions that vanish at infinity.

Theorem 4.4. Suppose that f P L1
loc pRnq is weakly differentiable with Df P Lp pRnq where

1 ď p ă n and f vanishes at infinity. Then f P Lp˚

pRnq and

}f}Lp˚
pRnq

ď C}Df}LppRnq

where C is given in (1.2).
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Remark 4.7. If f P Lp pRnq for some 1 ď p ă 8, then f vanishes at infinity. Note that this
does not imply that lim|x|Ñ8 fpxq “ 0.

Example 4.3. Define f : R Ñ R by

f “
ÿ

nPN
χIn , In “

„

n, n`
1

n2

ȷ

where χI is the characteristic function of the interval I. Then
ż

R
f dx “

ÿ

nPN

1

n2
ă 8

so f P L1pRq. The limit of fpxq as |x| Ñ 8 does not exist since fpxq takes on the values 0 and 1
for arbitrarily large values of x. Nevertheless, f vanishes at infinity since for any ϵ ă 1,

|tx P R : |fpxq| ą ϵu| “
ÿ

nPN

1

n2
,

which is finite.

Example 4.4. The function f : R Ñ R defined by

fpxq “

#

1{ log x, if x ě 2,

0, if x ă 2,

vanishes at infinity, but f R LppRq for any 1 ď p ă 8.

1.4.2. p ą n. If the weak derivative of a function that vanishes at infinity belongs to Lp pRnq

with p ă n, then the function has improved integrability properties and belongs to Lp˚

pRnq.
Even though the function is weakly differentiable, it need not be continuous. In this section, we
show that if the derivative belongs to Lp pRnq with p ą n then the function (or a pointwise a.e.
equivalent version of it) is continuous, and in fact Hölder continuous.

The following result is due to Charles Bradfield Morrey jun. (see [Mor40; Mor66]). The main
idea is to estimate the difference |fpxq ´ fpyq| in terms of Df by the mean value theorem, average
the result over a ball Brpxq and estimate the result in terms of }Df}p by Hölder’s inequality.

Theorem 4.5 (Morrey’s inequality). Let n ă p ă 8 and

α “ 1 ´
n

p
,

with α “ 1 if p “ 8. Then there are constants C “ Cpn, pq such that

rf sα ď C}Df}p for all f P C8
c pRnq (1.4)

sup
Rn

|f | ď C}f}W 1,p for all f P C8
c pRnq , (1.5)

where r¨sα denotes the Hölder seminorm r¨sα,Rn , i.e.,

|f |α,Rn :“ sup
x, yPRn,

x‰y

|fpxq ´ fpyq|

|x´ y|α
ă 8.

Lect. 10, 19.11

Proof. Step 1. First we prove that there exists a constant C, depending only on n, such
that, for any ball Brpxq,  

Brpxq

|fpxq ´ fpyq|dy ď C

ż

Brpxq

|Dfpyq|

|x´ y|n´1
dy. (1.6)

Let w P BB1p0q be a unit vector. For s ą 0,

fpx` swq ´ fpxq “

ż s

0

d

dt
fpx` twqdt “

ż s

0

Dfpx` twq ¨ w dt,

and, therefore, since |w| “ 1,

|fpx` swq ´ fpxq| ď

ż s

0

|Dfpx` twq|dt.
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Integrating this inequality with respect to w over the unit sphere, we get
ż

BB1p0q

|fpxq ´ fpx` swq|dSpwq ď

ż

BB1p0q

ˆ
ż s

0

|Dfpx` twq|dt

˙

dSpwq.

Changing the order of integration yields
ż

BB1p0q

ˆ
ż s

0

|Dfpx` twq| dt

˙

dSpwq “

ż

BB1p0q

ż s

0

|Dfpx` twq|

tn´1
tn´1 dtdSpwq

“

ż

Bxpxq

|Dfpyq|

|x´ y|n´1
dy.

Thus,
ż

BB1p0q

|fpxq ´ fpx` swq|dSpwq ď

ż

Bxpxq

|Dfpyq|

|x´ y|n´1
dy.

Using this inequality, we can also estimate
ż

Brpxq

|fpxq ´ fpyq| dy “

ż r

0

˜

ż

BB1p0q

|fpxq ´ fpx` swq| dSpwq

¸

sn´1 ds

ď

ż r

0

˜

ż

Bspxq

|Dfpyq|

|x´ y|n´1
dy

¸

sn´1 ds

ď

ˆ
ż r

0

sn´1 ds

˙

˜

ż

Brpxq

|Dfpyq|

|x´ y|n´1
dy

¸

ď
rn

n

ż

Brpxq

|Dfpyq|

|x´ y|n´1
dy,

where we estimated the integral over Bspxq by the integral over Brpxq for s ď r. This gives (1.6)

with C “ pnαnq
´1

.
Step 2. To prove (1.4), let us suppose that x, y P Rn. Let r “ |x´ y| and Ω “ Brpxq XBrpyq.

Then averaging the inequality

|fpxq ´ fpyq| ď |fpxq ´ fpzq| ` |fpyq ´ fpzq|

with respect to z over Ω, we get

|fpxq ´ fpyq| ď

 
Ω

|fpxq ´ fpzq|dz `

 
Ω

|fpyq ´ fpzq|dz. (1.7)

From (1.6) and Hölder’s inequality, 
Ω

|fpxq ´ fpzq| dz ď

 
Brpxq

|fpxq ´ fpzq|dz

ď C

ż

Brpxq

|Dfpyq|

|x´ y|n´1
dy

ď C

˜

ż

Brpxq

|Df |p dz

¸1{p˜
ż

Brpxq

dz

|x´ z|p
1pn´1q

¸1{p1

We have
˜

ż

Brpxq

dz

|x´ z|p
1pn´1q

¸1{p1

“ C

ˆ
ż r

0

rn´1dr

rp1pn´1q

˙1{p1

“ Cr1´n{p,

where C denotes a generic constant depending on n and p. Thus, 
Ω

|fpxq ´ fpzq| dz ď Cr1´n{p}Df}LppRnq

with a similar estimate for the integral in which x is replaced by y. Using these estimates in (1.7)
and setting r “ |x´ y|, we get

|fpxq ´ fpyq| ď C|x´ y|1´n{p}Df}LppRnq, (1.8)

which proves (1.4)
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Step 3. Finally, we prove (1.5). For any x P Rn, using (1.8), we find that

|fpxq| ď

 
B1pxq

|fpxq ´ fpyq|dy `

 
B1pxq

|fpyq|dy

ď C}Df}LppRnq ` C}f}LppB1pxqq

ď C}f}W 1,ppRnq

and taking the supremum with respect to x, we get (1.5). □

Combining these estimates for

}f}C0,α “ sup |f | ` rf sα

and using a density argument, we can prove the following theorem. We denote by C0,α
0 pRnq the

space of Hölder continuous functions f whose limit as x Ñ 8 is zero, meaning that for every ϵ ą 0
there exists a compact set K Ă Rn such that |fpxq| ă ϵ if x P RnzK.

Theorem 4.6. Let n ă p ă 8 and α “ 1 ´ n{p. Then

W 1,p pRnq ãÑ C0,α
0 pRnq

and there exists a constant C “ Cpn, pq such that

}f}C0,α ď C}f}W 1,p for all f P C8
c pRnq

For p “ 8, we have that f P W 1,8 pRnq is globally Lipschitz continuous, with

rf s1 ď C}Df}L8pRnq

A function in W 1,8 pRnq need not approach zero at infinity. We have in this case the following
characterization of Lipschitz functions.

Theorem 4.7. A function f P L1
loc pRnq is globally Lipschitz continuous if and only if it is

weakly differentiable and Df P L8 pRnq.

When n ă p ď 8, the above estimates can be used to prove that the pointwise derivative of a
Sobolev function exists almost everywhere and agrees with the weak derivative.

Theorem 4.8. If f P W 1,p
loc pRnq for some n ă p ď 8, then f is differentiable pointwise a.e.

and the pointwise derivative coincides with the weak derivative.

1.4.3. General embedding theorem. More generally, we state the following result.

Theorem 4.9. Let m P N˚, 1 ď p ď 8. We have:

‚ If kp ă n: W k,ppRnq ãÑ LqpRnq, for p ď q ď
np

n´kp ;

‚ If kp “ n: W k,ppRnq ãÑ LqpRnq, for p ď q ă 8;

‚ If kp ą n: W k,ppRnq ãÑ Cm,αpRnq, with

#

m “

Y

k ´ n
p

]

, α “

!

k ´ n
p

)

, if n
p R N,

m “ k ´ n
p ´ 1, α “ 1, if n

p P N,
where t¨u denotes the integer part function and t¨u the fractional part function.

Example 4.5. There exists a function u P H1
`

R2
˘

but u R L8
`

R2
˘

. Let ψ P D
`

R2
˘

such
that 0 ď ψ ď 1 and

ψpxq “

#

1 if |x| ă 1
2 ,

0 if |x| ą 3
4 .

The desired counterexample is given by

upxq “ | ln |x||αψpxq, 0 ă α ă
1

2
.

Since there is a logarithmic pole at x “ 0, the function is not in L8
`

R2
˘

. We show that

u P H1
`

R2
˘

. It follows that u P L2
`

R2
˘

, since

ż

R2

|upxq|2 dx ď

ż

|x|ď 3
4

| ln |x||2α dx “ 2π

ż 3
4

0

| ln ρ|2αρdρ.
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There are no issues with the integrability of the given function. Observe that u is C8 for
x ‰ 0. Therefore, for x ‰ 0, the function admits classical derivatives. We show that these
derivatives belong to L2.

ż

R2

|Djupxq|
2
dx ď

ż

R2

ˆ

α| ln |x||α´2 ln |x|
1

|x|

xj
|x|
ψ ` | ln |x||αBxj

ψpxq

˙2

dx

ď 2α2

ż

|x|ď 3
4

| ln |x||2pα´1q 1

|x|2

x2j
|x|2

dx` 2}∇ψ}28

ż

1
2 ă|x|ă 3

4

| ln |x||2α dx.

The second integral is evidently finite. For the first integral, we switch to polar coordinates:

ż

|x|ď 3
4

| ln |x||2pα´1q

|x|2
dx “ 2π

ż 3
4

0

| ln ρ|2pα´1q

ρ
dρ “ 2π

„

pln ρq2α´1

2α ´ 1

ȷ

3
4

0

.

Since α ă 1
2 , the integral converges as ρ Ñ 0. To conclude that u P H1

`

R2
˘

, we must show that
these classical derivatives coincide with the distributional derivatives, which is non-trivial because
x “ 0 is a singular point of the derivative. Let ϕ P D

`

R2
˘

. We want to prove that
ż

R2

Djuϕdx “ ´

ż

R2

u
Bϕ

Bxj
dx.

Starting from the second term:
ż

R2

u
Bϕ

Bxj
dx “ lim

εÑ0

ż

R2zBεp0q

u
Bϕ

Bxj
dx.

This identity holds as a consequence of the dominated convergence theorem. Outside the origin,
we can integrate by parts using classical derivatives:

ż

R2

u
Bϕ

Bxj
dx “ lim

εÑ0

˜

´

ż

R2zBεp0q

Bu

Bxj
ϕ dx`

ż

BBεp0q

uϕνj dσ

¸

.

Here, νj is the j-th component of the outward normal vector. Using Lebesgue’s theorem again
for the first term, we have

ż

R2

u
Bϕ

Bxj
dx “ ´

ż

R2

Bu

Bxj
ϕdx` lim

εÑ0

ż

BBεp0q

uϕνj dσ.

To conclude, we must show that

lim
εÑ0

ż

BBεp0q

uϕνj dσ “ 0.

For ε ă 1, we have u|Bεp0q “ | ln ε|αψpεq “ | ln ε|α. Thus,

ż

BBεp0q

uϕνj dσ “ | ln ε|α

ˇ

ˇ

ˇ

ˇ

ˇ

ż

BBεp0q

ϕνj dσ

ˇ

ˇ

ˇ

ˇ

ˇ

ď | ln ε|α}ϕ}82πε.

Example 4.6. There exists a function in H1
`

R2
˘

but not in L8
loc

`

R2
˘

, meaning it is unbounded

in any open subset of R2, not merely at a single point as in the previous proof.
Let u be a positive function in H1

`

R2
˘

such that limxÑ0 upxq “ `8. For instance, one can

choose the function defined in the previous proof. Let txnu be a dense sequence in R2, and consider
the series

`8
ÿ

k“0

2´ku px´ xkq .

We show that this series converges in H1
`

R2
˘

. Indeed, since the H1
`

R2
˘

-norm is invariant
under translations, we have

`8
ÿ

k“0

2´k }u p¨ ´ xkq}H1pR2q
“

`8
ÿ

k“0

2´k}u}H1pR2q “ 2}u}H1pR2q.

Since H1
`

R2
˘

is a Banach space, any normally convergent series also converges. Denote by

w the sum of the series in the sense of H1
`

R2
˘

.
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On the other hand, by the construction of u, the series has positive terms, so at each point, the
series either converges or diverges positively. Observe that w is also the pointwise limit. Indeed,
convergence in H1

`

R2
˘

to w implies convergence in L2
`

R2
˘

to w, which in turn implies the
pointwise convergence almost everywhere of a subsequence of the partial sums to w.

Fix h P N, and consider limxÑxh
u px´ xhq “ `8. Therefore, at every point xh, we have

limxÑxh
wpxq “ `8.

However, since the given sequence is dense in R2, the function w P H1
`

R2
˘

, but it is not

bounded on any open subset of R2.

1.5. Boundary values of Sobolev functions. Let Ω Ă Rn be a bounded domain. Let
k P N and 1 ď p ă 8. After noticing that DpΩq Ă W k,ppΩq, we can define

W k,p
0 pΩq :“ D}¨}k,p

(the closure of DpΩq with respect to the norm }¨}k,p). We also use the notation Hk
0 pΩq :“ W k,2

0 pΩq.

Proposition 4.1. Let Ω be an open set with C1 boundary and 1 ď p ă 8. If f P W 1,ppΩq X

CpΩ̄q, then

u|BΩ “ 0 ðñ u P W 1,p
0 pΩq.

Remark 4.8. To generalize this result to the case k ě 1, we need to ask Ω to be of class Ck

and one proves that all the derivatives up to m´ 1 order are null at the boundary. In other words,

one should not confuse W 1,p
0 XW k,p with W k,p

0 .

We have already discussed that, if Ω “ Rn, then W k,p
0 pRnq “ W k,ppRnq. On the other hand,

the following results hold.

Theorem 4.10 (Meyers–Serrin’s theorem). Assume Ω is bounded and let u P W k,ppΩq, with
1 ď p ă 8. Then there exist functions um P C8pΩq XW k,ppΩq such that

um Ñ u in W k,ppΩq as m Ñ 8.

