Exercise Sheet Solutions #12

Course Instructor: Ethan Ackelsberg Teaching Assistant: Felipe Hernández

P1. Let (X, μ, T) a measure space. We say that $(f_n)_n$ converges in measure to f if given $\epsilon > 0$ we have $\lim_{n\to\infty} \mu(\lbrace x \mid |f(x) - f_n(x)| > \epsilon \rbrace) = 0.$

(a) Assume that $\mu(X) < \infty$. Show that the sequence $(f_n)_{n \in \mathbb{N}}$ converges in measure to f if and only if every subsequence of $(f_n)_{n\in\mathbb{N}}$ has a further subsequence that converges a.e. to f.

Solution: (\iff) If we assume that every subsequence of $(f_n)_{n\in\mathbb{N}}$ has a further subsequence that converges a.e. to f. We notice that $(f_n)_{n\in\mathbb{N}}$ converge in measure to f if and only if every subsequence of $(f_n)_{n\in\mathbb{N}}$ has a further subsequence that converges to f in measure (by characterization of convergent sequences in \mathbb{R}). Thus, we can assume without loss of generality that $(f_n)_{n\in\mathbb{N}}$ converges a.e. to f. Let $A=\{x\in X\mid f_n(x)\to f(x)\}$. Then $\mu(X \setminus A) = 0$. Since $\mu(X) < \infty, \mu(A) < \infty$ and we may apply Egoroff's theorem. Thus, there exists a set E such that $\mu(A \setminus E) < \epsilon$ and $f_n \to f$ uniformly on E. Given $\epsilon > 0$, there exists N such that $|f(x) - f_n(x)| < \epsilon$ for all n > N and all $x \in E$. So, for $n > \epsilon$ $N, |f(x) - f_n(x)|$ can be greater than ϵ only on $(A \setminus E) \cup (X \setminus A)$. This means that

$$\mu\left(\left\{x\left|\left|f_n(x) - f(x)\right| > \epsilon\right\}\right) \le \mu(A \setminus E) + \mu(X \setminus A)$$

$$< \epsilon + 0 = \epsilon$$

for all n > N.

 (\Longrightarrow) We assume that $f_n \to f$ in measure. Let $\epsilon = 2^{-k}$. Given k, there exists N(k) such

$$\mu\left(\left\{x \in X \left| |f(x) - f_n(x)| > 2^{-k} \right.\right\} < 2^{-k}\right)\right)$$

Let $E_k = \{x \in X \mid |f_{N(k)}(x) - f(x)| > 2^{-k}\}$. Then $\mu(E_k) < 2^{-k}$. If $x \notin \bigcup_{i=k}^{\infty} E_i$, then $x \in (\bigcup_{i=k}^{\infty} E_i)^c = \bigcap_{i=k}^{\infty} E_i^c$. For such x we have

$$|f_{N(i)}(x) - f(x)| < 2^{-i}$$
 for every $i \ge k$

which implies $f_{N(i)}(x) \to f(x)$.

$$A = \bigcap_{k=1}^{\infty} \bigcup_{i=k}^{\infty} E_i.$$

So if $x \notin A$, then $f_{N(i)}(x) \to f(x)$. For any k, $\mu(A) \le \mu\left(\cup_{i=k}^{\infty} E_i\right)$ so $\mu(A)=0$, concluding.

$$\mu(A) \le \mu(\bigcup_{i=k}^{\infty} E_i) \le \sum_{i=k}^{\infty} 2^{-i} = 2^{-k+1},$$

(b) What happens if $\mu(X) = \infty$?

Consider $X = \mathbb{R}$ with the Lebesgue measure, and the functions $f_n = \mathbb{1}_{[n,n+1]}$. Then, $f_n \to 0$ poinwise, but $\{x \in X \mid |f_n(x)| = 1\}$ has measure 1 for each $n \in \mathbb{N}$. This shows that (\longleftarrow) becomes false if we do not assume that $\mu(X) < \infty$. On the other hand, we never used the hypothesis $\mu(X) < \infty$ in (\Longrightarrow) , so this implication is still true.

