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P1. Let (X,µ, T ) a measure space. We say that (fn)n converges in measure to f if given ϵ > 0 we
have limn→∞ µ({x | |f(x)− fn(x)| > ϵ}) = 0.

(a) Assume that µ(X) < ∞. Show that the sequence (fn)n∈N converges in measure to f if
and only if every subsequence of (fn)n∈N has a further subsequence that converges a.e. to
f .

Solution: (⇐=) If we assume that every subsequence of (fn)n∈N has a further subsequence
that converges a.e. to f . We notice that (fn)n∈N converge in measure to f if and only if
every subsequence of (fn)n∈N has a further subsequence that converges to f in measure
(by characterization of convergent sequences in R). Thus, we can assume without loss
of generality that (fn)n∈N converges a.e. to f . Let A = {x ∈ X | fn(x) → f(x)}. Then
µ(X\A) = 0. Since µ(X) < ∞, µ(A) < ∞ and we may apply Egoroff’s theorem. Thus,
there exists a set E such that µ(A\E) < ϵ and fn → f uniformly on E. Given ϵ > 0,
there exists N such that |f(x)− fn(x)| < ϵ for all n > N and all x ∈ E. So, for n >
N, |f(x)− fn(x)| can be greater than ϵ only on (A\E) ∪ (X\A). This means that

µ ({x ||fn(x)− f(x)| > ϵ}) ≤ µ(A\E) + µ(X\A)

< ϵ+ 0 = ϵ

for all n > N .

(=⇒) We assume that fn → f in measure. Let ϵ = 2−k. Given k, there exists N(k) such
that for n ≥ N(k),

µ
({

x ∈ X
∣∣∣|f(x)− fn(x)| > 2−k

}
< 2−k .

Let Ek =
{
x ∈ X | |fN(k)(x)− f(x) |> 2−k

}
. Then µ (Ek) < 2−k. If x /∈ ∪∞

i=kEi, then
x ∈ (∪∞

i=kEi)
c = ∩∞

i=kE
c
i . For such x we have∣∣fN(i)(x)− f(x)

∣∣ < 2−i for every i ≥ k

which implies fN(i)(x) → f(x).

Let

A =
∞⋂
k=1

∞⋃
i=k

Ei.

So if x /∈ A, then fN(i)(x) → f(x). For any k,

µ(A) ≤ µ (∪∞
i=kEi) ≤

∞∑
i=k

2−i = 2−k+1,

so µ(A) = 0, concluding.

(b) What happens if µ(X) = ∞?



Consider X = R with the Lebesgue measure, and the functions fn = 1[n,n+1]. Then,
fn → 0 poinwise, but {x ∈ X | |fn(x)| = 1} has measure 1 for each n ∈ N. This shows
that (⇐=) becomes false if we do not assume that µ(X) < ∞. On the other hand, we
never used the hypothesis µ(X) < ∞ in (=⇒), so this implication is still true.

P2. Let (X,F) be a measurable space, and let ν and µ be two measures such that ν ≪ µ and g = ∂ν
∂µ .

Prove that if g ∈ Lp(µ) and A ∈ F , then

ν(A) ≤ ∥g∥Lp(µ)µ(A)1/q,

where 1
p + 1

q = 1.

Solution: We have by Holder’s inequality that

ν(A) =

∫
A
gdµ

=

∫
1A · gdµ

≤ ||1A||q · ||g||p = µ(A)1/q||g||p,

concluding.

P3. Let (X,B) be a measurable space, and let µ : B → [−∞,∞] be a signed measure with total
variation |µ|. Then for any E ∈ B,

|µ|(E) = inf{ν(E) : ν is a measure and |µ(F )| ≤ ν(F ) for all F ∈ B}

= sup

{ ∞∑
n=1

|µ (En)| : E =
⊔
n∈N

En

}
.

Solution: We prove the first equality. As |µ+ − µ−| ≤ µ+ + µ− we have that |µ| = µ+ + µ−
participates in the infimum, and thus

|µ|(E) ≥ inf{ν(E) : ν is a measure and |µ(F )| ≤ ν(F ) for all F ∈ B}.

On the other hand, for ν a measure such that |µ(F )| ≤ ν(F ) for each F ∈ B. By Hahn’s
theorem, there is a partition X = P ⊔N such that µ+ is supported on P and µ− is supported
on N . Thus, for each A ∈ B

|µ|(A) = µ+(A) + µ−(A) = |µ(A ∩ P )|+ |µ(A ∩N)| ≤ ν(A ∩ P ) + ν(A ∩N) = ν(A).

As ν was arbitrary, we conclude

|µ|(E) ≤ inf{ν(E) : ν is a measure and |µ(F )| ≤ ν(F ) for all F ∈ B}.

Now, we show the second equality. Let E =
⊔

n∈NEn ∈ B. Then

|µ|(E) =
∑
n∈N

|µ|(En) ≥
∑
n∈N

|µ(En)|.
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Taking the supremum gives

|µ|(E) ≥ sup

{ ∞∑
n=1

|µ (En)| : E =
⊔
n∈N

En

}
.

On the other hand, we have that

|µ|(E) = µ(E ∩ P )− µ(E ∩N) = |µ(E ∩ P )|+ |µ(E ∩N)| ≤ sup

{ ∞∑
n=1

|µ (En)| : E =
⊔
n∈N

En

}
,

concluding.
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