In other words, C8pΩq XW k,ppΩq is dense in W k,ppΩq.

Theorem 4.11. Assume Ω is bounded and BΩ P C1. Let u P W k,ppΩq, with 1 ď p ă 8. Then
there exist functions um P C8pΩ̄q such that

um Ñ u in W k,ppΩq as m Ñ 8.

In other words, C8pΩ̄q is dense in W k,ppΩq.

1.5.1. Extension operator. We consider now the question whether, given a function f P

W k,ppΩq, it is possible to construct an extension f̃ P W k,p pRnq such that f̃
ˇ

ˇ

ˇ

Ω
“ f and

}f̃}Wk,ppRnq ď C}f}Wk,ppΩq for some C ą 0 independent of f .

For f P LppΩq, we can take the simple extension by zero outside the domain: f̃ “ f in Ω

and f̃ “ 0 in Ωc. Such extension clearly satisfies f̃ P Lp pRnq and }f̃}LppRnq “ }f}LppΩq for any
p P r1,8s.

When it comes to functions in W k,ppΩq, k ě 1, however, the extension by zero outside Ω does
not lead, in general, to a function inW k,p pRnq so the procedure to construct an extension operator
is more delicate.

Definition 4.7 (Extension operator). We say that E :W k,ppΩq Ñ W k,p pRnq is an extension
operator if

(1) E is linear, i.e., Epαf ` βgq “ αEf ` βEg for all f, g P W k,ppΩq and for all α, β P R;
(2) E is bounded, i.e., there exists C ą 0 such that }Ef}Wk,ppRnq ď C}f}Wk,ppΩq for all

f P W k,ppΩq;
(3) Ef “ f a.e. in Ω for all f P W k,ppΩq;
(4) if Ω is bounded, Epfq is compactly supported for all f P W k,ppΩq.

Theorem 4.12 (Extension theorem). Let Ω be a domain in Rn with bounded boundary BΩ of
class Ck. Then there exists an extension operator E :W k,ppΩq Ñ W k,p pRnq for any 1 ď p ă 8.
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1.5.2. Trace theorems. Let Ω P Rn be a domain with nonempty bounded and smooth boundary
BΩ, say of class C1. We recall that a function f P LppΩq is defined only up to zero measure sets
(i.e., it is defined only almost everywhere). Since |BΩ| “ 0, it is meaningless to talk about the
“boundary value” of f since we can modify the value of f on BΩ without changing the equivalence
class to which f belongs. We ask now whether for a function f P W k,ppΩq, with k ě 1, the picture
changes, i.e., whether it makes sense to talk about the value of f (also called the trace) on BΩ.

It turns out that the answer is yes. The way to proceed is the following: since C8pΩ̄q is

dense in W k,ppΩq, given f P W k,ppΩq we can find a sequence fk P C8pΩ̄q such that fk
kÑ8

ÝÝÝÑ f
in W k,ppΩq. For each fk, the trace fk|BΩ is uniquely defined, so that we define the trace of f on
BΩ as limkÑ8 fk|BΩ. The crucial question is whether such limit exists and with respect to which
topology. The following theorem answers this question.

Theorem 4.13 (Trace theorem). Let Ω Ă Rn be a domain with bounded boundary BΩ of class
C1. Then there exists a linear and bounded operator τ : W 1,ppΩq Ñ LppBΩq, 1 ď p ă 8 such that
τf “ f |BΩ for any f P C0pΩ̄q XW 1,ppΩq.

From this, we may deduce the following result.

Theorem 4.14 (Trace-zero functions in W 1,p). Let us assume that Ω is bounded and BΩ is

C1. let us suppose, furthermore, that u P W 1,ppΩq. Then u P W 1,p
0 pΩq if and only if τu “ 0 on

BΩ.

1.6. Compactness results. A Banach space X is compactly embedded in a Banach space Y ,
written X ãÑãÑ Y or X Ť Y , if the embedding ı : X Ñ Y is compact. That is, ı maps bounded
sets in X to precompact sets in Y ; or, equivalently, if txnu is a bounded sequence in X, then tıxnu

has a convergent subsequence in Y .
An important property of the Sobolev embeddings is that they are compact on domains with

finite measure. This corresponds to the rough principle that uniform bounds on higher derivatives
imply compactness with respect to lower derivatives. The compactness of the Sobolev embeddings,
due to Franz Rellich [Rel30] and Vladimir Iosifovich Kondrashov [Kon45].

Theorem 4.15 (Rellich–Kondrashov’s compact embedding theorem). Suppose that Ω is a
bounded open set in Rn with C1 boundary, k,m P N with k ě m, and 1 ď p ă 8.

(1) If kp ă n, then

W k,ppΩq Ť LqpΩq for 1 ď q ă np{pn´ kpq;
W k,ppΩq Ă LqpΩq for q “ np{pn´ kpq

More generally, if pk ´mqp ă n, then

W k,ppΩq Ť Wm,qpΩq for 1 ď q ă np{pn´ pk ´mqpq

W k,ppΩq Ă Wm,qpΩq for q “ np{pn´ pk ´mqpq

(2) If kp “ n, then

W k,ppΩq Ť LqpΩq for 1 ď q ă 8

(3) If kp ą n, then

W k,ppΩq Ť C0,µpΩ̄q

for 0 ă µ ă k ´ n{p if k ´ n{p ă 1, for 0 ă µ ă 1 if k ´ n{p “ 1, and for µ “ 1 if
k ´ n{p ą 1; and

W k,ppΩq Ă C0,µpΩ̄q

for µ “ k ´ n{p if k ´ n{p ă 1.
More generally, if pk ´mqp ą n, then

W k,ppΩq Ť Cm,µpΩ̄q

for 0 ă µ ă k ´ m ´ n{p if k ´ m ´ n{p ă 1, for 0 ă µ ă 1 if k ´ m ´ n{p “ 1, and for
µ “ 1 if k ´m´ n{p ą 1; and

W k,ppΩq Ă Cm,µpΩ̄q

for µ “ k ´ m ´ n{p if k ´ m ´ n{p “ 0. These results hold for arbitrary bounded open

sets Ω if W k,ppΩq is replaced by W k,p
0 pΩq.
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Example 4.7. If u P Wn,1 pRnq, then u P C0 pRnq. This can be seen from the equality

upxq “

ż x1

0

. . .

ż xn

0

B1 ¨ ¨ ¨ Bnu
`

x1
˘

dx1
1 . . . dx

1
n

which holds for all u P C8
c pRnq and a density argument. In general, however, it is not true that

u P L8 in the critical case kp “ n.

Lect. 12, 03.12

1.7. Poincaré’s inequalities. In some cases, the norm of W 1,p
0 pΩq may be simplified using

Poincaré inequality [Poi90], which allows one to obtain bounds on a function using bounds on its
derivatives and the geometry of its domain of definition.

Theorem 4.16 (Poincaré’s inequality). Suppose that Ω is an open subset of RN bounded in
one direction.10 Then there is a constant CPoi ą 0 (depending only on p and Ω) such that, for any

u P W 1,p
0 pΩq, with p P r1,8q,

}u}LppΩq ď CPoi}∇u}LppΩq.

Remark 4.9. Finding the optimal constant in Poincaré’s inequality, sometimes called the
Poincaré constant for the domain Ω, is, in general, a difficult that depends on the value of p and
the geometry of the domain Ω. For example (and without pretense of completeness), we refer to
[AD04; PW60] for the cases p “ 1 and p “ 2 in bounded, convex, Lipschitz domains.

Proof. Without loss of generality, we write x “ px1, x
1q with x1 “ px2, . . . , xnq and suppose

that Ω is bounded in the direction of x1, i.e., there exists a, b ą 0 such that, for all x P Ω, we have
x1 Psa, br.

We assume that u P C8
c pΩq. This will be sufficient since, for any u P W 1,p

0 pΩq, there exists

a sequence tukuk Ă C8
0 pΩq such that uk

kÑ8
ÝÝÝÑ 0 in W 1,ppΩq. Therefore, if we prove Poincaré’s

inequality for C8
c functions, we can then pass to the limit and recover the statement for W 1,p

0

functions. We extend u to the whole space Rn by setting upxq “ 0 for x R Ω.
Step 1. We start with the case p “ 2 (just because it is somewhat simpler). Using the variables

x “ px1, x
1q with x1 “ px2, . . . , xnq, we compute

u2
`

x1, x
1
˘

“

ż x1

a

2uBx1
u
`

t, x1
˘

dt.

An integration by parts yields

}u}2L2 “

ż

Rn

u2pxqdx “

ż

Rn´1

ż b

a

1 ¨

ˆ
ż x1

a

2uBx1u
`

t, x1
˘

dt

˙

dx1 dx
1

“

ż

Rn´1

ż b

a

pb´ x1q 2uBx1u
`

x1, x
1
˘

dx1 dx
1 ď 2pb´ aq

ż

Rn

|u| |Bx1u| dx

ď 2pb´ aq}u}L2 }Bx1u}L2 .

Dividing both sides by }u}L2 , we obtain the result with CPoi :“ 2pb´ aq.
Step 2. For p P r1,8q, with p ‰ 2, we the argument is similar and we leave it as an exercise. □

A generalization of this inequality to W k,p
0 is available, due to Kurt Otto Friederichs [Fri27].

In particular, Poincaré’s inequality holds true if Ω is supposed to be bounded. This result has
the following important consequence.

Corollary 4.1. If Ω is bounded in one direction or has a finite measure, then in W 1,p
0 pΩq the

norm }f}W 1,p
0 pΩq

:“ }Df}LppΩq is equivalent to the norm }f}W 1,ppΩq, i.e., there exist two constants

C1, C2 ą 0 such that

C1}f}W 1,p
0 pΩq

ď }f}W 1,ppΩq ď C2}f}W 1,p
0 pΩq

.

10 An open set Ω Ă RN is said to be bounded in one direction if there is e P RN , }e} “ 1, and two real numbers

a, b P R such that

x ¨ e Psa, br, for any x P Ω.
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Proof. For every f P W 1,p
0 pΩq, we have }f}

p
LppΩq

ď Cp
Poi}Df}

p
LppΩq

which implies

}f}
p
W 1,ppΩq

“ }f}
p
LppΩq

` }Df}
p
LppΩq

ď p1 ` Cp
Poiq }f}

p

W 1,p
0 pΩq

and this proves the second inequality with C2 “ p1 ` Cp
Poiq

1{p
. The first inequality trivially holds

with C1 “ 1. □

In particular, Poincaré’s inequality also implies that we may use as an equivalent inner-product
on H1

0 an expression that involves only the derivatives of the functions and not the functions
themselves.

Corollary 4.2. If Ω is an open set that is bounded in some direction, then H1
0 pΩq equipped

with the inner product

pu, vq0 “

ż

Ω

Du ¨Dv dx, (1.9)

is a Hilbert space, and the corresponding norm is equivalent to the standard norm on H1
0 pΩq.

Proof. We denote the norm associated with the inner-product (1.9) by

}u}H1
0 pΩq “

ˆ
ż

Ω

|Du|2dx

˙1{2

and the standard norm and inner product by

}u}H1pΩq “

ˆ
ż

Ω

“

u2 ` |Du|2
‰

dx

˙1{2

pu, vq1 “

ż

Ω

puv `Du ¨Dvqdx.

Then, using Poincaré’s inequality, we have

}u}H1
0 pΩq ď }u}H1pΩq ď pC ` 1q1{2}u}0.

Thus, the two norms are equivalent; in particular,
`

H1
0 , p¨, ¨q0

˘

is complete since
`

H1
0 , p¨, ¨q1

˘

is
complete, so it is a Hilbert space with respect to the inner product (1.9). □

For functions that do not vanish at the boundary, we can still prove an inequality of this type,
attributed to Henri Poincaré and Wilhelm Wirtinger: as an application of the compact embedding
theorem, we can prove an estimate on the difference between a function u and its average value on
a domain Ω.

Theorem 4.17 (Poincaré–Wirtinger’s inequality). Let Ω Ă Rn be a bounded, connected, open
set with C1 boundary, and let p P r1,8s. Then there exists a constant C ą 0 (depending only on
p and Ω), such that

›

›

›

›

u´

 
Ω

udx

›

›

›

›

LppΩq

ď C}∇u}LppΩq for every u P W 1,ppΩq.

Proof. Let us suppose, for the sake of finding a contradiction, that the conclusion is false.
Then we could find a sequence of functions uk P W 1,ppΩq with

›

›

›

›

uk ´

 
Ω

uk dx

›

›

›

›

LppΩq

ą k }∇uk}LppΩq for every k P t1, 2, . . .u.

Then the renormalized functions

vk :“
uk ´

ffl
Ω
uk dx

›

›uk ´
ffl
Ω
uk dx

›

›

LppΩq

satisfy  
Ω

vk dx “ 0, }vk}LppΩq “ 1, }Dvk}LppΩq ă
1

k
, for k P t1, 2, . . .u. (1.10)

Since the sequence pvkqkě1 is bounded in W 1,ppΩq, if p ă 8, we can use the Rellich–Kondrachov’s
compactness theorem and find a subsequence that converges in LppΩq to some function v. If
p ą n, then the functions vk are uniformly bounded and Hölder continuous. Using Ascoli–Arzela’s
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compactness theorem, we can thus find a subsequence that converges in L8pΩq to some function
v.

By (1.10), the sequence of weak gradients also converges, namely ∇vk Ñ 0 in LppΩq. By
Lemma 4.2, the zero function is the weak gradient of the limit function v.

We now have  
Ω

v dx “ lim
kÑ8

 
Ω

vk dx “ 0.

Moreover, since ∇v “ 0 P LppΩq, then the function v must be constant on the connected set
Ω; hence vpxq “ 0 for a.e. x P Ω. But this is in contradiction with

}v}LppΩq “ lim
kÑ8

}vk}LppΩq “ 1.

□

1.8. Dual Sobolev spaces. We can now define Sobolev spaces of negative order by duality

using W k,p
0 pΩq.

Definition 4.8. Let k ą 0 and p P p1,8q. Let Ω be an open set in Rn. We define the space

W´k,ppΩq :“
´

W k,p1

0 pΩq

¯1

with 1
p ` 1

p1 “ 1 (for p “ 2, we write H´kpΩq :“ W´k,2pΩq), equipped

with the norm

}T }W´k,ppΩq :“ sup
wPW

k,p1pΩq

0

|xT,wy|

}w}Wk,p1pΩq

.

Identifying LppΩq with the dual space of Lp1

pΩq, we infer that LppΩq ãÑ W´k,ppΩq. Moreover,
one can check that any element T P W´k,ppΩq is a distribution.

Example 4.8. The Dirac mass at a point x P Ω belongs to W´k,ppΩq if kp1 ą n.