P2. Let (X, \mathcal{F}) be a measurable space, and let ν and μ be two measures such that $\nu \ll \mu$ and $g = \frac{\partial \nu}{\partial u}$. Prove that if $g \in L^p(\mu)$ and $A \in \mathcal{F}$, then

$$\nu(A) \le ||g||_{L^p(\mu)} \mu(A)^{1/q},$$

where $\frac{1}{p} + \frac{1}{q} = 1$.

Solution: We have by Holder's inequality that

$$\begin{split} \nu(A) &= \int_A g d\mu \\ &= \int \mathbbm{1}_A \cdot g d\mu \\ &\leq ||\mathbbm{1}_A||_q \cdot ||g||_p = \mu(A)^{1/q} ||g||_p, \end{split}$$

P3. Let (X,\mathcal{B}) be a measurable space, and let $\mu:\mathcal{B}\to[-\infty,\infty]$ be a signed measure with total variation $|\mu|$. Then for any $E \in \mathcal{B}$,

$$|\mu|(E) = \inf\{\nu(E) : \nu \text{ is a measure and } |\mu(F)| \le \nu(F) \text{ for all } F \in \mathcal{B}\}$$

$$= \sup\left\{\sum_{n=1}^{\infty} |\mu(E_n)| : E = \bigsqcup_{n \in \mathbb{N}} E_n\right\}.$$

Solution: We prove the first equality. As $|\mu_+ - \mu_-| \le \mu_+ + \mu_-$ we have that $|\mu| = \mu_+ + \mu_$ participates in the infimum, and thus

$$|\mu|(E) \ge \inf\{\nu(E) : \nu \text{ is a measure and } |\mu(F)| \le \nu(F) \text{ for all } F \in \mathcal{B}\}.$$

On the other hand, for ν a measure such that $|\mu(F)| \leq \nu(F)$ for each $F \in \mathcal{B}$. By Hahn's theorem, there is a partition $X = P \sqcup N$ such that μ_+ is supported on P and μ_- is supported on N. Thus, for each $A \in \mathcal{B}$

$$|\mu|(A)=\mu_+(A)+\mu_-(A)=|\mu(A\cap P)|+|\mu(A\cap N)|\leq \nu(A\cap P)+\nu(A\cap N)=\nu(A).$$
 As ν was arbitrary, we conclude

$$|\mu|(E) \leq \inf\{\nu(E) : \nu \text{ is a measure and } |\mu(F)| \leq \nu(F) \text{ for all } F \in \mathcal{B}\}.$$
 Now, we show the second equality. Let $E = \bigsqcup_{n \in \mathbb{N}} E_n \in \mathcal{B}$. Then

$$|\mu|(E) = \sum_{n \in \mathbb{N}} |\mu|(E_n) \ge \sum_{n \in \mathbb{N}} |\mu(E_n)|.$$

Taking the supremum gives

$$|\mu|(E) \ge \sup \left\{ \sum_{n=1}^{\infty} |\mu(E_n)| : E = \bigsqcup_{n \in \mathbb{N}} E_n \right\}$$

$$|\mu|(E) \ge \sup \left\{ \sum_{n=1}^{\infty} |\mu\left(E_{n}\right)| : E = \bigsqcup_{n \in \mathbb{N}} E_{n} \right\}.$$
 On the other hand, we have that
$$|\mu|(E) = \mu(E \cap P) - \mu(E \cap N) = |\mu(E \cap P)| + |\mu(E \cap N)| \le \sup \left\{ \sum_{n=1}^{\infty} |\mu\left(E_{n}\right)| : E = \bigsqcup_{n \in \mathbb{N}} E_{n} \right\},$$
 concluding.