
Introduction to Partial Differential Equations
— Exam —

General Information

The exam will be held on Wednesday, January 29th, starting at 08:00, in the room MA A1
10.
The exam consists of a 30-minute oral examination at the blackboard.
Each student will select two questions: one from each part of the course (A: classical solu-

tions, B: weak solutions).
Students will then have an additional 30 minutes to prepare their answers without external

material or support before the oral examination begins.
Each student needs to arrive on time, that is, 30 minutes before their scheduled oral exam. For

example: for the first examinee, the preparation time will start at 08:00, and the oral
examination itself will begin at 08:30, and so on.
The tentative schedule is as follows:

Beginning of Examination Day 08:00
Oral exam 1 08:30–09:00
Oral exam 2 09:00–09:30
Oral exam 3 09:30–10:00
Oral exam 4 10:00–10:30
Oral exam 5 10:30–11:00
Oral exam 6 11:00–11:30
Oral exam 7 11:30–12:00
Oral exam 8 12:00–12:30
Lunch Break 12:30–14:00
Oral exam 9 14:00–14:30
Oral exam 10 14:30–15:00
Oral exam 11 15:00–15:30
Oral exam 12 15:30–16:00
Oral exam 13 16:00–16:30
Oral exam 14 16:30–17:00
Oral exam 15 17:00–17:30
Oral exam 16 17:30–18:00

The students will be examined in alphabetical order. Exchanges in the order are possible with
mutual agreement. Closer to the exam date, each student will receive an email containing some
final information, including the rough assignment of their time slot (being puctural or early is
advised).
Each student must bring a CAMIPRO card or an ID.
Paper and pen for the preparation will be provided.

NB: The teachers are available via email (write to nicola.denitti@epfl.ch) or during office
hours to be scheduled, to answer questions in preparation for the exam throughout December and
January.
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List of topics

The list of topics for the examination roughly covers the whole syllabus, as developed in the lecture
notes and exercise sheets.

Part A

1. Definition of the Laplace operator. Definition of harmonic, sub-harmonic, and super-
harmonic functions.

2. Some examples of harmonic/sub-harmonic/super-harmonic functions. Chain rule and prod-
uct rule for the Laplace operator.

3. Harmonicity is invariant under reflections and rotations (Problem 4 in Exercise Sheet 1).

4. Harmonic functions satisfy the mean-value identity.

5. Sub/super-harmonic functions satisfy a mean-value inequality.

6. Mean-value property implies harmonicity.

7. Gradient estimates for harmonic functions (estimate of the gradient by ∥u∥∞ or by ∥u∥1).

8. Liouville’s theorem for harmonic functions: case u bounded and cases u2 or |∇u|2 integrable
(for which see Exercise Sheet 2, Problem 4).

9. Bochner’s identity and application to Liouville’s theorem (Exercise Sheet 4, Problem 1).

10. Estimates of higher derivatives and analyticity of harmonic functions.

11. Strong maximum principle for harmonic functions (including alternative proof via Zaremba–
Hopf–Olĕınik’s boundary point lemma).

12. Weak maximum principle for harmonic functions.

13. Uniqueness for the Laplace equation via maximum principle.

14. Harnack’s inequality.

15. Harnack’s convergence theorem (both the one in the lecture notes and the one in Exercise
Sheet 4, Problem 2).

16. The uniform limit of a sequence of harmonic functions is harmonic (Exercise Sheet 2, Problem
1)

17. Solution of the Poisson equation in Rn (using the fundamental solution of the Laplace oper-
ator).

18. Green’s representation formula.

19. Definition of Green’s function.

20. Green’s function of the Laplace operator in a ball.

21. Green’s function of the Laplace operator in a half-plane (including Problem 4 in Exercise
Sheet 6).

22. Green’s representation formula and the Neumann problem (Problem 2 in Exercise Sheet 5).

23. Symmetry of Green’s function (Problem 3 in Exercise Sheet 6).

24. Characterization of sub-harmonic functions.

25. Ascoli–Arzelà’s theorem for harmonic functions (Problem 1 in Exercise Sheet 7; NB: the
proof of the classic Ascoli–Arzelà theorem is omitted).
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26. Perron’s construction of an harmonic function in Ω via sub-solutions (sketch of the proof:
highlight the core ideas and steps of the proof; but, for the sake of brevity, some details may
be skipped).

27. The Newtonian potential and the solvability of the Dirichlet problem for the Poisson equation
(including Problems 3–4 in Exercise Sheet 7).