Theorem 4.18. Let p P p1,8q. Let Ω be an open bounded set in Rn. For all f P

W´1,ppΩq, there exist functions tgiui“1,...,n, belonging to Lp1

pΩq, such that }f}W´1,ppΩq “

maxiPt0,...,nu }gi}Lp1
pΩq and

xf, vy “

ż

Ω

g0v dx`

n
ÿ

i“1

ż

Ω

giBxiv dx, for all v P W 1,p
0 pΩq.

More generally, for all m P N, we have f P W´m,ppΩq if and only if f “
ř

|α|ďm Bαgα for some

gα P Lp1

pΩq.

For future use, we focus on the particular case k “ 1 and p “ 2. The space of bounded
linear maps f : H1

0 pΩq Ñ R is denoted by H´1pΩq “ pH1
0 pΩqq1, and the action of f P H´1pΩq on

ϕ P H1
0 pΩq by xf, ϕy. The norm of f P H´1pΩq is given by

}f}H´1 “ sup

#

|xf, ϕy|

}ϕ}H1
0

: ϕ P H1
0 , ϕ ‰ 0

+

.

A function f P L2pΩq defines a linear functional Ff P H´1pΩq by

xFf , vy “

ż

Ω

fv dx “ pf, vqL2 for all v P H1
0 pΩq

Here, p¨, ¨qL2 denotes the standard inner product on L2pΩq. The functional Ff is bounded on
H1

0 pΩq with }Ff }H´1 ď }f}L2 since, by Cauchy-Schwarz’ inequality,11

|xFf , vy| ď }f}L2}v}L2 ď }f}L2}v}H1
0

We identify Ff with f , and write both simply as f . Such linear functionals are, however, not
the only elements of H´1pΩq. As shown in Theorem 4.18, H´1pΩq may be identified with the space
of distributions on Ω that are sums of first-order distributional derivatives of functions in L2pΩq.
Thus, after identifying functions with regular distributions, we have the following triple of Hilbert
spaces

H1
0 pΩq ãÑ L2pΩq ãÑ H´1pΩq, H´1pΩq “ pH1

0 pΩqq1

11 Also called Cauchy–Bunyakovsky–Schwarz’ inequality, after Augustin-Louis Cauchy [Cau21], Viktor Bun-

yakovsky [Bun59], and Hermann Schwarz [Sch88].
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Moreover, if f P L2pΩq Ă H´1pΩq and u P H1
0 pΩq, then

xf, uy “ pf, uqL2 ,

so the duality pairing coincides with the L2-inner product when both are defined.

2. Weak solutions of elliptic PDEs

Let us consider the Dirichlet problem for the Laplacian with homogeneous boundary conditions
on a bounded domain Ω in Rn,

#

´∆u “ f, x P Ω,

u “ 0, x P BΩ.
(2.1)

First, suppose that the boundary of Ω is smooth and u, f : Ω̄ Ñ R are smooth functions.
Multiplying the PDE ´∆u “ f by a test function ϕ P DpΩq, integrating the result over Ω, and
using the divergence theorem, we get

ż

Ω

Du ¨Dϕdx “

ż

Ω

fϕdx for all ϕ P C8
c pΩq. (2.2)

The boundary terms vanish because ϕ “ 0 on the boundary. Conversely, if f and Ω are smooth,
then any smooth function u that satisfies (2.2) is a solution of the Dirichlet problem (2.1).

Next, we formulate weaker assumptions under which (2.2) makes sense. By the Cauchy–
Schwartz inequality, the integral on the left-hand side of (2.2) is finite if Du belongs to L2pΩq, so
we suppose that u P H1pΩq. Moreover, we impose the boundary condition u “ 0 on BΩ of (2.1) in
a weak sense by requiring that u P H1

0 pΩq. The left hand side of (2.2) then extends by continuity

to ϕ P H1
0 pΩq “ C8

c pΩq. The right hand side of (2.2) is well-defined for all ϕ P H1
0 pΩq if f P L2pΩq,

but this is not the most general f for which it makes sense; we can define the right-hand for any
f in the dual space of H1

0 pΩq.

Definition 4.9 (Weak solutions of the Dirichlet problem (2.1)). Let Ω be an open set in Rn

and f P H´1pΩq. A function u : Ω Ñ R is a weak solution of (2.1) if u P H1
0 pΩq and

ż

Ω

Du ¨Dϕdx “ xf, ϕy for all ϕ P H1
0 pΩq.

Remark 4.10. If Ω is smooth and g : BΩ Ñ R is a function on the boundary that is in the
range of the trace map τ : H1pΩq Ñ L2pBΩq, say g “ τw, then we obtain a weak formulation of
the inhomogeneous Dirichet problem

#

´∆u “ f, x P Ω,

u “ g, x P BΩ,
(2.3)

by requiring u ´ w P H1
0 pΩq instead of u P H1

0 pΩq. The definition is otherwise the same. One
can prove that the range of the trace map on H1pΩq for a smooth domain Ω is the fractional-order
Sobolev space H1{2pBΩq.

Remark 4.11 (Distributional solutions of the Poisson equation). Let us comment on some
other ways to define weak solutions of Poisson’s equation. If we integrate by parts again in (2.2),
we find that every smooth solution u of (2.1) satisfies

´

ż

Ω

u∆ϕdx “

ż

Ω

fϕdx for all ϕ P C8
c pΩq. (2.4)

This condition makes sense without any differentiability assumptions on u, and we can define a
locally integrable function u P L1

loc pΩq to be a weak solution of ´∆u “ f for f P L1
locpΩq if it

satisfies (2.4). One problem with using this definition is that general functions u P LppΩq do not
have enough regularity to make sense of their boundary values on BΩ.

More generally, we can define distributional solutions T P D1pΩq of Poisson’s equation ´∆T “

f with f P D1pΩq by

´xT,∆ϕy “ xf, ϕy for all ϕ P C8
c pΩq.

While these definitions appear more general, owing to some elliptic regularity results they turn out
not to extend the class of weak solutions we consider in Definition 4.9 if f P H´1pΩq.
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3. Existence of weak solutions for elliptic PDEs via Riesz’ representation theorem

In this section, we establish the existence and uniqueness of weak solutions to (2.1).

Theorem 4.19 (Well-posedness of weak solutions to the Dirichlet problem (2.1)). Suppose
that Ω is an open set in Rn that is bounded in some direction and f P H´1pΩq. Then there is a
unique weak solution u P H1

0 pΩq of ´∆u “ f in the sense of Definition 4.9.

The main tool is Riesz’ representation theorem, which states that a Hilbert space can be
identified with its dual.12

Theorem 4.20 (Riesz representation of linear functionals). Let pH, p¨, ¨qq be a Hilbert space.

(1) For every x P H, the map y ÞÑ py, xq is a continuous linear functional on H.
(2) Let y ÞÑ Ay be a continuous linear functional on H. Then there exists a unique element

a P H such that Ay “ py, aq for every y P H.

Proof of Theorem 4.19. We equip H1
0 pΩq with the inner product (1.9). Then, since Ω

is bounded in some direction, the resulting norm is equivalent to the standard norm, and f is
a bounded linear functional on

`

H1
0 pΩq, p¨, ¨q0

˘

. By Riesz’ representation theorem, there exists a

unique u P H1
0 pΩq such that

pu, ϕq0 “ xf, ϕy for all ϕ P H1
0 pΩq,

which is equivalent to the condition that u is a weak solution. □

The same approach works for other symmetric linear elliptic PDEs, as we will see below.

3.1. Inhomogeneous Dirichlet problem. Let f P H´1pΩq and g P H1pΩq. For the inho-
mogeneous Dirichlet problem (2.3), we consider the closed convex set

KpΩq “ H1
0 pΩq ` g :“ tw P H1pΩq : w ´ g P H1

0 pΩqu.

A function u P KpΩq is a weak solution of (2.3) if
ż

Ω

∇u ¨ ∇ϕ dx “

ż

Ω

fϕdx, for all ϕ P H1
0 pΩq.

Remark 4.12. Let f P CpΩq and u P C2pΩq XCpΩ̄q. Then u is a weak solution of (2.3) if and
only if u is a classical solution of (2.3).

To show the existence and uniqueness of weak solutions to (2.3), we apply Riesz’ representation
theorem to the linear functional G : H1

0 pΩq Ñ R defined by

Gpϕq :“

ż

Ω

fϕ´

ż

Ω

∇g ¨ ∇ϕ.

Then there exists a unique w P H1
0 pΩq such that Gpϕq “ p∇w, ¨∇ϕq0. Then u :“ w ` g is the

unique function in KpΩq such that
ż

Ω

∇v ¨ ∇ϕ “

ż

Ω

fϕ,

i.e., the unique weak solution of (2.3).

Remark 4.13. Uniqueness can be established a priori via energy methods. Let u1, u2 P KpΩq.
Then, for all ϕ P H1

0 pΩq, we have
ż

Ω

∇pu1 ´ u2q ¨ ∇ϕ “ 0.

In particular, letting ϕ “ u1 ´ u2, we conclude u1 “ u2 a.e.

12 This result is also known as Riesz–Fréchet representation theorem, after Frigyes Riesz [Rie07] and Maurice

René Fréchet [Fré07].
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3.2. Homogeneous Dirichlet problem for ´∆ ` I. Consider the Dirichlet problem
#

´∆u` u “ f, x P Ω,

u “ 0, x P BΩ.

Then u P H1
0 pΩq is a weak solution if

ż

Ω

pDu ¨Dϕ` uϕqdx “ xf, ϕy for all ϕ P H1
0 pΩq.

This is equivalent to the condition that

pu, ϕq1 “ xf, ϕy for all ϕ P H1
0 pΩq,

where p¨, ¨q1 is the standard inner product on H1
0 pΩq. Thus, Riesz’ representation theorem implies

the existence of a unique weak solution.

Remark 4.14. Note that in this example we do not use the Poincaré inequality, so the result
applies to arbitrary open sets, including Ω “ Rn. In that case, H1

0 pRnq “ H1 pRnq, and we get
a unique solution u P H1 pRnq of ´∆u ` u “ f for every f P H´1 pRnq. Moreover, using the
standard norms, we have }u}H1 “ }f}H´1 . Thus the operator ´∆ ` I is an isometry of H1 pRnq

onto H´1 pRnq.

3.3. Homogeneous Dirichlet problem for ´∆ ` µI. Let µ ą 0. A function u P H1
0 pΩq is

a weak solution of
#

´∆u` µu “ f, x P Ω,

u “ 0, x P BΩ,

if
pu, ϕqµ “ xf, ϕy for all ϕ P H1

0 pΩq,

where

pu, vqµ “

ż

Ω

pµuv `Du ¨Dvqdx

The norm } ¨ }µ associated with this inner product is equivalent to the standard one, since

1

C
}u}2µ ď }u}21 ď C}u}2µ

where C :“ maxtµ, 1{µu. We therefore again get the existence of a unique weak solution from
Riesz’ representation theorem.

Example 4.9. Consider the last example for µ ă 0. If we have a Poincaré inequality }u}L2 ď

C}Du}L2 for Ω, which is the case if Ω is bounded in some direction, then

pu, uqµ “

ż

Ω

`

µu2 ` |Du|2
˘

dx ě p1 ´ C|µ|q

ż

Ω

|Du|2 dx

Thus }u}µ defines a norm on H1
0 pΩq that is equivalent to the standard norm if ´1{C ă µ ă 0,

and we get a unique weak solution in this case also, provided that |µ| is sufficiently small.
For bounded domains, the Dirichlet Laplacian has an infinite sequence of real eigenvalues

tλnunPN such that there exists a nonzero solution u P H1
0 pΩq of ´∆u “ λnu. The best constant

in Poincaré’s inequality can be shown to be the minimum eigenvalue λ1, and this method does not
work if µ ď ´λ1. For µ “ ´λn, a weak solution of does not exist for every f P H´1pΩq, and if
one does exist it is not unique since we can add to it an arbitrary eigenfunction. Thus, not only
does the method fail, but the conclusion of Theorem 4.19 may be false.

3.4. Homogeneous Dirichlet problem for symmetric elliptic operators. Let us con-
sider the operator

Lu “ ´

n
ÿ

i,j“1

Bxi

`

aijBxj
u
˘

,

where the coefficients are assumed to be bounded, symmetric paij “ ajiq, and satisfy the uniform
ellipticity condition. That is, for some θ ą 0,

n
ÿ

i,j“1

aijpxqξiξj ě θ|ξ|2 for all x P Ω, and all ξ P Rn.
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The function u P H1
0 pΩq will be a weak solution of the Dirichlet problem for this operator,

#

Lu “ f, x P Ω,

u “ 0, x P BΩ,

if
apu, ϕq “ xf, ϕy for all ϕ P H1

0 pΩq,

where a : H1
0 pΩq ˆH1

0 pΩq Ñ R is the symmetric bilinear form associated with the operator, and is
given by

apu, vq :“
n
ÿ

i,j“1

ż

Ω

aijBxjuBxiv dx

If Ω is bounded in some direction, then boundedness of aij , uniform ellipticiy, and Poincaré’s
inequality will imply that the symmetric bilinear form a defines an inner product on H1

0 pΩq,
with the induced norm being equivalent to the standard norm of H1

0 pΩq. This will again imply
that f P H´1 is a bounded linear functional on the Hilbert space

`

H1
0 pΩq, a

˘

, and hence Riesz’
representation theorem will imply the existence of a unique weak solution of the Dirichlet problem
for this operator.

Remark 4.15. The bilinear form a of course arises from integration by parts of the left hand
side of the equation after multiplying by the function v. Thus, having the derivative in front of
the entire term aijBxj

u is crucial, since we are not assuming that the coefficients aij are weakly
differentiable. In such cases, we will say that the elliptic operator is in the divergence form.

3.5. Homogeneous Neumann problem for ´∆`I. Let Ω be an open, connected, bounded
set with C1 boundary. If f P L2pΩq, u is a weak solution of

#

´∆u` u “ f, x P Ω,

Bνu “ 0, x P BΩ,
(3.1)

if
ż

Ω

∇u ¨ ∇ϕ`

ż

Ω

uϕ “

ż

Ω

fϕ, for all ϕ P H1pΩq.

This is equivalent to the condition that

pu, ϕq1 “ xf, ϕy for all ϕ P H1pΩq,

where p¨, ¨q1 is the standard inner product on H1pΩq. Riesz’ representation theorem yields the
existence of a unique weak solution.

Remark 4.16. Let f P CpΩq. If u P C2pΩq X C1pΩ̄q is a classical solution, then it is a weak
solution of (3.1).

Viceversa, if u P C2pΩq X C1pΩ̄q is a weak solution, then it is a classical solution of (3.1). To
check this, let us consider a test function v P DpΩq Ă H1pΩq. Since u is a weak solution, using
Gauss–Green’s formulas, we have

ż

Ω

fv “

ż

Ω

∇v ¨ ∇u`

ż

Ω

uv “

ż

Ω

p´∆uqv `

ż

BΩ

Bu

Bν
v dS `

ż

Ω

uv “

ż

Ω

p´∆uqv `

ż

Ω

uv.

In the last equality, we used the assumption on the support of v. Therefore, for every v P DpΩq,
we have

ż

Ω

p´∆u` u´ fqv “ 0.

By the fundamental lemma of the calculus of variations, p´∆u`u´fq “ 0 almost everywhere
in Ω, but since u and f are continuous, this equality holds for every x P Ω.

It remains to prove that
Bu

Bν
“ 0 on BΩ.

Let v P C8pΩ̄q Ă H1pΩq. We know that u satisfies p´∆u ` u ´ fq “ 0 and is also a weak
solution of the Neumann problem (3.1). From this, we deduce that

ż

Ω

∇u ¨ ∇v “

ż

Ω

p´∆uqv `

ż

BΩ

Bu

Bν
v dS “

ż

Ω

p´u` fqv `

ż

BΩ

Bu

Bν
v dS.
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That is,
ż

BΩ

Bu

Bν
v dS “

ż

Ω

∇u ¨ ∇v `

ż

Ω

uv ´

ż

Ω

fv “ 0.

It can be shown that the set
␣

v|BΩ : v P C8pΩ̄q
(

is dense in L2pBΩq. Therefore, by continuity,
ż

BΩ

Bu

Bν
v dS “ 0 for all v P L2pBΩq,

since Bu
Bν P L2pBΩq is orthogonal to a dense subspace. Ultimately, Bνu “ 0 on BΩ.

It is said that the Neumann boundary value problem has natural boundary conditions, because
the space in which the weak solution is defined does not explicitly contain information about Bνu,
but this condition is automatically satisfied.

3.6. Homogeneous Neumann problem for the Poisson equation. Let Ω be an open,
connected, bounded set with C1 boundary. Let f P L2pΩq and consider

#

´∆u “ f, x P Ω,

Bνu “ 0, x P BΩ.
(3.2)

Let f P L2pΩq. We say that u P H1pΩq is a weak solution of (3.2) if
ż

Ω

∇u ¨ ∇ϕ “

ż

Ω

fϕ, for all ϕ P H1pΩq.

Theorem 4.21. If a weak solution of (3.2) exists, then it is unique up to additive constants.

Proof. Let u1, u2 P H1pΩq be two weak solutions of (3.2). Then, for every ϕ P H1pΩq, we
have

ż

Ω

∇pu1 ´ u2q ¨ ∇ϕ “ 0.

Choosing, in particular, ϕ “ u1 ´ u2, yields ∇pu1 ´ u2q “ 0 a.e., and so u1 “ u2 ` c (for some
constant c P R), since Ω is connected. □

Theorem 4.22. There exists a weak solution of (3.2) if and only if
ffl
Ω
fpxqdx “ 0

Proof. Step 1. If a weak solution exists, then we pick ϕ ” const. in the weak formulation
and deduce

ş

Ω
fpxqdx “ 0.

Step 2. Let us suppose
ffl
Ω
fpxqdx “ 0 and define

V “

"

u P H1pΩq :

 
Ω

udx “ 0

*

.

This is a closed subspace of H1pΩq (for example, one can see this as V is the kernel of the linear
continuous functional x1, ¨y P L2pΩq. By Poincaré–Wirtinger’s inequality, V is a Hilbert space with
norm }∇u}L2pΩq. Since weak solutions are unique up to an additive constant, we may assume that
they lie all in V (otherwise, we subtract the average). It suffices to test weak solutions with ϕ P V .
Indeed, since

ffl
Ω
f “ 0, we have

ż

ϕf “

ż
ˆ

ϕ´

 
ϕ

˙

f.

Applying Riesz’ representation theorem on the Hilbert space V , we get existence of a unique weak
solution of (3.2) in V . □

4. Existence of weak solutions for elliptic PDEs via variational methods

We have established the existence of a weak solution by use of Riesz’ representation theorem.
In this section, we use a different approach, via variational methods. The Riesz representation
theorem is, however, typically proved by a similar argument to the one used in the direct method
of the calculus of variations, so in essence the proofs are equivalent.
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Definition 4.10. A functional J : X Ñ R on a Banach space X is differentiable at x P X if
there is a bounded linear functional A : X Ñ R such that

lim
hÑ0

|Jpx` hq ´ Jpxq ´Ah|

}h}X
“ 0

If A exists, then it is unique, and it is called the differential of J at x, denoted DJpxq “ A.

This definition expresses the basic idea of a differentiable function as one which can be ap-
proximated locally by a linear map. If J is differentiable at every point of X, then DJ : X Ñ X˚

maps x P X to the linear functional DJpxq P X˚ that approximates J near x.
A weaker notion of differentiability is the existence of directional derivatives

δJpx;hq “ lim
ϵÑ0

„

Jpx` ϵhq ´ Jpxq

ϵ

ȷ

“
d

dϵ
Jpx` ϵhq

ˇ

ˇ

ˇ

ˇ

ϵ“0

.

If the directional derivative at x exists for every h P X and is a bounded linear functional on
h, then δJpx;hq “ δJpxqh where δJpxq P X˚. We call δJpxq the Gâteaux derivative of J at x. The
derivative DJ is then called the Fréchet derivative to distinguish it from the directional or Gâteaux
derivative. If J is differentiable at x, then it is Gâteaux-differentiable at x and DJpxq “ δJpxq,
but the converse is not true.

Example 4.10. Define f : R2 Ñ R by fp0, 0q “ 0 and

fpx, yq “

ˆ

xy2

x2 ` y4

˙2

if px, yq ‰ p0, 0q.

Then f is Gâteaux-differentiable at 0, with δfp0q “ 0, but f is not Fréchet differentiable at 0.

If J : X Ñ R attains a local minimum at x P X and J is differentiable at x, then for every
h P X the function Jx;h : R Ñ R defined by Jx;hptq “ Jpx ` thq is differentiable at t “ 0 and
attains a minimum at t “ 0. It follows that

dJx;h
dt

p0q “ δJpx;hq “ 0 for every h P X.

Hence DJpxq “ 0.
We say that an elliptic problem is in variational form if its weak solutions are critical points

of a suitable functional.
If we have a variational problem, in the direct method of the calculus of variations, we prove the

existence of a minimizer of J by showing that a minimizing sequence tunu converges in a suitable
sense to a minimizer u. The direct method of the calculus of variations is encoded in the proof of
the (generlized) Weierstrass theorem.13

Theorem 4.23 ((Generlized) Weierstrass’ theorem). Let X be a reflexive space, F : X Ñ R be
a coercive and weakly lower-semicontinuous functional. Then infX F ą ´8 and it is a minimum.,
i.e., there exists x̄ P X such that F px̄q “ infX F . Moreover, if F is strictly convex, then the
minimum point is unique.

Remark 4.17. Let X be a Banach space, we recall that F : X Ñs ´ 8,`8s is called

‚ weakly lower-semicountinous if, for every x P X and every xn Ñ x, we have
lim infnÑ8 F pxnq ě F pxq;

‚ weakly lower-semicountinous if, for every x P X and every xn á x, we have
lim infnÑ8 F pxnq ě F pxq;

‚ coercive if lim}x}XÑ8 F pxq “ `8;
‚ convex if, for every x, y P X and every t P r0, 1s, we have F ptx ` p1 ´ tqxq ď tF pxq `

p1 ´ tqF pxq.

We also recall that, if F is convex and lower-semicountinuous, then it is weakly lower-
semicontinuous.

13 Named after Karl Theodor Wilhelm Weierstrass.
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4.1. Homogeneous Dirichlet problem for the Poisson equation. Given f P H´1pΩq,
we define a quadratic functional J : H1

0 pΩq Ñ R by

Jpuq “
1

2

ż

Ω

|Du|2 dx´ xf, uy. (4.1)

Proposition 4.2. The functional J : H1
0 pΩq Ñ R in (4.1) is well-defined and differentiable.

Its derivative DJpuq : H1
0 pΩq Ñ R at u P H1

0 pΩq is given by

DJpuqh “

ż

Ω

Du ¨Dhdx´ xf, hy for h P H1
0 pΩq.

Proof. Given u P H1
0 pΩq, define the linear map A : H1

0 pΩq Ñ R by

Ah “

ż

Ω

Du ¨Dhdx´ xf, hy.

Then A is bounded, with }A} ď }Du}L2 ` }f}H´1 , since

|Ah| ď }Du}L2}Dh}L2 ` }f}H´1}h}H1
0

ď p}Du}L2 ` }f}H´1q }h}H1
0

For h P H1
0 pΩq, we have

Jpu` hq ´ Jpuq ´Ah “
1

2

ż

Ω

|Dh|2 dx.

It follows that

|Jpu` hq ´ Jpuq ´Ah| ď
1

2
}h}2H1

0
,

and therefore

lim
hÑ0

|Jpu` hq ´ Jpuq ´Ah|

}h}H1
0

“ 0

which proves that J is differentiable on H1
0 pΩq with DJpuq “ A. □

Note that DJpuq “ 0 if and only if u is a weak solution of the Dirichlet problem Poisson’s
equation

#

´∆u “ f, x P Ω,

u “ 0, x P BΩ,
(4.2)

in the sense of Definition 4.9. Thus, we have the following result.

Corollary 4.3. If J : H1
0 pΩq Ñ R defined in (4.1) attains a minimum at u P H1

0 pΩq, then u
is a weak solution of ´∆u “ f .

Proof. Let us define gptq “ Jpu ` tvq for v P H1
0 pΩq. We know that g has a minimum point

at t “ 0. In particular,

gptq “ Jpu` tvq “
1

2

ż

Ω

|∇pu` tvq|2 dx´

ż

Ω

fpu` tvqdx

“
1

2

ż

Ω

|∇u|2 dx`
t2

2

ż

Ω

|∇v|2 dx` t

ż

Ω

∇u ¨ ∇v dx´

ż

Ω

fudx´ t

ż

Ω

fv dx.

Then, the condition g1p0q “ 0 ensures
ż

Ω

∇u ¨ ∇v dx´

ż

Ω

fv dx “ 0.

□

Finally, we can prove that J has one and only one minimum. Indeed, we can show that J is co-
ercive, strictly convex, and lower-semicontinuous (which proves the claim owing to Theorem 4.23).

Coercivity: We aim to estimate Jpvq from below:

Jpvq “
1

2
}v}2H1

0 pΩq
´

ż

Ω

fv ě
1

2
}v}2H1

0 pΩq
´ }f}2}v}2 ě

1

2
}v}2H1

0 pΩq
´ CP }f}2}v}H1

0 pΩq,

where CP is the constant from Poincaré’s inequality. Thus, Jpvq Ñ `8 as }v}H1
0 pΩq Ñ

`8 (since Jpvq contains a quadratic polynomial in }v}H1
0 pΩq).
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Strict Convexity: Using the strict convexity of the single-variable function fpxq “ x2 (which
follows from f2 “ 2 ą 0), we have:

J ptv1 ` p1 ´ tqv2q ´ ptJpv1q ` p1 ´ tqJpv2qq

“
1

2

ż

Ω

|t∇v1 ` p1 ´ tq∇v2|
2
dx´

ż

Ω

f ptv1 ` p1 ´ tqv2q dx

´
t

2

ż

Ω

|∇v1|2 dx´
1 ´ t

2

ż

Ω

|∇v2|2 dx` t

ż

Ω

fv1 dx` p1 ´ tq

ż

Ω

fv2 dx

ă
1

2

ż

Ω

t|∇v1|2 ` p1 ´ tq|∇v2|2 dx´
t

2

ż

Ω

|∇v1|2 dx´
1 ´ t

2

ż

Ω

|∇v2|2 dx “ 0.

Lower Semicontinuity: Since the functional J is continuous, it is lower semicontinuous with
respect to the strong topology. Furthermore, since it is convex, it is also weakly lower
semicontinuous.

Thus, by the Weierstrass theorem, there exists a unique u P H1
0 pΩq that minimizes J .

4.2. Inhomogeneous Dirichlet problem for the Poisson equation. We now turn to the
inhomogeneous Dirichlet problem for the Poisson equation:

#

´∆u “ f, x P Ω,

u “ g, x P BΩ,
(4.3)

We will use the notation of Section 3.1.

Theorem 4.24. Let f P L2pΩq and g P H1pΩq X CpΩ̄q. Then there exists one and only one
weak solution of (4.3).

Proof. Let J : K Ñ R be defined as

Jpuq “
1

2

ż

|∇u|2 dx´

ż

fudx.

To this functional, we associate the functional J̃ : H1
0 pΩq Ñ R, defined by

J̃pwq :“ Jpw ` gq.

We aim to prove that J̃ has a unique minimum point. Explicitly, we have

J̃pwq “ Jpw ` φq “
1

2

ż

Ω

|∇w|2 dx`
1

2

ż

Ω

|∇φ|2 dx`

ż

Ω

∇w ¨ ∇φdx´

ż

Ω

fw dx´

ż

Ω

fφdx.

Since J̃ is defined on H1
0 pΩq, which is a reflexive space, we apply Weierstrass’ theorem to find

the minimum points by proving that J̃ is coercive and weakly lower semi-continuous. In fact, we
will find a unique minimum of J̃ , which, when shifted back, will correspond to the unique minimum
of J .

To prove the coercivity of J̃ , we use Hölder’s inequality:

´

ż

Ω

∇w ¨ ∇φdx ď

ˇ

ˇ

ˇ

ˇ

ż

Ω

∇w ¨ ∇φdx

ˇ

ˇ

ˇ

ˇ

ď }∇w}2}∇φ}2.

From Poincaré’s inequality, it follows that
ż

Ω

fw dx ď }f}2}w}2 ď C}f}2}∇w}2.

Changing the signs in the previous inequalities, we get

|J̃pwq| ě
1

2
}∇w}22 `

1

2
}∇φ}22 ´ }∇w}2}∇φ}2 ´ C}f}2}∇w}2 ´

ż

Ω

fφdx.

Thus, as }∇w}2 Ñ `8, we have |J̃pwq| Ñ `8, since J̃pwq contains a quadratic polynomial in
}∇w}2.

Next, we show that J̃ is weakly lower semicontinuous. Indeed:

‚ The term 1
2

ş

Ω
|∇w|2 dx is weakly lower semicontinuous because it represents the norm

squared of the space in question (proof of this fact omitted).
‚ The terms

ş

Ω
∇w ¨ ∇φdx ´

ş

Ω
fw dx are weakly continuous because they are linear and

continuous.
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‚ The terms 1
2

ş

Ω
|∇φ|2 dx´

ş

Ω
fφdx are constant.