28. Weak maximum principle for general linear elliptic operators.

29. Strong maximum principle for general linear elliptic operators (together with Hopf’s bound-
ary point lemma).

30. Gradient estimate for the solution of a uniformly elliptic equation (Problem 3 in Exercise
Sheet 11).

Part B

1. Space of test functions; distributions; distribution associated to a locally integrable function;
Dirac delta.

2. Convergence in distribution (definition and examples, including those in Problem 3 of Exer-
cise Sheet 4).

3. Distributional derivatives: definitions; some examples (including those in Problem 4 of Exer-
cise Sheet 4); some properties of distributions and their derivatives (in particular, the content
of Problem 3 in Exercise Sheet 5).

4. Zero distributional derivative implies constant distribution.

5. Weyl’s lemma (just one of the two proofs presented in the lecture notes suffices).

6. Fundamental solution of the Laplace operator.

7. Weak derivatives and definition of Sobolev spaces W k,p(Ω) (together with the properties
proven in Problems 3–4 of Exercise Sheet 8); some examples of Sobolev functions (in partic-
ular, those in Problem 1 in Exercise Sheet 8).

8. Properties of weak derivatives (including those in Problems 2 and 5 in Exercise Sheet 8).

9. Example of a function u ∈ H1
(
R2

)
but u /∈ L∞ (

R2
)
.

10. Approximation of W k,p(Rn) functions with C∞
c (Rn) functions.

11. Gagliardo–Nirenberg–Sobolev’s inequality (omitting the proofs of the required lemmas).

12. Sobolev’s embedding theorem.

13. Morrey’s inequality.

14. Rellich–Kondrashov’s compact embedding theorem (statement only, proof omitted). NB:
When giving the statement from the lecture notes, one is free to skip the sentences in points
(1) and (3) after “More generally...”

15. Poincaré’s inequality (proof only for p = 2).

16. Poincaré–Wirtinger’s inequality.

17. Existence and uniqueness of weak solutions via Riesz’ representation theorem for the Dirichlet
and Neumann problem for the Poisson equation (NB: the proof of Riesz’ representation
theorem is omitted from this course; a quick reminder of the statement suffices when applying
it here and or in the points below).

18. Existence and uniqueness of weak solutions via Riesz’ representation theorem for the Dirichlet
problem for the Poisson equation with potential.
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19. Solvability of the Neumann problem.

20. Generalized Weierstrass theorem (statement only, proof omitted).

21. Existence of solutions to the homogeneous Dirichlet problem for the Poisson equation via
variational methods.

22. Existence of solutions to the inhomogeneous Dirichlet problem for the Poisson equation via
variational methods.

23. Existence of solutions to the homogeneous Neumann problem for −∆ + I via variational
methods.

24. Strict positivity of the eigenvalues of the Laplacian and orthogonality in H1
0 of the eigen-

functions.

25. Variational characterization of the first eigenvalue (sketch of the proof).

26. Existence of solutions for a semilinear problem (sketch of the main steps of the proof).

27. Derrick–Pohozaev’s identity.

28. Non-existence of solutions for a critical semilinear problem (assuming, without proof,
Derrick–Pohozaev’s identity and the lemma on star-shaped domains).

29. G̊arding’s inequality and boundedness in H1
0 of the bilinear form associated with a general

uniformly elliptic operator.

30. Existence of weak solutions for a general uniformly elliptic equation via Lax–Milgam’s theo-
rem (the proof of Lax–Milgam’s theorem is omitted).
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Some examples of questions

We provide below a few examples of question pairs for the exam.
NB: These examples are intended for illustrative purposes only. In particular, they do not cover

all examinable topics listed above, nor do they comprehensively represent all possible variations,
formulations, or combinations of questions.

Exam A.

Question 1. Discuss the mean-value property for harmonic functions. In particular, prove the
following statements:

• If u ∈ C2(Ω) is an harmonic function, then

u(x) =
1

|Br(x)|

ˆ
Br(x)

u(y) dy =
1

|∂Br(x)|

ˆ
∂Br(x)

u(y) dS(y)

holds for any closed ball Br(x) ⊂ Ω;

• If u ∈ C2(Ω) satisfies the mean-value property

u(x) =
1

|∂Br(x)|

ˆ
∂Br(x)

u(y) dS(y)

for any closed ball Br(x) ⊂ Ω, then u is harmonic in Ω.