Hence, by Weierstrass’ theorem, J̃ has a minimum point. We now prove the strict convexity
of J̃ to ensure the uniqueness of this minimum. Since J̃ contains constant terms and linear terms,
its strict convexity reduces to the strict convexity of the squared H1

0 -norm. Specifically:

J̃ ptw1 ` p1 ´ tqw2q ´

´

tJ̃pw1q ` p1 ´ tqJ̃pw2q

¯

“
1

2

”

}tw1 ` p1 ´ tqw2}2H1
0 pΩq

´ t}w1}2H1
0 pΩq

´ p1 ´ tq}w2}2H1
0 pΩq

ı

.

Let w0 be the minimum obtained from Weierstrass’ theorem for J̃ on H1
0 pΩq. Then u0 “ w0`φ

is the minimum of the functional J on K. Clearly, u0 P K. We find that u0 is a weak solution,
meaning that for every v P H1

0 pΩq,
ż

Ω

∇u0 ¨ ∇v dx “

ż

Ω

fv dx.

To see this, we define

gptq :“ J̃ pw0 ` tvq .

We know that g has a unique minimum at t “ 0. In particular:

gptq “ J̃ pw0 ` tvq

“
1

2

ż

Ω

|∇w0|2 dx` t2
1

2

ż

Ω

|∇v|2 dx` t

ż

Ω

∇u0 ¨ ∇v dx

`
1

2

ż

Ω

|∇φ|2 dx`

ż

Ω

∇w0 ¨ ∇φdx` t

ż

Ω

∇v ¨ ∇φdx

´

ż

Ω

fu0 dx´ t

ż

Ω

fv dx´

ż

Ω

fφdx.

This is again a quadratic polynomial in t. The condition g1p0q “ 0 ensures
ż

Ω

∇w0 ¨ ∇v dx`

ż

Ω

∇v ¨ ∇φdx´

ż

Ω

fv dx “ 0.

□

4.3. Homogeous Neumann problem for ´∆` I. We aim to prove that the weak solution
of (3.1) is the unique minimum of a functional, which can be obtained using the Weierstrass
Theorem. Consider the functional

J : H1pΩq Ñ R, Jpvq “
1

2

ż

Ω

|∇v|2 dx`
1

2

ż

Ω

|v|2 dx´

ż

Ω

fv dx.

We verify the hypotheses of the Weierstrass Theorem:

Coercivity: We estimate Jpvq from below by a quadratic polynomial in }v}H1pΩq:

Jpvq “
1

2
}v}2H1pΩq ´

ż

Ω

fv dx ě
1

2
}v}2H1pΩq ´ }f}2}v}2 ě

1

2
}v}2H1pΩq ´ }f}2}v}H1pΩq.

Thus, Jpvq Ñ `8 as }v}H1pΩq Ñ `8.
Strict Convexity: Due to the linearity of the term J2, we have

J ptv1 ` p1 ´ tqv2q ´ ptJpv1q ` p1 ´ tqJpv2qq “ J1 ptv1 ` p1 ´ tqv2q ´ ptJ1pv1q ` p1 ´ tqJ1pv2qq ,

where J1 is a squared norm, ensuring strict convexity.
Lower Semicontinuity: We rewrite the functional as

Jpvq “
1

2
}v}2H1pΩq ´

ż

Ω

fv dx “ J1pvq ` J2pvq.

The term J1 is continuous and convex, hence weakly lower semicontinuous. The term J2
is linear and continuous, thus weakly continuous. Therefore, J is weakly lower semicon-
tinuous.
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By the Weierstrass Theorem, there exists a unique u P H1pΩq that minimizes J . In particular,
for any t P R and any v P H1pΩq, we have Jpuq ď Jpu` tvq.

We now show that u is a weak solution of (3.1). Define gptq “ Jpu` tvq. We know that g has
a unique minimum at t “ 0. Specifically:

gptq “ Jpu` tvq “
1

2

ż

Ω

|∇pu` tvq|2 dx`
1

2

ż

Ω

|u` tv|2 dx´

ż

Ω

fpu` tvqdx

“
1

2

ż

Ω

|∇u|2 dx`
t2

2

ż

Ω

|∇v|2 dx` t

ż

Ω

∇u ¨ ∇v dx

`
1

2

ż

Ω

|u|2 dx`
t2

2

ż

Ω

|v|2 dx` t

ż

Ω

uv dx´

ż

Ω

fudx´ t

ż

Ω

fv dx.

The condition g1p0q “ 0 ensures
ż

Ω

∇u ¨ ∇v dx`

ż

Ω

uv dx´

ż

Ω

fv dx “ 0.

4.4. The Dirichlet eigenvalues of the Laplacian. We consider the Dirichlet eigenvalue
problem for the Laplace operator: Given a bounded open set Ω, find λ P R such that there exists
a (non-trivial) weak solution u to the problem

#

´∆u “ λu, x P Ω,

u “ 0, x P BΩ,
(4.4)

i.e., there exists u P H1
0 pΩq with u ‰ 0, such that

ż

Ω

∇φ ¨ ∇u “ λ

ż

Ω

uφ, for all φ P H1
0 pΩq.

The function u is called eigenfunction associated with the eigenvalue λ.

Remark 4.18. The eigenvalue problem for the Laplacian arises, for example, when searching
for solutions of the Schrödinger equation

iBtu` ∆u “ 0

that do not decay. Specifically, stationary solutions are sought, i.e., solutions of the form

upx, tq “ eiλtwpxq,

with λ ą 0. Substituting this ansatz into the equation yields a new equation:

´λw ` ∆w “ 0.

Theorem 4.25. Every Dirichlet eigenvalue of ´∆ in Ω is strictly positive and the associated
eigenfunctions satisfy }u}L2 ą 0. Moreover, eigenfunctions associated to disinct eigenvalues are
orthogonal with respect to the scalar product of H1

0 pΩq.

Proof. Let λ be an eigenvalue, and let u be an eigenfunction associated with λ. Taking φ “ u
in the definition of a weak solution, we obtain

ż

Ω

|∇u|2 “ λ

ż

Ω

|u|2.

Since u ‰ 0, the Poincaré inequality ensures that the first term is strictly positive, and thus
the second term is also strictly positive. Since }u}22 ě 0, the claim follows.

Let λ1 ‰ λ2 be distinct eigenvalues with corresponding eigenfunctions u1 and u2. By the
definition of eigenfunctions, we have

λ2

ż

Ω

u2u1 “

ż

Ω

∇u1 ¨ ∇u2 “ λ1

ż

Ω

u1u2.

Subtracting side by side, we obtain

pλ1 ´ λ2q

ż

Ω

u2u1 “ 0,

which implies
ż

Ω

u2u1 “ 0.
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From this, we conclude the result, namely
ş

Ω
∇u1 ¨ ∇u2 “ 0.

□

We are now interested in estimating the smallest eigenvalue from below. Let CP pn,Ω, 2q be
the Poincaré constant for H1

0 pΩq, namely,

}u}2 ď CP pn,Ω, 2q}∇u}2 for all u P H1
0 pΩq.

Define CpΩq “ rCP pn,Ω, 2qs
´2

. It follows that
ż

Ω

|∇u|2 ě CpΩq

ż

Ω

|u|2 for all u P H1
0 pΩq.

This is equivalent to stating that
ş

Ω
|∇u|2

ş

Ω
|u|2

ě CpΩq for all u P H1
0 pΩq, u ‰ 0.

Let λ be an eigenvalue with corresponding eigenfunction u. We have seen that }u}22 ą 0, and
it satisfies

λ “

ş

Ω
|∇u|2

ş

Ω
|u|2

ě CpΩq ą 0.

Furthermore,

CpΩq ď inf
uPH1

0 pΩq

u‰0

ş

Ω
|∇u|2

ş

Ω
|u|2

“ inf
uPH1

0 pΩq

}u}
2
2“1

ż

Ω

|∇u|2.

To prove the last equality, it suffices to substitute u with the function v “ u
}u}2

, which gives

the relation ď. The ě inequality is straightforward.
Our goal is to show that this infimum is attained by the smallest eigenvalue.

Theorem 4.26. Let

λ1 :“ inf
uPH1

0 pΩq

u‰0

ş

Ω
|∇u|2

ş

Ω
|u|2

“ inf
uPH1

0 pΩq

}u}L2pΩq“1

ż

Ω

|∇u|2.

Then there exists ū P H1
0 pΩq, with }ū}L2pΩq “ 1 such that λ1 “

ş

Ω
|∇ū|2 (i.e., the infimum is

actually achieved), λ1 is the smallest Dirichlet eigenvalue of ´∆ in Ω.

Proof. Let tunu be a minimizing sequence for λ1, with un P H1
0 pΩq, }un}2 “ 1, and

lim
nÑ8

ż

Ω

|∇un|2 “ λ1.

In particular, tunu is bounded in H1
0 pΩq. Since H1

0 pΩq is reflexive (as a Hilbert space), its bounded
subsets are weakly relatively compact. Therefore, there exists a subsequence tunk

u that converges
weakly in H1

0 pΩq:
unk

á ū with ū P H1
0 pΩq.

Moreover, unk
á ū in L2pΩq and

}ū}2H1
0 pΩq

ď lim
kÑ8

ż

Ω

|∇unk
|2 “ λ1.

We now apply Rellich-–Kondrachov’s theorem for p “ q “ 2:

(i) If n ą 2, then H1
0 pΩq ãÑãÑ LqpΩq for all q P

”

1, np
n´p

¯

;

(ii) If n “ 2, then H1
0 pΩq ãÑãÑ LqpΩq for all q P r1,8q;

(iii) If n “ 1, then H1
0 pΩq ãÑãÑ C0pΩ̄q.

For n ą 2, 2 ă 2n
n´2 . For n “ 1, since Ω is bounded, C0pΩ̄q ãÑ L2pΩq. In all cases,

H1
0 pΩq ãÑãÑ L2pΩq.

Thus, from tunk
u, we can extract a subsequence that converges strongly in L2pΩq. This new

subsequence also converges to ū.
Using the continuity of the norm, we have

}ū}L2pΩq “ 1.



4. EXISTENCE OF WEAK SOLUTIONS FOR ELLIPTIC PDES VIA VARIATIONAL METHODS 75

Recalling that

λ1 “ inf
uPH1

0 pΩq

}u}2“1

ż

Ω

|∇u|2,

it follows that λ1 ď }ū}2
H1

0 pΩq
. From the weak convergence properties, we deduce λ1 “ }ū}2

H1
0 pΩq

,

meaning λ1 is a minimum, not just an infimum.
Step 2. We now show that λ1 is an eigenvalue. Let w P H1

0 pΩq such that }w}2 “ 1 and
ş

Ω
|∇w|2 “ λ1. We prove that w is the eigenfunction associated with λ1.

Let v P H1
0 pΩq and t P R. By the definition of λ1, we have

λ1 ď

ş

Ω
|∇pw ` tvq|2
ş

Ω
|w ` tv|2

.

Define the function g : R Ñ R as

gptq “

ż

Ω

|∇pw ` tvq|2 ´ λ1

ż

Ω

|w ` tv|2.

Then gptq ě 0 and gp0q “ 0. Thus, t “ 0 is the minimum of this function. It follows that g1p0q “ 0.
Calculating the derivative, we have

gptq “

ż

Ω

|∇w|2 ` 2t

ż

Ω

∇w ¨ ∇v ` t2
ż

Ω

|∇v|2

´ λ1

ż

Ω

|w|2 ´ 2λ1t

ż

Ω

wv ´ λ1t
2

ż

Ω

|v|2,

g1ptq “ 2

ż

Ω

∇w ¨ ∇v ` 2t

ż

Ω

|∇v|2 ´ 2λ1

ż

Ω

wv ´ 2λ1t

ż

Ω

|v|2.

The condition g1p0q “ 0 is equivalent to
ż

Ω

∇w ¨ ∇v ´ λ1

ż

Ω

wv “ 0,

showing that w is the eigenfunction associated with λ1.
It remains to prove that λ1 is the smallest eigenvalue. Let λ be another eigenvalue with

associated eigenfunction uλ. Using uλ in the weak solution formulation for the Dirichlet problem,
we have

ż

Ω

|∇uλ|2 “ λ

ż

Ω

|uλ|2.

It follows that
ş

Ω
|∇uλ|2

ş

Ω
|uλ|2

“ λ ě λ1.

This concludes the proof.
□

Proposition 4.3. There exists a strictly increasing sequence of eigenvalues tλnu with finite
multiplicity such that λn Ñ 8. Associated with this sequence is a corresponding sequence of
eigenfunctions tunu, which forms a maximal orthonormal system in H1

0 pΩq.

We do not present the proof, but we comment on the main idea. Given λ1, . . . , λn, one
constructs

λn`1 :“ min
␣

}∇u}22 : u P EK
n , }u}2 “ 1

(

,

where EK
n is the orthogonal complement of En in H1

0 pΩq, and En is generated by the eigenfunctions
associated with λ1, . . . , λn.

Example 4.11. Let Ω “ p0, 1q. The Dirichlet problem is given by
#

u2 ` λu “ 0,

up0q “ up1q “ 0,
in p0, 1q.

Since up0q “ 0, the solution takes the form upxq “ c sinp
?
λxq. By choosing c appropriately

depending on λ, we ensure }u}2 “ 1.
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Imposing up1q “ 0, and since u ‰ 0, we find sinp
?
λq “ 0, which implies λ “ π2n2 for

n P Nzt0u.
The eigenvalues are all simple, and the eigenfunctions form a maximal orthonormal system in

H1
0 p0, 1q (as follows from the theory of Fourier series).

4.4.1. A nonlinear eigenvalue problem. Let Ω be a bounded open subset of Rn, with n ě 3,
and let 2 ď p ă 2˚ “ 2n

n´2 . We aim to show that

M1 :“ inf
uPH1

0 pΩq

u‰0

ş

Ω
|∇u|2

`ş

Ω
|u|p

˘2{p

is a minimum and to determine its value. For p ą 2, the problem is nonlinear, whereas for p “ 2,
the problem becomes linear and will be revisited in the last section.

Recall that since Ω is bounded, the embedding of H1
0 pΩq into LppΩq is continuous for every

1 ď p ď 2˚. In particular, u P H1
0 pΩq has a finite LppΩq-norm. By homogeneity, we can reduce the

problem to finding

M :“ inf
uPE

ż

Ω

|∇upxq|2 dx,

where

E :“ H1
0 pΩq X tu P LppΩq : }u}p “ 1u.

To see the role of homogeneity, observe that if u P E, then
ż

Ω

|∇u|2 dx “

ş

Ω
|∇u|2 dx

}u}2p
ě M1.

Taking the infimum, we obtain M ě M1. Conversely, if u P H1
0 pΩq, u ‰ 0, then u

}u}p
P E, and

thus
ş

Ω
|∇u|2 dx

}u}2p
“

ż

Ω

ˇ

ˇ

ˇ

ˇ

∇ u

}u}p

ˇ

ˇ

ˇ

ˇ

2

dx ě M,

which implies M1 ě M . Therefore, M1 “ M .

Proposition 4.4. M is finite and is a minimum.

Proof. Since the functional u ÞÑ }∇u}22 is positive, M is finite. Let tunu be a minimizing
sequence for M , with un P H1

0 pΩq, }un}p “ 1, and

lim
nÑ8

ż

Ω

|∇un|2 “ M.

In particular, tunu is bounded in H1
0 pΩq. Since H1

0 pΩq is reflexive (being a Hilbert space), its
bounded subsets are weakly relatively compact. Thus, there exists a subsequence tunk

u that
converges weakly in H1

0 pΩq:

unk
á ū with ū P H1

0 pΩq.

This implies ∇unk
á ∇ū in L2pΩq and unk

á ū in LppΩq. By the norm convergence property,

}ū}2H1
0 pΩq

ď lim inf
kÑ8

ż

Ω

|∇unk
|2 “ M.

We now apply Rellich—Kondrachov’s theorem (here, the assumption p ă 2˚ is crucial):

H1
0 pΩq ãÑãÑ LppΩq.

Thus, from tunk
u, we extract a subsequence that converges strongly in LppΩq. Since Ω is

bounded and p ě 2, this subsequence also converges weakly in L2pΩq, and by the uniqueness of
the weak limit, its limit is ū. Using the continuity of the norm, we have }ū}LppΩq “ 1, and hence

ū P E. By the definition of M , we have M ď }ū}2
H1

0 pΩq
, but from the weak convergence properties,

we deduce M “ }ū}2
H1

0 pΩq
. Thus, M is a minimum, not just an infimum. □
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Proposition 4.5. Consider the nonlinear problem for 2 ă p ă 2˚ on Ω bounded:
#

´∆u “ M |u|p´2u in Ω,

u “ 0 on BΩ.

It admits a weak solution ū P H1
0 pΩq such that }ū}p “ 1 and

ż

Ω

∇ū ¨ ∇v ´M

ż

Ω

|ū|p´2ūv “ 0 for all v P H1
0 pΩq.

Moreover,

M “

ż

Ω

|∇ū|2 “ min
uPH1

0 pΩq

u‰0

ş

Ω
|∇u|2

`ş

Ω
|u|p

˘2{p
.

Proof. Let ū P H1
0 pΩq X tu P LppΩq : }u}p “ 1u be such that

M :“

ż

Ω

|∇ūpxq|2 dx.

We now show that ū satisfies the following Euler–Lagrange equation (in weak form):
ż

Ω

∇ū ¨ ∇v ´M

ż

Ω

|ū|p´2ūv “ 0 for all v P H1
0 pΩq.

Let v P H1
0 pΩq and t P R. Consider the function g : R Ñ R defined by

gptq “

ż

Ω

|∇pū` tvq|2 ´M

ˆ
ż

Ω

|ū` tv|p
˙2{p

.

By the definition ofM and ū, we have gptq ě 0, gp0q “ 0, and g has a minimum at t “ 0. Therefore,
g1p0q “ 0. Differentiating and using the parameter-dependent integral theory, we find

g1ptq “ 2

ż

Ω

∇pū` tvq ¨ ∇v ´M
2

p

ˆ
ż

Ω

|ū` tv|p
˙2{p´1 ż

Ω

p|ū` tv|p´2pū` tvqv,

g1p0q “ 2

ż

Ω

∇ū ¨ ∇v ´ 2M

ż

Ω

|ū|p´2ūv.

The condition g1p0q “ 0 is then equivalent to the weak form of the equation. □

Remark 4.19. Note that the previous proof does not guarantee uniqueness of the solution.

Remark 4.20. Is it necessary for the constant in front of the nonlinear term to be M , the
minimum we started from? Clearly not. Let µ ą 0, and substitute upxq with µupxq in the previous
problem. We have

#

´µ∆v “ Mµp´1|v|p´2v in Ω,

v “ 0 on BΩ,

which implies
#

´∆v “ Mµp´2|v|p´2v in Ω,

v “ 0 on BΩ.

For λ ą 0, setting µ “ λ1{pp´2qM´1{pp´2q, v solves
#

´∆v “ λ|v|p´2v in Ω,

v “ 0 on BΩ.

Remark 4.21. We cannot consider λ ă 0, because choosing u “ v in the weak solution
definition would yield

ż

|∇u|2 “ λ

ż

|u|p,

which forces u “ 0, violating the condition }u}p “ 1.

Lect. 13, 10.12
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4.5. A semilinear problem. We consider the semilinear problem
#

´∆u “ |u|p´1u, x P Ω,

u “ 0, x P BΩ,
(4.5)

Theorem 4.27. If n ě 3 and 1 ă p ă n`2
n´2 , then there exists a non-trivial weak solution

u P H1
0 pΩq of (4.5).

Proof. We define F,G : H1
0 pΩq Ñ R by

F puq “

ż

Ω

|Du|2 dx, Gpuq “

ż

Ω

|u|p`1 dx´ 1

and the admissible set

A :“
␣

u P H1
0 pΩq : Gpuq “ 0

(

.

Step 1. We show that G is well-defined on H1
0 pΩq. By Sobolev’s embedding theorem,

H1
0 pΩq Ă Lp`1pΩq forall 1 ď p ď

2n

n´ 2
´ 1 “

n` 2

n´ 2
,

so G is well defined on H1
0 pΩq for all 1 ă p ă n`2

n´2 .
Step 2. Now that we know the problem is well-defined, we note that F is Gâteaux differentiable

on H1
0 pΩq with

dF rusv “ 2

ż

Ω

Du ¨Dv dx for all u, v P H1
0 pΩq

and that G is C1 on H1
0 pΩq with14

DGpuqv “ pp` 1q

ż

Ω

|u|p´1uv dx, for all u, v P H1
0 pΩq.

Step 3. The Lagrange multiplier theorem implies that if ϕ P A is a minimizer of F |A, then
there exists a λ P R such that

2

ż

Ω

Dϕ ¨Dvdx “ λpp` 1q

ż

Ω

|ϕ|p´1ϕvdx.

for all v P H1
0 pΩq, that is, ϕ is a non-trivial weak solution of

#

´∆u “ µ|u|p´1u, x P Ω,

u “ 0, x P BΩ,

where µ “
λpp`1q

2 . Note that, taking v “ ϕ, gives, in particular

2

ż

Ω

|Dϕ|2dx “ λpp` 1q

ż

Ω

|ϕ|p`1dx

so that λ ě 0. However, note that if λ “ 0 then
ş

Ω
|Dϕ|2dx “ 0 so that ϕ is a constant in H1

0 pΩq,
i.e., ϕ “ 0 a.e. in Ω, which is a contradiction. Now rescaling ϕ as

w “ µ1{pp´1qϕ

it follows that w is a non-trivial weak solution of (4.5), as desired.
Step 4. In summary, the existence of non-trivial weak solutions of (4.5) can be established by

showing that the problem

λ “ inf
uPA

F puq

has a minimizer in A. To apply Theorem 4.23 to show that F |A has a minimizer, we observe that

(1) The functional F is clearly bounded below on H1
0 pΩq.

14 By Taylor’s theorem,

|u ` ϵv|p`1 “ |u|p`1 ` pp ` 1qϵ|u|p´1uv `
ppp ` 1q

2
ϵ2|u ` θv|p´1v2,

for some 0 ă θpxq ă ϵ.
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(2) F is coercive on H1
0 pΩq. Indeed, by Poincaré we have

ż

Ω

u2dx ď C

ż

Ω

|Du|2dx “ CF puq

for some constant C ą 0, and hence F puq Ñ 8 as }u}H1pΩq Ñ 8.

(3) F is weakly lower semicontinuous on H1
0 pΩq.

It remains to verify that G : H1
0 pΩq Ñ R is continuous with respect to weak convergence. This

follows because Rellich–Kondrachov’s theorem with p “ 2 and n ě 3 implies that

H1
0 pΩq Ť Lp`1pΩq for all 0 ď p ă

2n

n´ 2
´ 1 “

n` 2

n´ 2
.

Since Gpuq “
ş

Ω
|u|p`1dx ´ 1, we have that G is continuous with respect to weak convergence in

H1
0 pΩq. In summary, by Theorem 4.23, if 1 ă p ă n`2

n´2 then there exists a ϕ P A such that

F pϕq “ min
uPA

F puq

and hence ϕ induces a non-trivial weak solution of (4.5). □

4.6. Pohozaev’s identity and a non-existence result for a supercritical semilinear
problem. We conclude this chapter by proving a non-existence result for a semilinear elliptic
problem, with supercritical growth, in star-shaped domains.15

Theorem 4.28. Let Ω Ă Rn be an open star-shaped set with C1 boundary, with n ě 3. If
u P C2pΩ̄q is a classical solution of

#

´∆u “ |u|p´2u, x P Ω,

u “ 0, x P BΩ,
(4.6)

for some p ą 2˚ “ 2n{pn´ 2q, then u ” 0 in Ω.

This result is a consequence of Derrick–Pohozaev’s identity.16 An often used more general
form is due to Henri Berestycki and Pierre-Louis Lions [BL83]. The proof of Derrick–Pohozaev’s
identity is a remarkable calculation initiated by multiplying the ´∆u “ |u|p´1u by x ¨ Du and
integrating by parts.

Lemma 4.9 (Derrick–Pohozaev’s identity). Let u be a solution of (4.6). Then

n´ 2

2

ż

Ω

|∇u|2 dx`
1

2

ż

BΩ

|∇u|2νpxq ¨ xdSpxq “
n

p

ż

Ω

|u|p dx,

where νpxq denotes the outward-pointing normal vector to x.

Proof. We multiply the PDE by x ¨Du and integrate over Ω, to find
ż

Ω

p´∆uqpx ¨Duqdx
loooooooooooomoooooooooooon

“:A

“

ż

Ω

|u|p´2upx ¨Duqdx
loooooooooooomoooooooooooon

“:B

Step 1. The term on the left is

A “ ´

n
ÿ

i,j“1

ż

Ω

uxixi
xjuxj

dx

“

n
ÿ

i,j“1

ż

Ω

uxi

`

xjuxj

˘

xi
dx´

n
ÿ

i,j“1

ż

BΩ

uxiν
ixjuxjdS

“: A1 `A2.

15 An open set Ω is called star-shaped with respect to 0 if, for each x P Ω̄, the line segment tλx : 0 ď λ ď 1u

lies in Ω̄. If Ω is convex and 0 P Ω, then Ω is star-shaped with respect to 0, but a general star-shaped region need
not be convex.

16 Named after S. I. Pohožaev [Poh65] and G. H. Derrick [Der64].
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For A1, we compute

A1 “

n
ÿ

i,j“1

ż

Ω

uxiδijuxj ` uxixjuxjxidx

“

ż

Ω

|Du|2 `

n
ÿ

j“1

ˆ

|Du|2

2

˙

xj

xjdx

“

´

1 ´
n

2

¯

ż

Ω

|Du|2dx`

ż

BΩ

|Du|2

2
pν ¨ xq dS

Here we really used
∆u “ ∇ ¨ p∇uq “ ∇ ¨ f

and
∇px ¨ ∇uq “ ∇u` x ¨ ∇2u.

On the other hand, since u “ 0 on BΩ, Dupxq is parallel to the normal νpxq at each point
x P BΩ. Thus, Dupxq “ ˘|Dupxq|νpxq. Using this equality, we calculate

A2 “ ´

ż

BΩ

|Du|2pν ¨ xqdS.

In summary, we deduce

A “
2 ´ n

2

ż

Ω

|Du|2dx´
1

2

ż

BΩ

|Du|2pν ¨ xqdS.

Step 2. For B, we compute

B :“
n
ÿ

j“1

ż

Ω

|u|p´2uxjuxj dx

“

n
ÿ

j“1

ż

Ω

ˆ

|u|p

p

˙

xj

xj dx “ ´
n

p` 1

ż

Ω

|u|p dx.

Step 3. Putting Step 1 and Step 2 together, we conclude
ˆ

n´ 2

2

˙
ż

Ω

|Du|2 dx`
1

2

ż

BΩ

|Du|2pν ¨ xqdS “
n

p

ż

Ω

|u|p dx.

□

We also need a lemma on star-shaped sets.

Lemma 4.10 (Normals to a star-shaped region). Let Ω be an open star-shaped set in Rn with
C1 boundary. Then x ¨ νpxq ě 0 for all x P BΩ (where νpxq denotes the unit outward normal to BΩ
at x).

Proof. Since BΩ is C1, if x P BΩ then for each ϵ ą 0 there exists δ ą 0 such that |y ´ x| ă δ

and y P Ū imply νpxq ¨
py´xq

|y´x|
ď ϵ.17 In particular

lim sup
yÑx
yPΩ̄

νpxq ¨
py ´ xq

|y ´ x|
ď 0.

Let y “ λx for 0 ă λ ă 1. Then y P Ω̄, since Ω is star-shaped. Thus, noticing that

λx´ x

|λx´ x|
“

pλ´ 1qx

|λ´ 1||x|
“ ´

x

|x|

as λ P p0, 1q, we deduce

νpxq ¨
x

|x|
“ ´ lim

λÑ1´
νpxq ¨

pλx´ xq

|λx´ x|
ě 0.

17We write Ω “ F´1p´8, 0q and BΩ “ F´1p0q and ν “ ∇F for a C1 function F . We are then claiming that,
for any ϵ ą 0, there is a δ ą 0 such that if |y ´ x| ă δ and F pyq ď F pxq, then

∇F pxq ¨
y ´ x

|y ´ x|
ă ϵ.
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□

Proof of Theorem 4.28. Using Lemma 4.9 and Lemma 4.10, we have

n´ 2

2

ż

Ω

|∇u|2 dx ď
n

p

ż

Ω

|u|p dx.

But, since we assumed that u is a (classical) solution, we have
ż

Ω

|∇u|2 dx “

ż

Ω

|u|p dx.

Combining these two observations implies
ˆ

n´ 2

2
´
n

p

˙
ż

Ω

|u|p dx ď 0.