Question 2. Prove the following version of Poincaré’s inequality : Let Ω be an open subset of
RN bounded in one direction. Then there exists a constant CPoi > 0 such that

∥u∥L2(Ω) ≤ CPoi∥∇u∥L2(Ω)

holds for any u ∈ H1
0 (Ω).

Exam B.

Question 1. State and prove Harnack’s inequality.
Question 2.

• State (the generalized) Weierstrass theorem.

• Given f ∈ H−1(Ω), define a functional J : H1
0 (Ω) → R as follows:

J(u) =
1

2

ˆ
Ω

|∇u|2 dx− ⟨f, u⟩. (1)

Assuming that we already know that J is well-defined and Fréchet differentiable, show that,
if J attains a minimum at u ∈ H1

0 (Ω), then u is a weak solution of the homogeneous Dirichlet
problem {

−∆u = f, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(2)

• Use the Weierstrass theorem stated previously to show that J has one and only one minimum.
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Exam C.

Question 1. State Harnack’s inequalty (without proof) and use it to show the following version
of Harnack’s convergence theorem: Suppose Ω is connected and {um}m∈N is a pointwise increasing
sequence of harmonic functions on Ω. Then either {um}m∈N converges uniformly on compact
subsets of Ω to a function harmonic on Ω, or um(x) → ∞ for every x ∈ Ω. Additional comment.
In the proof, you may assume (without giving the proof) the following result: If (um)m∈N is a
sequence of harmonic functions in Ω converging uniformly to a limit function u, then u is harmonic
in Ω.
Question 2. Let Ω be an open, connected, bounded set with C1 boundary. Let f ∈ L2(Ω) and

consider the following homogeneous Neumann boundary value problem:{
−∆u = f, x ∈ Ω,

∂νu = 0, x ∈ ∂Ω.
(3)

• Write the weak formulation of (3).

• Prove that there exists a weak solution of (3) if and only if
ffl
Ω
f(x) dx = 0.

• Discuss the uniqueness of weak solutions of (3).

Exam D.

Question 1. State and give a sketch of the proof of Zaremba–Hopf–Olĕınik’s lemma. As an
application, use it to prove the strong maximum principle for harmonic functions.
Question 2. ProveWeyl’s lemma: Let u ∈ D′(Ω) and suppose that ⟨∆u, φ⟩ = 0 for all φ ∈ D(Ω).

Then u ∈ C∞(Ω) and is harmonic in Ω.

Exam E.

Question 1. Prove that, if u ∈ C(Ω), then the following statements are equivalent.

1. For all x ∈ Ω and Br(x) ⊂⊂ Ω,

u(x) ≤
 
∂Br(x)

u(y) dS(y).

2. For all x ∈ Ω and for all ϕ ∈ C2(Ω) such that u − ϕ has a local maximum in x, then
−∆ϕ(x) ≤ 0.

Question 2. Suppose that Ω is a bounded open set in Rn and f ∈ H−1(Ω). Use Riesz’
representation theorem to show that there exists one and only one weak solution u ∈ H1

0 (Ω) of the
homogeneous Dirichlet problem {

−∆u = f, x ∈ Ω,

u = 0, x ∈ ∂Ω.

Hint: For this, you will need to use (stating it without proof) Poincaré’s inequality.

Exam F.

Question 1. Let Ω ⊂ Rn be an open bounded domain. Given a harmonic function u, prove
that u2 and |∇u|2 are sub-harmonic. As an application of this observation, prove the following
Liouville-type theorems:

• If u is harmonic and
´
Rn u2 < ∞, then u = 0.

• If u is harmonic and
´
Rn |∇u|2 < ∞, then u is constant.
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Question 2. State (without proof) Rellich–Kondrashov’s compact embedding theorem. Next,
as an application, use it to prove Poincaré–Wirtinger’s inequality : Let Ω ⊂ Rn be a bounded,
connected, open set with C1 boundary, and let p ∈ [1,∞]. Then there exists a constant C > 0
(depending only on p and Ω), such that∥∥∥∥u−

 
Ω

udx

∥∥∥∥
Lp(Ω)

≤ C∥∇u∥Lp(Ω) for every u ∈ W 1,p(Ω).

Exam G.

Question 1. State and prove the strong maximum principle for harmonic functions. (In the
proof, use the mean-value property for harmonic functions).
Question 2. State and prove Gagliardo–Nirenberg–Sobolev’s inequality. (Omit the proof of the

two lemmas needed in the proof due to Nirenberg & Gagliardo).

7