Hence, if u ı 0, it follows that n´2
2 ´ n

p ď 0, that is, p ď 2n
n´2 . This yields u ” 0 if p ą 2˚. □





CHAPTER 5

General second-order elliptic PDEs

Lect. 11, 26.111. Maximum principles for uniformly elliptic operators

In this section, we revisit the weak and strong maximum principles established earlier for har-
monic functions. Specifically, we will apply the methods outlined in Section 2.3.3 and Section 2.3.6
to extend these results to uniformly elliptic operators of the form

Lupxq :“ ´

n
ÿ

i,j“1

aijpxqB2
xixj

upxq `

n
ÿ

i“1

bipxqBxiupxq ` cpxqupxq, (1.1)

acting on functions u : Ω Ñ R, where Ω Ă Rn is an open set. Let us introduce the matrix valued
function x ÞÑ Apxq “ paijpxqq

n
i,j“1 and the vector valued function x ÞÑ bpxq “ pbipxqq

n
i“1 so that L

can be written in more compact form as

Lupxq “ ´Apxq : D2upxq ` bpxq ¨Dupxq ` cpxqupxq,

where D2u denotes the Hessian of u, Du its gradient and, for matrices A,B P Rnˆk, we have used

the notation A : B :“
řn

i“1

řk
j“1AijBij .

We say that the operator L is elliptic if the matrix paijq is positive definite (this is consistent
with Definition 1.6).

Definition 5.1 (Uniformly elliptic operator). The operator L in (1.1) is said to be uniformly
elliptic in Ω if there exist λ,Λ P R` such that

0 ă λ|ξ|2 ď ξJApxqξ ď Λ|ξ|2, for all x P Ω and ξ P Rn. (1.2)

In what follows, will also assume that there exist constants B, C ą 0 such that

|bpxq| ď B, 0 ď cpxq ď C, for all x P Ω. (1.3)

Example 5.1. The Laplacian operator L “ ´∆ is uniformly elliptic on any open set, with
θ “ 1.

Example 5.2. The Tricomi operator

L “ yB2
x ` B2

y

is elliptic in y ą 0 and hyperbolic in y ă 0. For any 0 ă ϵ ă 1, L is uniformly elliptic in the strip
tpx, yq : ϵ ă y ă 1u, with θ “ ϵ, but it is not uniformly elliptic in tpx, yq : 0 ă y ă 1u.

Remark 5.1. We recall a linear algebra result that will be helpful going forward. Let A P Rnˆn

be a positive definite matrix (i.e., ξJAξ ą 0 for all ‰ ξ P Rn) and D P Rnˆn be a positive semi-
definite symmetric matrix. Then

A : D “
ÿ

i,j

AijDij ě 0.

Indeed, D can be diagonalized as D “
řn

l“1 λlv
plq

`

vplq
˘J

where λl ě 0 are the (real) eigenvalues

of D and vplq P Rn the corresponding eigenvectors. Then

A : D “

n
ÿ

l“1

λl

n
ÿ

i,j“1

v
plq
i Aijv

plq
j “

n
ÿ

l“1

λl

´

vplq
¯J

Avplq ě 0.

83
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1.1. Weak maximum principle. As a first result, we generalize the weak maximum principl
to the case of an elliptic operator on a bounded domain. We start from the easier case c “ 0.

Theorem 5.1 (Weak maximum principle for uniformly elliptic operators (case c “ 0)). Let Ω
be a bounded domain, L a uniformly elliptic operator in Ω and u P C2pΩq X C0pΩ̄q.

(1) If Lu ď 0 and c “ 0 in Ω, then maxxPΩ̄ upxq “ maxxPBΩ upxq.
(2) If Lu ě 0 and c “ 0 in Ω, then minxPΩ̄ upxq “ minxPBΩ upxq.

Proof. We will prove only (1) (while the proof of (2) is analogous).
Step 1: Lu ă 0. We consider first the case Lu ă 0 and prove the statement by contradic-

tion. Suppose that maxxPΩ̄ upxq ą maxxPBΩ upxq. Then, there exists x0 P Ω such that u px0q “

maxxPΩ̄ upxq and, since u P C2pΩq, we have that ´D2u px0q is a symmetric and positive semi-
definite matrix and Du px0q “ 0. This implies (recalling Remark 5.1)

Lu px0q “ ´A px0q : D2u px0q
looooooooooomooooooooooon

ě0

` b px0q ¨Du px0q
loooooooomoooooooon

“0

ě 0,

which contradicts the assumption.
Step 2: Lu ď 0. Consider now the case Lu ď 0 and the auxiliary (comparison) function

φpxq :“ eγx1 with γ ą B
λ (where B is the constant in (1.3)). Since a11pxq “ eJ

1 Apxqe1 ě λ, we
have

Lφpxq “ ´γ2a11pxqeγx1 ` γb1pxqeγx1 ď γp´γλ`Bqeγx1 ă 0.

Then, for any ϵ ą 0, we define vϵpxq :“ upxq ` ϵφpxq, which satisfies Lvϵ ă 0 in Ω. Hence, by
Step 1, maxΩ̄ vϵ “ maxBΩ vϵ. Letting ϵ Ñ 0, this yields maxΩ̄ u “ maxBΩ u. □

In the case c ě 0, the result has to be slightly weakened.

Theorem 5.2 (Weak maximum principle for uniformly elliptic operators (case c ě 0)). Let Ω
be a bounded domain, L a uniformly elliptic operator in Ω and u P C2pΩq X C0pΩ̄q.

(1) If c ě 0 and Lu ď 0 in Ω then

max
xPΩ̄

upxq ď max
xPBΩ

u`pxq,

where u` :“ maxtu, 0u.
(2) If c ě 0 and Lu ě 0 in Ω then

min
xPΩ̄

upxq ě min
xPBΩ

`

´u´pxq
˘

,

where u´ :“ ´mintu, 0u.
(3) In particular, if Lu “ 0 in Ω, then maxxPΩ̄ |upxq| “ maxxPBΩ |upxq|.

Proof. We prove (1) (as the proof of (2) is analogous).
Let Ω` :“ tx P Ω̄ : upxq ą 0u and L0u “ ´A : D2u ` b ¨ Du. If Ω` “ H, the result is true.

Otherwise, in Ω`, we have
L0u “ Lu´ cu

loomoon

ě0

ď 0,

so, by Theorem 5.1, M :“ maxxPΩ̄`
upxq “ maxxPBΩ`

upxq and M ě 0.

On the one hand, max`

xPΩ̄
upxq “ maxxPΩ̄`

upxq. On the other hand, let x0 P BΩ` be such that

u px0q “ M . If x0 P Ω, then M “ 0 (by the continuity of u) and if x0 P BΩ, then M “ u px0q “

maxBΩ u. Hence,
max
xPΩ̄

upxq “ max
xPBΩ

u`pxq.

Finally, to prove (3), we note that, if Lu “ 0 in Ω then, in particular,

Lu ď 0 and upyq ď maxxPBΩ u
`pxq ď maxxPBΩ |upxq|

Lu ě 0 and upyq ě minxPBΩ p´u´pxqq ě ´maxxPBΩ |upxq|.

Hence, |upyq| ď maxxPBΩ |upxq| for all y P Ω, which yields (3). □

From Theorem 5.2, we can deduce a comparison/positivity principle.

Corollary 5.1 (Comparison principle). Let L be uniformly elliptic and c ě 0 in Ω.

(1) If u P C2pΩq X C0pΩ̄q satisfies Lu ď 0 in Ω, u ď 0 on BΩ, then u ď 0 in Ω̄.
(2) If u, v P C2pΩq X C0pΩ̄q satisfy Lu ď Lv in Ω, u ď v on BΩ, then u ď v in Ω̄.
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1.1.1. A priori bound on the solutions of the Dirichlet problem. The maximum principle allows
us also to derive a simple a priori bound on the solutions of the Dirichlet problem

#

Lu “ f, x P Ω,

u “ g, x P BΩ.
(1.4)

In turn, this bound immediately gives uniqueness of solutions to the Dirichlet problem (1.4).

Proposition 5.1 (A priori bounds for the Dirichlet problem). Let u P C2pΩq X C0pΩ̄q be
a solution of the Dirichlet problem (1.4), with Ω bounded, L uniformly elliptic in Ω with c ě 0,
f P C0,αpΩq for some α P p0, 1q and bounded, g P C0pBΩq. Then

}u}C0pΩ̄q ď }g}C0pBΩq ` C sup
xPΩ

|fpxq|,

with C “ 2
λe

2pB
λ `1qD, where λ,B are as in (1.2)–(1.3), and D :“ supxPΩ |x|.

Proof. Let L0u :“ ´A : D2u` b ¨Du and take a comparison function φ̃ that satisfies

L0φ̃ ď ´α, |φ̃| ď β in Ω,

for some α, β ą 0. For instance, we can take the comparison function φ̃pxq :“ eγx1 considered in the
proof of Theorem 5.1, for which we have already established the bound L0φ̃pxq ď γp´γλ`Bqeγx1 .
Therefore, if we take γ “ 1 ` B

λ , we have

L0φ̃pxq ď ´γλeγx1 ď ´λe´γD “: ´α, |φ̃pxq| ď eγD “: β, for all x P Ω

Let us now set G :“ }g}C0pBΩq, F “ supΩ |f |, and consider another comparison function

φpxq :“ G` pβ ´ φ̃pxqq
F

α
,

which satisfies φ ě 0 in Ω, φ ě g on BΩ, and

Lφ “ L0φ` cφ “ ´L0φ̃
F

α
` cφ
loomoon

ě0

ě F.

Hence,
Lpφ´ uq ě F ´ fpxq ě 0, φ´ u ě 0 on BΩ

and, by the weak maximum principle, φ´ u ě 0 in Ω̄. This yields

upxq ď G`
2β

α
F.

The lower bound can be obtained by taking ´φ instead of φ. □

1.2. Strong maximum principle. The strong maximum principle holds as well for a uni-
formly elliptic operator on a domain Ω.

Theorem 5.3 (Strong maximum principle). Let L be uniformly elliptic in Ω (with Ω not
necessarily bounded) and u P C2pΩq X C0pΩ̄q.

(1) If c “ 0 and Lu ď 0 (resp., Lu ě 0) in Ω and there exists y P Ω such that upyq “

maxxPΩ̄ upxq (resp., upyq “ minxPΩ̄ upxq), then u is constant in Ω̄.
(2) If c ě 0 and Lu ď 0 (resp., Lu ě 0) in Ω and there exists y P Ω such that upyq “

maxxPΩ̄ upxq and upyq ě 0 (resp., upyq “ minxPΩ̄ upxq and upyq ď 0), then u is constant
in Ω̄.

For the proof of Theorem 5.3, we need first to establish, as an auxiliary result, a generalization
of Lemma 2.1.

Lemma 5.1 (Zaremba–Hopf–Olĕınik’s boundary point lemma). Let L be uniformly elliptic in
Ω, c ě 0, and u P C2pΩq X C1pΩ̄q such that Lu ď 0 and maxBΩ u ě 0 if c ‰ 0. If there exists
x0 P BΩ maximizing u in Ω̄ such that

(1) u px0q ą upxq for all x P Ω,
(2) BΩ satisfies an interior sphere condition at x0, i.e., there exists y P Ω and r ą 0 such

that Brpyq Ă Ω and Brpyq X BΩ “ tx0u,

then Bνu px0q ą 0 (with strict inequality).
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Proof. Let ρ P p0, rq and consider the annular region Σ :“ tx P Brpyq : 0 ă ρ ă |x´ y| ă ru,
and Σ̄ X BΩ “ tx0u.

We define the auxiliary function φpxq :“ e´α|x´y|
2

´ e´αr2 , which satisfies φ ě 0 in Σ and

Lφpxq “ e´α|x´y|
2

«

´
ÿ

i,j

aij4α
2 pxi ´ yiq pxj ´ yjq `

ÿ

i

2α paii ´ bi pxi ´ yiqq ` c

ff

´ ce´αr2

ď e´α|x´y|
2 “

´4α2λ|x´ y|2 ` 2αpnΛ ` |b||x´ y|q ` c
‰

ď e´α|x´y|
2 “

´4α2ρ2λ` 2αpnΛ `Brq ` C
‰

.

Taking α large enough we can make Lφ ď 0 in Σ. Since upxq ´ u px0q ă 0 in Ω, hence on
BBρpyq which is compact, we have maxxPBBρpyq pupxq ´ u px0qq ă 0 and there exists ϵ ą 0 such that
vpxq “ upxq ´ u px0q ` ϵφpxq ď 0 on BBρpyq.

On the other hand, φ “ 0 on BBrpyq, therefore v ď 0 on BBρpyq Y BBrpyq “ BΣ and Lv ď

´cu px0q ď 0.
So, by the weak maximum principle, v ď 0 in Σ̄. Being v px0q “ 0 it follows that Bνv px0q ě 0

and

Bνu px0q ě ´ϵBνφ px0q “ ´ϵeα|x0´y|
2

|x0 ´ y| ą 0.

□

Proof of Theorem 5.3. Let Lu ď 0 in Ω and assume by contradiction that u is non-
constant and achieves its maximum M in the interior of Ω (with M ě 0 if c ‰ 0). Let ΩM :“ ty P

Ω : upyq “ Mu and Ω´ :“ tz P Ω̄ : upzq ă Mu.
Let us consider z̄ P Ω´ such that r “ dist pz̄,ΩM q ă distpz̄, BΩq, so that Brpz̄q Ă Ω´ and there

exists x0 P BΩM such that x0 P BBrpz̄q.
Then we can apply Lemma 5.1 in Brpz̄q. Indeed, all the hypotheses are verified: namely,

Lu ď 0 in Brpz̄q, u px0q ą upxq, for all x P Brpz̄q (with u px0q “ M ě 0 if c ‰ 0), and Brpz̄q

satisfies an interior sphere condition at x0. We conclude therefore that Bνu px0q ą 0 but this leads
to a contradiction since x0 is an interior maximum and Du px0q “ 0. □

Beside needed to prove the strong maximum principle, Lemma 5.1 is also useful to establish
uniqueness of solutions for Neumann problems.

Corollary 5.2 (Uniqueness for the Neumann problem). Let u, v P C2pΩq X C1pΩ̄q be two
solutions of the Neumann problem

#

Lu “ f, x P Ω,

Bνu “ h, x P BΩ,

with L uniformly elliptic in Ω and Ω satisfying an interior sphere condition at each point of BΩ.
If c “ 0 in Ω, then u´ v is constant in Ω. If c ą 0 at some point in Ω, then u “ v.

Proof. Suppose that w “ u ´ v is not constant in Ω̄. Since Lw “ Lu ´ Lv “ 0 in Ω, then,
by the strong maximum principle, either w or ´w achieves a non-negative maximum M at a point
x0 P BΩ and is strictly less than M in Ω.

By Lemma 5.1, Bνw px0q ‰ 0 (either strictly positive or strictly negative), contradicting the
boundary condition Bνw “ 0 on BΩ. Hence, w is constant in Ω̄ and, if c ‰ 0 in Ω, we have
w “ 0. □

Lect. 14, 17.12

2. Well-posedness of weak solutions of linear second-order elliptic PDEs

For µ P R, we consider the Dirichlet problem for L` µI,
#

Lu` µu “ f, x P Ω,

u “ 0, x P BΩ.
(2.1)
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Here, I denotes the identity and we consider a uniformly elliptic operator L in the (divergence)
form

Lu :“ ´

n
ÿ

i,j“1

Bxi

`

aijBxju
˘

`

n
ÿ

i“1

Bxi
pbiuq ` cu, (2.2)

where

aij , bi, c P L8pΩq, aij “ aji (2.3)

and we assume that there exists some constant θ ą 0
n
ÿ

i,j“1

aijpxqξiξj ě θ|ξ|2, (2.4)

for almost every x P Ω and every ξ P Rn.
We say that u P H1

0 pΩq is a weak solution of (2.1)

ż

Ω

#

n
ÿ

i,j“1

aijBxiuBxjϕ´

n
ÿ

i“1

biuBxiϕ` cuϕ

+

dx` µ

ż

Ω

uϕ dx “ xf, ϕy

for all ϕ P H1
0 pΩq. To write this condition more concisely, we define a bilinear form

a : H1
0 pΩq ˆH1

0 pΩq Ñ R

by

apu, vq :“

ż

Ω

#

n
ÿ

i,j“1

aijBxiuBxjv ´

n
ÿ

i

biuBxiv ` cuv

+

dx. (2.5)

Definition 5.2 (Weak solution of (2.1)). Let that Ω Ă Rn be an open set, f P H´1pΩq, and
L be the differential operator (2.2). Then u : Ω Ñ R is a weak solution of (2.1) if u P H1

0 pΩq and

apu, ϕq ` µpu, ϕqL2 “ xf, ϕy for all ϕ P H1
0 pΩq.

Remark 5.2. The form a is well-defined and bounded on H1
0 pΩq. However, it is not symmetric

unless bi “ 0. We have

apv, uq “ a˚pu, vq,

where

a˚pu, vq “

ż

Ω

#

n
ÿ

i,j“1

aijBxiuBxjv `

n
ÿ

i

bi pBxiuq v ` cuv

+

dx (2.6)

is the bilinear form associated with the formal adjoint L˚ of L,

L˚u “ ´

n
ÿ

i,j“1

Bxi

`

aijBxju
˘

´

n
ÿ

i“1

biBxiu` cu. (2.7)

Remark 5.3. Notice that L˚ is the operator we considered in Section 1. We stress that,
although L˚ is not of exactly the same form as L, since it first derivative term is not in divergence
form, the same proof (up to minor changes) of the existence of weak solutions for L, which we will
give below, applies to L˚ with a in (2.5) replaced by a˚ in (2.6).

In the proof of the maximum principles in Section 1, we used L˚ for the sake of convenience
(using L instead would have required somewhat more attention).

The proof of the existence of a weak solution of (2.1) is similar to the proof for the Dirichlet
Laplacian, with one exception. If L is not symmetric, we cannot use a to define an equivalent inner
product on H1

0 pΩq and appeal to the Riesz representation theorem. Instead we use a result due
to Peter Lax and Arthur Milgram (see [LM54] and also [Bab71]) which applies to non-symmetric
bilinear forms.

We begin by stating the Lax–Milgram theorem for a bilinear form on a Hilbert space. Af-
terwards, we verify its hypotheses for the bilinear form associated with a general second-order
uniformly elliptic PDE and use it to prove the existence of weak solutions.
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Theorem 5.4 (Lax–Milgram’s theorem). Let H be a Hilbert space with inner-product p¨, ¨q :
H ˆ H Ñ R, and let a : H ˆ H Ñ R be a bilinear form on H. Assume that there exist constants
C1, C2 ą 0 such that

C1}u}2 ď apu, uq, |apu, vq| ď C2}u}}v} for all u, v P H.
Then, for every bounded linear functional f : H Ñ R, there exists a unique u P H such that

xf, vy “ apu, vq for all v P H.

We omit the proof of this result, and instead we see how to apply it to the bilinear form in
(2.5).

Theorem 5.5. Let a be the bilinear form on H1
0 pΩq defined in (2.5), where the coefficients

satisfy (2.3) and the uniform ellipticity condition (2.4) with constant θ. Then, there exist constants
C1, C2 ą 0 and γ P R such that, for all u, v P H1

0 pΩq,

C1}u}2H1
0

ď apu, uq ` γ}u}2L2 , (2.8)

|apu, vq| ď C2}u}H1
0
}v}H1

0
. (2.9)

If b “ 0, we may take γ :“ θ´c0, with c0 :“ infΩ c and, if b ‰ 0, we may take γ :“ 1
2θ

řn
i“1 }bi}

2
L8 `

θ
2 ´ c0.

Remark 5.4. Equation (2.8) is a crucial estimate of the H1
0 -norm of u in terms of apu, uq,

using the uniform ellipticity of L, and is called G̊arding’s inequality.1. We notice that the expression
for γ given in Theorem 5.5 is not necessarily sharp. For example, as in the case of the Laplacian,
the use of Poincare’s inequality gives smaller values of γ for bounded domains.

Equation (2.9) states that the bilinear form a is bounded on H1
0 .

Proof of Theorem 5.5. Step 1. For any u, v P H1
0 pΩq, we have

|apu, vq| ď

n
ÿ

i,j“1

ż

Ω

ˇ

ˇaijBxi
uBxj

v
ˇ

ˇ dx`

n
ÿ

i“1

ż

Ω

|biuBxi
v| dx`

ż

Ω

|cuv|dx

ď

n
ÿ

i,j“1

}aij}L8 }Bxiu}L2

›

›Bxjv
›

›

L2

`

n
ÿ

i“1

}bi}L8 }u}L2 }Bxiv}L2 ` }c}L8 }u}L2}v}L2

ďC

˜

n
ÿ

i,j“1

}aij}L8 `

n
ÿ

i“1

}bi}L8 ` }c}L8

¸

}u}H1
0
}v}H1

0
,

which yields (2.9).
Step 2. Using the uniform ellipticity condition (2.4), we have

θ}Du}2L2 “ θ

ż

Ω

|Du|2 dx

ď

n
ÿ

i,j“1

ż

Ω

aijBxi
uBxj

udx

ď apu, uq `

n
ÿ

i“1

ż

Ω

biuBxiudx´

ż

Ω

cu2 dx

ď apu, uq `

n
ÿ

i“1

ż

Ω

|biuBxiu| dx´ c0

ż

Ω

u2 dx

ď apu, uq `

n
ÿ

i“1

}bi}L8 }u}L2 }Bxiu}L2 ´ c0}u}L2

ď apu, uq ` β}u}L2}Du}L2 ´ c0}u}L2 ,

1 Named after Lars G̊arding [G̊ar53]; cf. also [Hör18].
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where cpxq ě c0 a.e. in Ω, and β “

´

řn
i“1 }bi}

2
L8

¯1{2

.

If β “ 0, we get (2.8) with
γ :“ θ ´ c0, C1 :“ θ.

On the other hand, if β ą 0, by Youngs’s inequality2 with ϵ, we have, for any ϵ ą 0,

}u}L2}Du}L2 ď ϵ}Du}2L2 `
1

4ϵ
}u}2L2 .

Hence, choosing ϵ “ θ{2β, we get

θ

2
}Du}2L2 ď apu, uq `

ˆ

β2

2θ
´ c0

˙

}u}L2 ,

and (2.8) follows with

γ :“
β2

2θ
`
θ

2
´ c0, C1 :“

θ

2
.

□

Theorem 5.6 (Application to the Dirichlet problem). Suppose that Ω is an open set in Rn,
and f P H´1pΩq. Let L be a differential operator (2.2) (with coefficients satisfying (2.3)), and let
γ P R be a constant for which Theorem 5.5 holds. Then, for every µ ě γ, there exists one and only
one weak solution of the Dirichlet problem (2.1).

Proof. For µ P R, let us define aµ : H1
0 pΩq ˆH1

0 pΩq Ñ R by

aµpu, vq “ apu, vq ` µpu, vqL2 ,

where a is defined in (2.5). Then u P H1
0 pΩq is a weak solution of Lu` µu “ f if and only if

aµpu, ϕq “ xf, ϕy for all ϕ P H1
0 pΩq.

We want to apply Lax–Milgram’s theorem (Theorem 5.4) to establish the existence of one and
only one such weak solution.

We rely on Theorem 5.5. From (2.9), we get

|aµpu, vq| ď C2}u}H1
0
}v}H1

0
` |µ|}u}L2}v}L2 ď pC2 ` |µ|q }u}H1

0
}v}H1

0

so aµ is bounded on H1
0 pΩq. From (2.8),

C1}u}2H1
0

ď apu, uq ` γ}u}2L2 ď aµpu, uq

whenever µ ě γ.
Thus, the assumptions of Lax–Milgram’s theorem are satisfied and we can conclude that, for

every f P H´1pΩq, there is a unique u P H1
0 pΩq such that xf, ϕy “ aµpu, ϕq for all v P H1

0 pΩq. This
concludes the proof. □

2 Named after William Henry Young [You12].





APPENDIX A

Some background information

1. Some notation

Let Rn be n-dimensional Euclidean space. We denote the Euclidean norm of a vector x “

px1, x2, . . . , xnq P Rn by

|x| “
`

x21 ` x22 ` ¨ ¨ ¨ ` x2n
˘1{2

and the inner product of vectors x “ px1, x2, . . . , xnq , y “ py1, y2, . . . , ynq by

x ¨ y “ x1y1 ` x2y2 ` ¨ ¨ ¨ ` xnyn

We denote Lebesgue measure on Rn by dx, and the Lebesgue measure of a set E Ă Rn by |E|.
If E is a subset of Rn, we denote the complement by Ec “ RnzE, the closure by Ē, the interior

by E˝ and the boundary by BE “ ĒzE˝. The characteristic function χE : Rn Ñ R of E is defined
by

χEpxq :“

#

1 if x P E,

0 if x R E.

A set E is bounded if t|x| : x P Eu is bounded in R. A set is connected if it is not the disjoint
union of two non-empty relatively open subsets. We sometimes refer to a connected open set as a
domain.

We say that an open set Ω1 Ă Rn is compactly contained in an open set Ω, written Ω1 ĂĂ Ω
(or Ω1 Ť Ω), if Ω1 Ă Ω and Ω1 is compact. If Ω̄1 Ă Ω, then

dist
`

Ω1, BΩ
˘

“ inf
␣

|x´ y| : x P Ω1, y P BΩ
(

ą 0.

This distance is finite provided that Ω1 ‰ H and Ω ‰ Rn.

2. Integration by part formulas

We denote by Brpxq Ă Rn the open ball of radius r and center x : Brpxq “

ty P Rn : }y ´ x} ă ru with respect to the Euclidean norm, and we will often use the shorthand
notation Br “ Brp0q. With Rn

` we denote the half-plane Rn
` “ tpx1, . . . , xnq P Rn : xn ą 0u.

Definition A.1. Given a domain Ω Ă Rn, we say that BΩ is of class Ck if, for each y P BΩ,
there exists r ą 0 and a Ck function φ : Rn´1 Ñ R such that, upon relabeling and reorienting the
coordinates axis if necessary, we have

Ω XBrpyq “ tx P Brpyq : xn ą φ px1, ¨ ¨ ¨ , xn´1qu

i.e. locally, in a neighborhood of y P BΩ, the boundary can be expressed as the graph of a Ck

function and the domain Ω lies only on one side of the graph. If BΩ P C1, then @y P BΩ the
outward pointing normal vector is well defined and denoted νpyq “ pν1pyq, ¨ ¨ ¨ , νnpyqq.

We recall an equivalent characterization of a domain with Ck boundary.

Proposition A.1. Let Ω Ă Rn be a domain with BΩ of class Ck. Then for each x P BΩ there
exists an open set Vx Q x and a Ck-diffeomorphism ϕx : Vx Ñ B1 Ă Rn satisfying:

(1) ϕx pVx X Ωq “ B`
1 “ B1 X Rn

`,
(2) ϕx pVx X BΩq “ B1 X BRn

`,

(3) ϕx P Ck pVxq , ϕ´1
x P Ck pB1q.

We say that each mapping ϕx straightens locally the boundary.

With the notion of the outward normal unit vector, we can now recall the Green–Gauss and
integration by parts formulas.
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Gauss–Ostrogradsky’s formula: Let Ω Ă Rn be a bounded set with BΩ Ă C1. For u P C1pΩ̄q,
ż

Ω

uxi
pxqdx “

ż

BΩ

upyqνipyqdSpyq, i “ 1, ¨ ¨ ¨ , n.

For more historical information of the divergence theorem, see [Kat79].
Integration by parts formula: Let Ω Ă Rn be a bounded set with BΩ Ă C1. For u, v P C1pΩ̄q,

ż

Ω

uxi
pxqvpxqdx “ ´

ż

Ω

upxqvxi
pxqdx`

ż

BΩ

upyqvpyqνipyqdSpyq, i “ 1, ¨ ¨ ¨ , n.

or, in vectorial form,
ż

Ω

∇upxqvpxqdx “ ´

ż

Ω

upxq∇vpxqdx`

ż

BΩ

upyqvpyqνpyqdSpyq

Green’s identities: Let Ω Ă Rn be a bounded set with BΩ Ă C1. For u, v P C2pΩ̄q,
ż

Ω

∆udx “

ż

BΩ

BνudS,

with Bνu “ ∇u ¨ ν being the normal derivative of u, and
ż

Ω

v∆udx “ ´

ż

Ω

∇u ¨ ∇v dx`

ż

BΩ

vBνudS “

ż

Ω

u∆v dx`

ż

BΩ

pvBνu´ uBνvq dS.

All previous identities are valid also if the boundary BΩ is only Lipschitz continuous (since
Lipschitz functions are differentiable everywhere but a set of points of Lebesgue measure zero).
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Gleichungen vom elliptischen Typus”. Russian. In: Mat. Sb., Nov. Ser. 30 (1952),
pp. 695–702.

[OW96] N. Ortner and P. Wagner. “A short proof of the Malgrange-Ehrenpreis theorem”. In:
Functional analysis (Trier, 1994). de Gruyter, Berlin, 1996, pp. 343–352.

[PW60] L. E. Payne and H. F. Weinberger. “An optimal Poincaré inequality for convex do-
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sommables.” In: C. R. Acad. Sci., Paris 144 (1907), pp. 1409–1411.

[Rie10] F. Riesz. “Untersuchungen über Systeme integrierbarer Funktionen”. In: Math. Ann.
69.4 (1910), pp. 449–497.

[Rog88] L. J. Roge-rs. “An extension of a certain theorem in inequalities”. In: Mess. Math. 17
(1888), pp. 145–150.

[Ros91] J.-P. Rosay. “A very elementary proof of the Malgrange-Ehrenpreis theorem”. In: Amer.
Math. Monthly 98.6 (1991), pp. 518–523.
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